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1  Project Statement

The PI proposes to build a software tool to help integrate his rich breadth and depth of supporting 
STEM resources and processes into a coherent framework for use in the classroom, research, and 
outreach. It relies on his many years of experience in industry and academia to provide students 
with practical exposure to understanding and solving real-world problems in software systems 
engineering.

2  Purpose and Scope

The primary purpose of this work is to build a software tool that supports the execution and 
assessment of the principal investigator’s teaching philosophy. This philosophy emphasizes STEM-
related reasoning and actions to guide a disciplined process of developing real-world software in 
the classroom in a manageable way. EWU is a primarily undergraduate institution with heavy 
teaching loads and high-maintenance students. It is difficult to give them a realistic educational 
experience under these conditions. This work will help make the existing process more 
manageable, flexible, and effective. In particular, it addresses strengths and weaknesses of EWU 
students and leverages what they have learned before college and in other courses into a coherent,
integrated learning experience.

This tool naturally extends beyond the classroom as a platform for STEM outreach because the 
real-world projects it showcases are appealing and intriguing. Furthermore, the projects are 
valuable for research and to foster collaborative academia-industry partnerships. In Fall 2020, the 
Computer Science and Electrical Engineering departments are moving to downtown Spokane to 
support the Catalyst Project for design and innovation [33]. Software systems engineering will play 
a key role. Specifically, the PI’s efforts will be heavily focused on the local and regional aerospace 
industry. Washington is ranked as the best state in the country for aerospace companies [9]. The 
Spokane region is second in the state for their presence and fifth in the entire nation [17]. 
However, EWU does not currently make good use of this potential.

2.1  Problem

The current state of software development in industry is disturbing, to say the least. Poor quality is 
the norm. Horror stories, especially in regard to security, make headlines nearly every day. At the 
national level, almost every American has been directly or indirectly affected. Locally, the $100 
million system under development for the Community Colleges of Spokane is a disaster [10]. In 
fact, 70% of software projects fail [20], and of the remainder, almost two thirds of the final product
is rarely or never used [31]. A classic quote sums up this sad state of affairs [46]:

If builders built buildings the way programmers write programs,
then the first woodpecker that came along would destroy civilization.

At a time when the world is demanding more and more from technology, and the risks and 
consequences continue to grow at a staggering rate, the software industry is no longer able to do 
its job acceptably. This situation has reached a tipping point, such as when the entire state of 
Washington lost 911 service for six hours [34]. Society and the software industry itself admit that 
this level of performance cannot continue. Another classic statement in Figure 1, which the PI 
frequently refers to as “The Cartoon” in teaching, sadly captures the sheer absurdity of modern 
software development.
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2.2  Primary Causes

There are many causes of this predicament, but the primary ones are the astronomical complexity 
of modern software and software engineers’ inability to manage it. Even a typical program that 
students write as a homework assignment, with 100 lines of code (computer instructions), can 
theoretically translate to hundreds of trillions tests to run to verify its correctness exhaustively [27]. 
Today’s typical car, however, has 100 million lines of code and is expected to double or even triple 
within a few years [8]. The solutions to today’s problems1 clearly exceed the ability of software 
engineers to manage them properly.

Paradoxically, as society now demands more from its software systems, software engineers are 
actually capable of less. Part of the reason is inherent in today's frenetic development environment,
which often values expediency over quality, but the PI argues that really the difficulties start at the 
student level: The vast majority of difficulties in the professional environment stem from computer 
science students not learning to think and act appropriately in the academic one.

Computer science degree programs are hot because the job market is overflowing with high-
paying positions. What used to be a relatively niche subject frequented by stereotypical “geeks” is 
now a mainstream degree pursued by all kinds. Programs are graduating students at a pace that 
does not accommodate exposing them to a sufficient breadth and depth of realistic material to 
develop their skills adequately. Many of the difficulties come from a lack of discipline in how they 
work. When the problems are smaller, students can produce solutions by any means, no matter 
how undisciplined (often referred to as brute force or “hacking”2 for its lack of forethought and 
elegance). Unfortunately, students do not automatically grow out of such behavior when they 

1The word “problem” is ironically problematic. From this point on, this proposal defines it as the task to 
solve. For the interpretation of an impediment or difficulty, it uses other terms as appropriate.

2This term can also mean undermining security, but here it means flailing away at a problem in hope of 
finding a solution.

Figure 1: The Cartoon [44]
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graduate and transition to larger problems. This work aims to address underlying issues at the 
university level by fostering disciplined thinking and doing.

Students come into the degree program with many misconceptions about what computer science 
is and what computer scientists3 do [13]. Identifying and correcting these is a critical first step. The 
PI has conducted many classroom surveys and studies over the years. They consistently show that 
most students do not know what the field is about, why they are in it, or what they want to do with
it as a career. In particular, they think it is all about computer programming. Edsger Dijkstra, a 
pioneer in the field, sums it up well: “Computer science is no more about computers than 
astronomy is about telescopes” [43].

Similarly, software engineering — the process of developing software — is at least 80% about 
thinking, and only 20% about doing (i.e., programming). This mismatch in expectations manifests 
itself clearly in the PI’s required junior-level introductory software engineering class, where students 
immediately object to the non-programming “busy work” that is actually the most important part of
the development process. In fact, neglecting this part is precisely what leads to horror stories. 

Industry is experiencing a similar mismatch. College is not adequately preparing graduates for the 
workplace, although students overwhelmingly believe the opposite [6]. Software engineers must be 
adroit thinkers. They must actively engage in the development and refinement of their thinking 
skills. Unfortunately, today’s students are more likely to be passive participants in their education 
who blindly jump through hoops as told, check off requirements, and equate generous grades with 
actual knowledge, skills, and experience. The result, however, is not a software engineer. At best, 
this behavior produces a computer programmer (or “coder”), who is someone who takes 
instructions from others and follows them. Software engineers are the ones who write these 
instructions.

As Einstein said, “Education is not the learning of facts, but training the mind to think” [12]. 
Unfortunately, study after study warns that today’s students are not developing the ability to think 
critically [4]:

• 45% did not demonstrate any significant improvement during the first two years of college.
• 36% did not after four years.
• Any improvements tended to be modest.

The numbers and methodology in this heavily cited study are still under debate, but the overall 
conclusion is sound. Nowhere is it more apparent than in this field: “Software engineers don’t 
understand the problem they’re trying to solve, and don’t care to” and “[They] know how to code. 
The problem is what to code” (both original emphasis) [34]. This disconnect comes from a lack of 
critical thinking about problems, which leads to inappropriate solutions [25]. Further 
misconceptions involve not seeing — or more commonly, actively fighting against — the science in
computer science and the engineering in software engineering [14]. The PI’s teaching philosophy 
calls these weaknesses out, explains them, and helps students make improvements. This project 
aims to facilitate this process by addressing two broad categories of weaknesses.

3The terminology in this field is not consistent. For this proposal, a software engineer is a type of applied 
computer scientist who designs, builds, and tests software, whereas a computer scientist focuses more on 
theory. Despite the discipline name, very few graduates ever become true computer scientists.
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First, inadequate problem-solving skills naturally result in inadequate solutions. A major contributing
factor is a lack of understanding of the problem domain and the inability to make sense of it. 
Identifying and connecting dots is not standard thinking anymore. Classroom surveys and 
anecdotal evidence show that many students lack an understanding and curiosity about the world 
around them. This world is full of elegant solutions to complex problems, both natural and human-
made. This missing world view results in a loss of conceptual integrity where solutions do not 
actually solve the problems, and in fact often actually create more. Even when the solutions do 
work, they are often inordinately complex, unreliable, and vulnerable. After all, “The purpose of 
software engineering is to control complexity, not to create it” (Pamela Zave).

Second, human nature and millennial mentality are large impediments to success. Today's students
tend to be hesitant learners who are fearful of failure. As a result, they try to stay safely in their 
comfort zones instead of seeking out challenges that would broaden their knowledge, skills, and 
experience. Overconfidence also plays a large role [48]. There are no shortcuts to learning and 
applying this material. The PI’s teaching philosophy intentionally disrupts these detrimental 
behaviors by forcing students to work on projects in unfamiliar problem domains. Without a 
background or preconceived notions, they are forced to follow his disciplined approach.

2.3  Proposed Mitigating Solution

This work does not expect to solve these challenges or eliminate their causes. Rather, the intent is 
to develop an environment that facilitates reducing their range, frequency, and severity. To this 
end, it has the following goals:

• Develop, deploy, and assess a software tool for classroom usage.
• Improve computational critical thinking and doing.
• Promote STEM innovation, creativity, curiosity, problem solving, etc., especially among 

underprivileged, underrepresented groups and others deprived of critical pre-university 
formative world knowledge and experiences.

• Pursue student and faculty research and collaborative efforts with industry.

Satisfying the following objectives contributes to achieving the goals. Section 5.1 provides more 
detail.

• Analyze the existing curricular environment of courses, students, and resources.
• Dismantle the PI’s existing projects.
• Reevaluate the projects for their purpose and needs.
• Develop a model-based tool for formally defining the needs of the projects and designing their 

solutions.
• Rebuild the projects with the tool while documenting the process.
• Revamp relevant courses with the tool while cross-referencing their content to the projects and 

other resources.
• Deploy and assess the tool in the classroom.
• Use the tool for undergraduate and graduate research, the PI’s research, promotional and 

outreach efforts, and industry collaboration.
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3  Background

Background information is necessary to understand the big picture of what this work proposes to 
do, as well as how and why. The following sections provide an overview of software systems 
engineering, relevant pedagogy, and model-based solutions.

This work involves the complex intersection of multiple disciplines: computer science, electrical 
engineering, mechanical engineering, and the problem domain itself. It draws upon two 
collaborative philosophies. Both are common in industry but rare in an academic setting:

• Multidisciplinary Philosophy

Different disciplines work together by contributing their parts to the whole; e.g., software and
hardware engineers collaborating to build a physical system, where neither is very conversant in
the other’s field.

• Interdisciplinary Philosophy

Different disciplines work together by integrating knowledge and considering each other’s
perspectives; e.g., software engineers thinking about their work as hardware engineers would.

3.1  Discipline Foundation

This section provides an overview of technical aspects. It is based on the PI’s academic and 
industry experience in combination with these and many other resources: Software Engineering 
Body of Knowledge [32], Systems Engineering Body of Knowledge [35], Modeling and Simulation 
Body of Knowledge [24], and Project Management Body of Knowledge [28].

Software

A program is a computational representation, or model, of the real world. The term software is 
often used interchangeably, but it generally refers to larger programs or a collection of programs, 
both solving many facets of a complex problem.

All programs follow the same IPO computational model:

• I nput: Receive data.
• Processing: Translate data into another form.
• Output: Pass data on.

Everything that is doable in the real world is doable in the virtual world of a computer model. The 
primary difficulty is in translating from the former to the latter, as The Cartoon demonstrates. 
Without careful attention, each translation loses necessary details, introduces unnecessary ones, 
mangles what it retains, and very little survives unscathed. The goal is to translate only what is 
needed — nothing less, nothing more. As Einstein and da Vinci respectively said, “Make 
everything as simple as possible but not simpler” and “Simplicity is the ultimate sophistication” 
[12]. In other words, the computer model ideally represents only the parts that are needed to solve 
the problem. The overall translation is an iterative, multilayer process, where each layer takes the 
same basic idea in a more general form and produces an equivalent but more specific form. The 
chain originates from a person whose description is in a human language and ultimate leads to a 
machine with its nearly incomprehensible language. 
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Software Systems Engineering

Software systems engineering is not a standard term on its own (yet). Rather, the PI uses it as a 
combination of systems and systems thinking, software engineering, and systems engineering. The 
overlap is substantial because real-world problem solving does not have such arbitrary boundaries in
terminology.

Systems

A system is a collection of interconnected, interacting parts that as a whole solve a problem in the 
input-processing-output sense. Natural systems in the real world are typically large, complex, and 
convoluted because nature, while phenomenal at finding solutions to problems, does not make 
long-term proactive decisions for a purpose. Rather, it shortsightedly reacts to current conditions. 
Over time — a lot of time — its solutions often accumulate a tremendous amount of excess 
complexity. Understanding such systems is the realm of science. Artificial systems, on the other 
hand, are created by humans for a purpose. Understanding and building them is the realm of 
engineering. Section 3.3 below addresses both perspectives as systems thinking, which is the basis 
for the proposed tool.

Software Engineering

Software engineering is primarily about the development of computational solutions. It takes the 
chaos of the problem domain and (hopefully) translates it into order in the solution domain. It is 
not an exclusively linear process, but the following steps typically occur in the following order:

• Problem Analysis: Determine the customer’s needs.
• Background Research: Understand the customer’s world.
• Requirements Specification: Elicit and stating the features to deliver.
• Design: Translate the requirements into conceptual form.
• Implementation: Translate the conceptual form into a program.
• Testing: Determine whether the program works.
• Verification: Ensure that the program satisfies the requirements.
• Validation: Ensure that the program satisfies the customer’s needs.
• Accreditation: Certify that the final product meets official standards.

Systems Engineering

Systems engineering is primarily about the development of physical engineering solutions, which 
include software solutions [21]. Its process is similar to that of software engineering, but it 
encompasses more breadth with the bigger picture of the problem and solution domains. The PI is 
both a software engineer and a systems engineer who comfortably operates at any level from the 
abstract to the concrete. This ability aligns ideally with modern systems. The virtual computer 
science (CS) layer is the core decision-making and control element, which communicates with the 
electrical engineering (EE) layer, which in turn communicates with the mechanical engineering (ME)
layer, which finally interacts with the physical world. Just as any software solution is an IPO model, 
most engineering solutions reflect this holistic CS–EE–ME model (which also closely overlaps with 
the field of mechatronics). In fact, this systems of systems perspective is the norm, including the 
current internet and mobile environments and the nascent Internet of Things poised to explode 
into mainstream life. Students will likely spend their careers supporting it.
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Modeling and Simulation

The field of modeling and simulation plays a major supporting role across software systems 
engineering and in science in general. The National Science Foundation states [11]:

Science used to be composed of two endeavors: theory and experiment.
Now it has a third component: computer simulation, which links the other two.

As discussed below, it uses the scientific method and engineering method as a formal, disciplined, 
executable, verifiable, and justifiable process across all stages of development. The PI has worked 
in this area for decades, including 10 years for the Department of Defense on huge systems 
engineering projects.

3.2  Classroom Foundation

The PI’s approach in the classroom is to teach software systems engineering the way it works for 
real outside the classroom while still keeping it reasonable and manageable in a junior-level course. 
He develops a project in its entirety before the quarter starts. The project is far larger and more 
complex than the students could ever do on their own. Based on the strengths and weaknesses of 
the particular group, he removes parts of his solution and has the students redo them. This 
approach supports the guidance from the EWU Computer Science Professional Advisory Board 
(see Appendix B.2 #2) to expose students to working with existing solutions instead of building 
everything from scratch, which is typical in the classroom but rare in industry.

The PI teaches from his own perspective of QMSVA, which is in many respects an implementation
of the scientific method. It is also highly flexible in that one approach can apply to solving many 
types of problems; e.g., class projects, master’s theses, and industry projects.

• Questioning: Pose a question of interest related to the problem domain.
• Modeling: Build a software representation of the problem domain to investigate at the 

appropriate level of detail.
• S imulation: Execute the model under controlled conditions.
• Visualization: Show the results in meaningful, useful text or graphical form.
• Analysis: Make sense of the results with respect to the question and generate a report.

The nine projects deployed in recent years are [40]:

1. Air traffic control with airplanes operating on the ground and in the air in various scenarios 
and airspace configurations [36].

2. Aircraft accident reenactment environment for creating, recreating, and analyzing events.

3. Military test range with airplanes, ships, and submarines using sensors and weapons [38].

4. Aircraft carrier operations with fighters taking off, landing, and refueling from tankers [41].

5. Spacecraft systems simulator for designing, launching, manipulating, and recovering rockets 
and satellites.

6. Unmanned aerial vehicle remote cockpit with instrumentation and flight data recording [37].

7. Fly-by-wire control system with networked control surfaces and external components of an 
airplane on a test stand [39].

8. Railroad layout manager with tracks, cars, engines, and signaling and safety systems.

9. Heavy construction equipment toolkit with sensors and electrical, mechanical, hydraulic, and 
pneumatic actuators.
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The first seven projects are directly related to aerospace. The last two are quite different, but they 
demonstrate the extensibility of the PI’s approach to other problem domains. Appendix D includes 
publications on 1, 3, 4, 6, and 7, which go into much greater detail than this proposal can.

Although each project is independent, the aerospace ones could naturally organize into systems of 
systems. In the global top-down view, 1 controls aircraft in 2, 3, 4. Conversely, in the local 
bottom-up view, 7 implements actions in 6 and 5. However, no such interoperable, integrated 
form is currently possible. With this tool, it could be.

The PI’s investment in each project is extensive. It is justifiable because the same project serves 
multiple purposes: It is a classroom project, which often leads to pedagogy research, and it is a 
sufficient solution in the problem domain for academic research; e.g., Project 6 led to a publication
on machine learning [37]. Unfortunately, time pressures have always prevented the PI from 
carefully documenting his development process in a way that could be integrated meaningfully into 
teaching. This tool will help. 

3.3  Model-Based Systems Thinking Foundation

Problem solving is very much a chaotic, nonlinear process. There are many ways to summarize it. 
This section provides an overview in terms of what problem-solving thinking is in general, what 
systems thinking is, how to apply it, and how to learn from it. It relies on well-established, 
discipline-specific resources: Association for Computing Machinery Computer Science [5] and 
Software Engineering Curricula [5]; Accreditation Board for Engineering and Technology (ABET) 
program criteria for Computer Science, Software Engineering, and Systems Engineering [1, 2, and
Appendix B.1]; the EWU Computer Science Professional Advisory Board Program Educational 
Objectives [Appendix B.2]; the Graduate Reference Curriculum for Systems Engineering [16]; and 
Microsoft Transform Science Computational Education for Scientists report [22].

Critical Thinking

The translation process in Section 3.1 fundamentally involves eliciting, understanding, telling, and 
retelling stories. Each layer is a story that needs to be established in the form appropriate for that 
layer, then correctly translated to the next layer into its own different form. Mistakes in translation 
lead to The Cartoon. They come from mistakes in critical thinking, including not applying critical 
thinking at all.

The PI’s teaching philosophy relies on many well-established pedagogical sources, but the following
two play arguably the largest role. The classic Bloom’s Taxonomy of Educational Objectives 
supplies the framework [7]. It describes a bottom-up conceptual process of establishing the initial 
building blocks and repeatedly combining them through increasingly more complex mental 
manipulation into a final form of a solution. It is a conceptual framework, not a recipe, but the 
processes described throughout this proposal map to it, and vice versa.

• Remember: Recognize and recall facts.
• Understand: Understand what the facts mean.
• Apply: Apply the facts, rules, concepts, and ideas.
• Analyze: Break down information into components.
• Evaluate: Judge the value of information or ideas.
• Create: Combine parts to make a whole.
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At the same time, but in a different way, the Data, Information, Knowledge, Wisdom (DIKW) 
Hierarchy in Figure 2 provides a more structured framework of establishing and connecting the 
dots in a story [19]:

• Data: Dots with no context.
• Information: Dots connected in a single context or relationship.
• Knowledge: Dots connected in multiple contexts or relationships.
• Wisdom: Overall understanding of what the dots are, what they do and do not do, and how

they interact, etc.; i.e., a systems view.

Both perspectives overlap in some respects and complement each other in others. Together they 
form a mental framework for defining and understanding past, present, and future aspects of the 
problem to solve. This foundation leads directly into multidimensional what if systems thinking. 
Neither perspective provides a recipe for thinking or doing, but together they do provide some 
structure and guidance for a process flow. Figure 3 shows a meaningful mapping to various kinds 
of knowledge, and Figure 4 walks through it. These diagrams are too detailed and complex to 
address here, but many of its elements correspond to parts of this proposal.

Figure 2: DIKW Hierarchy [47]
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Systems Thinking

As with critical thinking, systems thinking has no concrete definition or description. Instead of 
trying to provide one, the PI treats the following habits of system thinkers as the objectives to be 
partly addressed in the remainder of this section [3]:

• Seeks to understand the big picture.
• Observes how elements within systems change over time, generating patterns and trends.
• Recognizes that a system’s structure generates its behavior.
• Identifies the circular nature of complex cause-and-effect relationships.
• Recognizes the impact of time delays when exploring cause-and-effect relationships.
• Makes meaningful connections within and between systems.
• Changes perspectives to increase understanding.
• Surfaces and tests assumptions.

Figure 4: DIKW Flow [44]

Figure 3: DIKW Mapping [44]

10 of 168



• Considers an issue fully and resists the urge to come to a quick conclusion.
• Considers how mental models affect current reality and the future.
• Uses understanding of system structure to identify possible leverage actions.
• Considers short-term, long-term, and unintended consequences of actions.
• Pays attention to accumulations and their rates of change.
• Checks results and changes actions if needed through successive approximation.

Applying Systems Thinking

Applying systems thinking to achieve these objectives is also very nonlinear and chaotic. This 
overview covers an organizational strategy of modeling the different layers, making sense of their 
correspondences, decomposing them into workable units, establishing a plan to solve them, 
executing it, evaluating the results, and reflecting on the process. Appendix C provides several 
classroom examples.

Model layers establish a path from the problem domain to the solution domain. The PI uses the 
following top-down hierarchy:

• World Model

The problem domain is the real world, so this model is reality. Students need to actively engage
the real world to understand how it works and does not, as well as why.

• Mental Model

The understanding of the world model is a matter of perception in the mind of those thinking 
about it. Students need a background in the subject matter, the ability to reason over it, and a 
way to verify their reasoning.

• Conceptual Model

The mental model needs to be rich enough to capture the essence of the problem but simple 
enough to abstract away irrelevant and distracting details. A cartoon perspective, often in the 
style of Road Runner engineering, helps formulate an appropriate understanding of the 
system, verify that it is consistent with reality, and communicate about it.

• Formal Model

The conceptual model is actually informally computable: It contains all the necessary 
interconnected dots along with the capability to make them perform, albeit in the cartoon 
sense. The formal model is a corresponding story that uses software engineering design 
constructs like object-oriented diagrams and design patterns. If the cartoon form does not 
work, nor will the formal form.

• Computational Model

The representation in the formal model translates to the final computational model, or 
program. Here is where most of the programming “doing” should happen, but the least 
thinking.

Section 3.1 explained how everything that is doable in the real world is doable in the virtual world; 
only the form and execution differ. This same logic applies between any two model layers, not just 
the first and last. Each intermediate model derives from the previous and leads to the next. The 
form changes radically, but the essence should not. Students immediately run into difficulties at the 
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start by not knowing the subject matter and not putting in the effort to become adequately familiar 
with it. Their mental model usually reflects feelings, belief, opinion, overconfidence, and least effort
instead of what the world model actually needs. Without a mental model, there is no reasonable 
conceptual model to play with; nor is there a way to evaluate whether the needs would be met 
before committing to later, more expensive models. Formal models are usually absent because 
there is not much to formalize. Instead, students generally start and end their development process 
at the computational model. The result is The Cartoon.

It is therefore necessary to get students under control early and keep them on track in a disciplined,
ideally self-policing manner. The same basic questions have to be posed and answered at every 
layer. Students have remarkable difficulty with this process. The PI partially manages it by making 
sure the critical questions are stated early and continuously revisited and reevaluated from different 
perspectives. Students learn this strategy in grade school with who, what, when, where, why, and 
how questions applied to understanding and telling stories; e.g., book reports and Show and Tell. 
As obvious as this step seems, students can rarely answer basic questions about anything they are 
thinking or doing. Their mental model is weak or nonexistent. Pushing them to articulate their 
thoughts this way makes this deficiency clear, where it can then be resolved before moving on.

A critical step is to understand the basics of how dots are referred to:

• World Model: Things Properties Actions Relationships
• Linguistic Model: Nouns Adjectives Verbs Prepositions
• Computational Model: Objects Data Functions Composition

The world is rarely clean and consistent, but in this case, there is a direct correspondence between 
the world people live in and how they talk about it and how programs can represent it [45]. This 
correspondence bridges the world and computational models. The world is what it is naturally, and 
human language passively evolved to reflect it, but people actively designed computational 
constructs to represent the world in programs. Student miss this incredibly powerful guide to 
making sense of everything. They often see words that others write as just words without much 
meaning or intent, and words that they write tend to lack meaning and intent. This deficiency leads
to difficulties in communication at all levels. It is not surprising that employers identify poor 
communication skills as a major concern with today’s graduates [6].

Decomposing each layer into its appropriate form is complicated. Students have difficulty making 
sense of what they are given. They especially struggle with linguistic concepts that other parts of 
their education have already covered:

• Syntax: The form of words.
• Grammar: The connection of words.
• Semantics: The meaning of words without context.
• Pragmatics: The meaning of words in context.

A good example is the simple concept of angular degrees. Students fixate on the mathematical 
definition of a circle, where 0 degrees is to the right and values increase counterclockwise. Despite 
having learned about maps and compasses in grade school, they consistently have difficulty with 
the second interpretation of 0 degrees being up (north) and values increasing clockwise (east, 
south, west). This interpretation of the world leads to a disconnect with the math in their 
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programs, which then behave incorrectly. The typical response is to cover up the symptoms with 
more complexity instead of treating the cause. A simple Google search about compass directions 
would be enough reality check to demonstrate this disconnect, but students fixate on their one 
interpretation as the only possible one, even when explicitly warned not to. Overcoming a faulty 
mental model and their overconfidence in its correctness is difficult. In fact, this example commonly
results in grumbling that the PI “sets them up for failure.” It is indeed challenging to teach today’s 
students when they think and act this way so resolutely.

The computational perspective derives from the linguistic one:

• Data: What something is.
• Control: What something can do.
• Behavior: What something actually does in contextual operation.

This framework captures the functional definition of anything at any level. An oversimplified 
example is an airplane: Its data are position, direction, and speed. Its control is the capability to 
change direction (turn clockwise or counterclockwise) and speed, which together indirectly change 
position. Its behavior could be any “mission” involving flying from one position to another. In this 
way, it is the same common solution to any number of related problems. The data must be 
appropriate such that the control can operate on it to realize the behavior. Any misalignment is a 
costly disconnect: Losing something necessary renders the model incomplete and not fully 
functional, whereas adding something unnecessary increases the cost and risk with no benefit. This
kind of basic critical thinking eludes most students, even though their programs use exactly these 
constructs: Data is variables, control is functions, and behavior is running the program. It is no 
surprise that their programs generally reflect chaos, and they cannot explain what the programs do
or how or why.

Disciplined development requires disciplined planning. This planning, however, does not need to 
be complicated or onerous. It merely needs to be effective. The PI strives to get the most benefit 
for the least cost. To this end, he presents this simple framework:

• Read: Look at the materials; this can be any form, but normally is written.
• Understand: Make sense of the materials.
• Plan: Develop a plan to convert the understanding into action.
• Execute: Follow the plan.
• Verify: Confirm that the plan produced the expected results.
• Reflect: Think about what went right and wrong, etc. to learn from the experience.

It is an iterative framework that repeats at every level. If verification fails, do not move on: Identify 
the disconnect, go back and fix it, then verify the fix. Not doing so leads to The Cartoon. The PI’s 
learning management system4 directly supports this framework with required periodic status 
reports on the project and weekly meta-assessments of students’ perceptions of their learning. 
Forcing them to do so is necessary because they would otherwise not verify and reflect on their 
own. Moving forward no matter what is typical, but it does not equate to making progress. 
Ironically, what they perceive as busy work for having no value is in fact precisely what they 

4This system at shelby.ewu.edu is another example of an integrated computational tool that the PI 
designed and implemented in direct support of his teaching philosophy [42].
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themselves end up doing by working hard without an actual purpose or a way to determine if they 
are addressing it.

This framework is hardly revolutionary. In fact, it is fundamentally the scientific method and the 
engineering method in Figure 5 [18]. Science courses are required of all computer science majors. 
However, students rarely realize that the true purpose is to understand and apply scientific thinking,
which works for any problem solving. Instead, they see it as memorizing facts about rocks.5 This 
perspective corresponds to the lowest level of Bloom’s Taxonomy, whereas these courses are 
intended to teach the upper levels.

The design of experiments in science very much serves the same purpose in computer science in 
two ways. First, the testing, verification, validation, and certification stages of software engineering 
determine whether the solution satisfies the established performance criteria. These go/go-no 
decisions must be objective: Does the program do what it is supposed to do or not? Second, when 
the criteria are satisfied, iterative refinement is often necessary or desirable to improve on an 
already acceptable result. Modeling and simulation supports both roles. A well-defined model 
generally results in easier and better testing and refinement [23]. Furthermore, this approach 
naturally leads into discussion of when to stop refining. The Law of Diminishing Returns, for 
example, suggests a point where further effort (cost) produces no appreciable benefit. In this way, 
students can explain and justify their decisions to stop, as opposed to stopping whether they feel 
like it — usually far too early.

5The overwhelming majority takes geology, by their own admission because it is the easiest science option.

Figure 5: The Scientific Method and Engineering Method [44]
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The combination of systems thinking and the scientific and engineering methods leads to the 
culminating part of every project: the test report. It gives students the opportunity to demonstrate 
competence in software development. Determining correctness and evaluating performance 
require three critical components: the expected results, the actual results, and a meaningful way to 
compare them. Students often lack one, two, or even all three, but still think that they are checking
their solutions. Even when their solutions do work, they rarely can demonstrate and articulate this 
outcome in a convincing manner. In order to improve the testing process and the communication 
skills to explain it, the students have to conduct experiments (provided by the PI) to show 
representative aspects of system performance. Each experiment has eight parts related to 
planning, execution, and presenting the results.

Learning from Systems Thinking

This proposal has emphasized many times how critical it is to understand the world. Effective 
systems thinking demands it. Unfortunately, by the time students are at the university level, they 
(and indeed adults in general) have typically lost the inquisitive perspective of kids. Pestering 
parents with endless why why why questions may be annoying, but it is also effective in forming 
the data, information, knowledge, and wisdom used in adulthood. Systems thinking helps resurrect
this behavior (minus the annoying part). As Einstein said, “Imagination is more important than 
knowledge,” and “Any fool can know. The point is to understand” [12]. Knowledge is necessary, 
but alone not sufficient, for success.

A novel aspect of this tool is the rich breadth and depth of cross-referencing between everything 
discussed here (and more) and external resources. The PI is a voracious reader with endless 
resources that he has compiled over many years. These include news articles and case studies, 
pictures and videos of others’ work and his own, and so on. The various parts of the processes 
described here connect to those contextual examples. In particular, he considers historical 
perspectives — from notable figures like Thomas Edison and Leonardo da Vinci, from the 
Industrial Revolution, and even as far back as the Roman and Greek Eras — to be invaluable. 
“Creativity is the secret sauce to science, technology, engineering, and math” [29]. People were 
arguably more creative, innovative, and resourceful when confronted with pressing problems and 
few resources. The KISS Principle, Keep It Simple, Stupid, goes a long way in systems thinking. 
Today’s students, however, suffer from the opposite mentality: They are overwhelmed and 
drowning in seemingly endless resources and unwittingly produce inordinately large and complex 
solutions that do not actually solve the problems. Indeed, they often cause more problems. 
Simplicity and a kid’s view go hand in hand, as Einstein stated: “If you can’t explain it to a six year 
old, you don’t understand it yourself” [12].

The ability to decompose and understand others’ solutions and the rationale behind them helps 
students create their own. Haynes Manuals, known commonly for being repair guides that 
document the process of dismantling and reassembling automobiles, have a lesser known series 
that does effectively the same with present and past engineering systems like civilian and military 
aircraft, military equipment and systems, and space technology. The PI has over 100 of these 
books, among many others, which he plans to use in this work. They are an untapped gold mine.

4  Value and Significance

This section addresses the intrinsic value and significance of this work and its relationship to the 
PI's teaching and other responsibilities at EWU.
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Student Success

This work is all about promoting student success. Engaging students is critical. EWU students tend 
to be passive participants in their education. This work provides active experiences. Its value in the 
classroom has already been discussed. This section extends it outside the classroom. At the 
undergraduate level, students need to distinguish themselves to be marketable. Every EWU 
computer science graduate has the same ABET-accredited degree with fundamentally the same 
background. The only things in the program that differentiate one student from another are 
elective coursework and grade point average. The elective component is comparatively minor, and 
many employers put little stock in GPAs because of grade inflation [4]. Therefore, successful 
students need experiences and accomplishments beyond the minimum expectations. This 
background also provides a basis for promoting themselves in conversation with potential 
employers at career fairs and interviews. Feedback from employers consistently indicates that 
students strongly need to work on their professional communication skills. Many struggle because 
they have little to say and do not know how to say it.

The PI continually encourages students to seek out formative opportunities. He supports a variety 
of EWU internal programs, as well as external ones (see also Section 6.2); for example:

• Student Research and Creative Works Symposium
• McNair Postbaccalaureate Achievement Program
• CSTEM Undergraduate Research and Creative Activities Fund
• National Conference on Undergraduate Research

Unfortunately, it is difficult to find appropriate projects for students who are earlier in their 
education and do not yet have the background for substantial effort. This work opens up many 
opportunities because the breadth and depth of substance in these projects can be aligned with 
individual student’s interests and abilities.

A similar situation exists at the graduate level. Students have a difficult time formulating a research 
project on their own, and the PI rarely has any in a form that they could work with. Two recent 
master’s theses were indeed related to aerospace, but neither was based on the projects here. As 
Graduate Program Director, the PI has played an integral role in expanding the options for current 
and future students. In particular, the program soon will be offering certificate tracks in focused 
areas. Four are directly relevant to this work. The first three are the PI’s, and the fourth overlaps 
with them:

• Software Engineering
• Modeling and Simulation
• Artificial Intelligence/Intelligent Systems (proposed)
• Data Science and Machine Learning

Similarly, the PI is in discussion with the CSTEM dean to create a degree program in computer 
engineering supported by the Departments of Computer Science and Electrical Engineering. The 
PI’s courses and resources, as well as this tool, could contribute to it.

This work also serves as a vehicle for promoting STEM within and outside the university. It packs a
serious wow! punch because of the interesting subject matter presented in a colorful, enticing way. 
The PI has decades of outreach experience to support this claim.
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Finally, the undergraduate degree has a required senior capstone sequence. Over two quarters, 
students work through developing a real software solution to a real problem that a real customer 
has, as opposed to the throwaway toy problems in earlier courses.6 This course is experiencing a 
variety of logistical difficulties, mainly from exploding enrollments, that are rendering the current 
approach unmanageable. The department is in the early stages of considering using internal 
projects with extensive, realistic content as a substitute. The projects showcased here could serve 
this purpose, as could working on the tool itself.

The Catalyst Project

At the groundbreaking for the Catalyst building in August, US Senator Maria Cantwell listed four 
pillars of design and innovation to pursue: software development, aviation, security, and 
biosciences. This work solidly hits the first three. The PI’s background and vision (Section 6.2) are 
a natural fit. Furthermore, he is currently chair of the search committee for a second faculty 
member in software engineering. This person is expected to support existing efforts and/or 
complement them. For example, the PI is already working toward multidisciplinary collaborative 
opportunities with other EWU faculty in small unmanned aircraft systems (“drones”). Part of this 
effort involves possibly developing a certificate program to prepare students and faculty to attain 
their FAA Part 107 certification for commercial operations.

Needs Assessment

What is inadequate about existing tools? There are already model-based analysis and design tools 
for software and systems engineering, commonly referred to as computer-aided software 
engineering (CASE) tools [15, 30]. This work is not groundbreaking in this respect. However, it 
also does not reinvent the wheel. Rather, it repackages a wide range of concepts, tools, techniques,
etc. into an integrated development environment targeted specifically at the needs and goals 
addressed throughout this proposal. Professional tools are indeed great for professionals, but they 
seldom function as well in the classroom. In other words, professionals already know what to do 
and how (more or less). The tools mostly help expedite known processes and behaviors. For 
beginners, however, the steep learning curve associated with the endless array of professional 
features targeted at professional needs and skills can be overwhelming and counterproductive. 

Nevertheless, this tool shares many similarities. For example, it supports various analytical and 
problem-solving methodologies by using industry standards such as software design patterns and 
object-oriented programming structures. It also employs an architectural modeling language similar 
to the Universal Markup Language (UML) and Systems Modeling Language (SysML).

More importantly, however, this tool exhibits marked differences. Primarily, it is designed from the 
ground up to be student-oriented. It is accessible and friendly in a way that students can relate to 
because it targets their unique strengths and weaknesses. It is also explicitly pedagogy-oriented to 
support the PI’s teaching philosophy directly. Professional products require the instructor to 
shoehorn their teaching into the constraints of the tool. In this case, the tool is part of the 
teaching, and vice versa. David Parnas, a pioneer in modern programming, succinctly aptly 
captures this perspective [26]:

We can write good or bad programs with any tool.
Unless we teach people how to design, the languages matter very little.

6A current example is the website for the CSTEM Undergraduate Research and Creative Activities Fund.
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The integrated framework is novel. The capability to cross-reference among elements within the 
development process is common, but to do so with elements outside it is arguably unique. The PI’s
wealth of resources in various forms provides a rich, immersive, and effective educational 
experience. The explicit crossover to research and collaborative efforts is similarly advantageous. 
Numerous graduates have made laudatory comments about their strong preparation for industry 
from the PI’s efforts.

Finally, this tool will be freely available to the educational community. Other universities have 
similar students and needs. The PI has presented a number of these projects at conferences. Other 
instructors have asked for access to them for their own use or adaptation in the classroom. 
Unfortunately, the projects are not currently in a form where this transfer would be practical. The 
proposed framework will help accommodate such requests.

5  Detailed Plan

5.1  Methodology

1. Problem Analysis

a. Analyze the existing nine projects.

b. Analyze the content and delivery of relevant courses.

c. Analyze hundreds of the PI’s books and scanned periodical clippings, thousands of pictures 
compiled from many dozens of STEM museums in 41 countries, and pictures and videos 
from flight tests and other experiences, etc.

d. Identify observations, expectations, etc. from industry.

e. Identify strengths and especially weaknesses in EWU CS students and in general.

2. Solution Analysis

a. Analyze the current state of model-based problem solving, software engineering, and systems
engineering.

b. Analyze current model-based problem-solving tools.

3. Solution Implementation

Develop a model-based tool in the Java programming language.

4. Project Reconstruction

a. Dismantle existing projects one at a time. The expected number is difficult to predict, but it 
will be initially at least enough for the PI’s course offerings in his first year back.

b. Rebuild each project using the tool while documenting and cross-referencing.

5. Course Reconstruction

Rebuild and deploy lectures and assignments around the new projects and approach.

6. Solution Classroom Deployment

a. Evaluate student performance though pre- and post-tests, surveys, built-in tracking features, 
etc.

b. Compare the same project using new approach to the old approach.
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7. Dissemination and Distribution

a. Publish and present with students.

b. Release freely under the open-source GNU General Public License.

8. Research Follow-on (for the NSF grants; not accountable in the sabbatical effort)

a. Develop modules based on standalone engineering examples; i.e., not part of existing or 
planned full-fledged projects.

b. Develop tutorials for these examples and the tool itself.

c. Deploy a cloud-based environment for collaborative and competitive individual and team 
design challenges.

5.2  Timeline

Stages 1 and 2 will begin in Fall quarter 2019. Stage 3 should take the Winter quarter. Stages 4 
and 5 will occur in Spring. Stage 6 will be conducted in Fall 2020 in the classroom, which will lead
to Stage 7 during the Spring 2021 publication cycle. Stage 8 is aligned with the NSF proposal (see
Section 10). It is a natural extension to this sabbatical work, but it is not part of the proposed 
deliverables or timeline.

6  Feasibility, Qualifications, and Expected Product

6.1  Feasibility

All the components and resources for this work already exist in some form; e.g., pedagogical 
framework, projects, model-based tools, data from past classes, and qualifications and experience. 
Time to perform it has been the limiting factor. The PI has never had a sabbatical.

Funding is desirable but not critical. The project will proceed regardless.

6.2  Qualifications

The PI is eminently qualified in breadth and depth to conduct this work in at least the following 
respects.

Relevant academic experience:

• Associate Professor teaching in computer science and engineering for 14 years, up for 
promotion now.

• Director of the Computer Science Graduate Program.

• Contributor to over two decades of service to STEM support at all levels of effort.

• Author of at least 16 directly relevant publications. See Appendix D.

• Advisor for three recent master’s theses: “Image Processing for Machine Learning of 
Helicopter Flight Dynamics,” “Improving Aerial Package Delivery Through Simulation of 
Hazard Detection, Mapping and Regulatory Compliance,” and a drone-based architecture for 
military signals intelligence.

• Supervisor for two senior capstone projects on building a winch launcher for full-size gliders for
the Spokane Soaring Society (of which the PI is a member).
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• Recipient of two EWU Faculty Research and Creative Works grants: “An Exploratory 
Framework for Introspective Machine Learning of Helicopter Flight Dynamics” and “Adaptive 
Electromechanical Stability Control for Model Aircraft.”

• Author of EWU Faculty Creative Works Symposium posters on “Automated Monitoring, 
Feedback, and Reporting for an Aviation Performance Study,” “Adaptive Electromechanical 
Stability Control for Model Aircraft,” and “Image Processing for Data Acquisition and Machine 
Learning of Helicopter Flight Dynamics.”

• Program evaluator for the Accreditation Board for Engineering and Technology (ABET) in 
Computer Science and Software Engineering.

• Reviewer multiple times for the NSF Graduate Research Fellowship Program; Department of 
Defense National Defense Education Program; Department of Defense Science, Mathematics 
and Research for Transformation Fellowship; and Department of Defense National Defense 
Science and Engineering Graduate Fellowship; all of which support students for this kind of 
multi- and interdisciplinary effort.

• Reviewer for many relevant conferences and journals.

• Member of the Alabama Modeling and Simulation Council and active contributor to the yearly 
international conference and exposition. Huntsville, Alabama is the modeling and simulation 
capital of the world.

Relevant industry experience:

• Worked for a decade in the defense industry, primarily in software systems engineering and 
modeling and simulation of flight and weapon systems at White Sands Missile Range and 
Aberdeen Proving Ground, with many accolades.

• Qualified as a Certified Systems Engineering Professional (CSEP) by the International Council 
on Systems Engineering (INCOSE) (in review).

• Qualified as a Certified Modeling and Simulation Professional (CMSP) by the Modeling and 
Simulation Professional Certification Commission and National Training and Simulation 
Association (in review).

• Earned an Applied Systems Engineering Certificate and a Modeling and Simulation 
Professional Certificate from the University of Alabama at Huntsville, and expect their Systems 
Test and Evaluation Certificate next year.

• Earned a Systems Engineering Professional Certificate from Massachusetts Institute of 
Technology.

Aerospace background:

• Pilot for over 25 years and airplane owner currently FAA qualified for airplanes, seaplanes, 
gliders, helicopters, and small unmanned aircraft systems, as well as a licensed skydiver and a 
former balloonist for 10 years; experienced in flying everything from miniature radio-controlled
aircraft and drones to full-size military fighter jets and classic warbirds; ferry pilot for Inland 
Helicopters in Spokane.
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• Member of or affiliated with Academy of Model Aeronautics, Aircraft Owners and Pilots 
Association, Civil Air Patrol, Collings Foundation, Commemorative Air Force, Experimental 
Aircraft Association, Historic Flight Foundation, Inland Helicopters, Northwest Aviation, 
Spokane Soaring Society, Washington Pilots Association, Yankee Flying Club, and Young 
Eagles.

• Subscriber to a dozen aviation print periodicals (see Appendix A).

6.3  Expected Product

Phase I applies to the sabbatical period. It emphasizes software and resource development. It will 
deliver the tool as defined along with rebuilt courses and a number of rebuilt projects. 
Dissemination cannot occur until the tool is fielded in the classroom and produces data.

Phase II derives from Phase I, but is not part of the sabbatical term or deliverables. It relies on the 
last two years of the proposed NSF grants. See Step 8 in Section 5.1.

Phase III also applies after the sabbatical period, hopefully as part of other grants. It emphasizes 
hardware development. It is a natural complement to the software in the interdisciplinary CS–EE–
ME perspective. The intent is to build a human-sized, full-motion immersive virtual reality simulator 
for airplanes, helicopters, cars, boats, etc. It should be useful for undergraduate and graduate 
research, and for the PI and colleagues, as well as a promotional vehicle for outreach. The 
software tool should contribute to and document its development and showcase its operation.

7  Support

Charlie Cleanthous is a full professor of Psychology at EWU and a co-owner of the PI’s airplane. 
They have collaborated on other aviation-related efforts. He will not play a direct role in any of the 
activities here, but he is a useful resource, especially for the psychological and pedagogical aspects.

8  Dates and Length of Leave Requested

The PI requests professional leave for the entire 2019–2020 academic year.

9  Time to be Devoted to Other Activities

None

10  Remuneration from Other Sources

The PI has submitted a single-PI grant proposal, “A Holistic Integrated Development Environment 
for Interdisciplinary Model-Based Critical Thinking and Doing in Software Systems Engineering,” 
to parallel NSF programs 18-568 Computing and Communication Foundations: Software and 
Hardware Foundations and 14-579 Facilitating Research at Primarily Undergraduate 
Institutions: Research in Undergraduate Institutions (RUI) and Research Opportunity Awards 
(ROA), for $269,952 in total over three years. Both proposals address the same core work derived
from this sabbatical proposal, but the purpose of the funding differs. For example, the second one 
directly supports underrepresented undergraduates.

11  Proof of Program Elimination

Not applicable.
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Appendices

Appendix A: Periodical Resources

Print subscriptions to these periodicals, in addition to general news sources like Time and The 
Week, provide current events and case studies related to classroom activities. Many lectures 
present scanned articles or make them available to students.

STEM

Circuit Cellar, Communications of the ACM (Association for Computing Machinery), Computing 
Edge (IEEE: Institute for Electrical and Electronics Engineers), Digital Machinist, Discover, Home 
Shop Machinist, Machinist’s Workshop, Make, Nuts and Volts, Popular Mechanics, Popular 
Science, Prism (ASEE: American Society for Engineering Education), Science Focus, Science 
News, Scientific American, Servo, Spectrum (IEEE), Transactions on Education (IEEE), 
Transactions on Techniques in STEM Education (IEEE), Wired

Aerospace

Aerospace and Electronic Systems (IEEE), Air & Space (Smithsonian), AOPA Pilot (Aircraft Owners
and Pilots Association), Aviation History, Aviation Week & Space Technology, Flight Journal, 
Flying, Model Aviation, Parachutist, Plane & Pilot, Soaring, Sport Aviation (EAA: Experimental 
Aircraft Association)

Historical

Archaeology, Military History, National Geographic, Smithsonian, World War II
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Appendix B: Curriculum Assessment Criteria

B.1. ABET Student Learning Outcomes for Computing Programs

The program must enable students to attain, by the time of graduation:

a. An ability to apply knowledge of computing and mathematics appropriate to the program’s 
student outcomes and to the discipline.

b. An ability to analyze a problem, and identify and define the computing requirements 
appropriate to its solution.

c. An ability to design, implement, and evaluate a computer-based system, process, component,
or program to meet desired needs.

d. An ability to function effectively on teams to accomplish a common goal.

e. An understanding of professional, ethical, legal, security and social issues and responsibilities.

f. An ability to communicate effectively with a range of audiences.

g. An ability to analyze the local and global impact of computing on individuals, organizations, 
and society.

h. Recognition of the need for and an ability to engage in continuing professional development 
and lifelong learning.

i. An ability to use current techniques, skills, and tools necessary for computing practice.

j. An ability to apply mathematical foundations, algorithmic principles, and computer science 
theory in the modeling and design of computer-based systems in a way that demonstrates 
comprehension of the tradeoffs involved in design choices.

k. An ability to apply design and development principles in the construction of software systems 
of varying complexity.

B.2. EWU Professional Advisory Board Program Educational Objectives

Our students will be prepared to:

1. Grow their roles in the community and the organization that employs them.

2. Pursue and apply lifelong learning, assessing the value of older, established, stable systems in 
relation to new systems, and working within legacy systems, not just create new solutions.

3. Act on the recognition that all decisions have an impact on the organization, business 
partners, and customers, being cognizant of the end users—and whether it is improving lives.

4. Contribute with an understanding that there is more to a product than technology, and that 
product development is a collaborative and ongoing process.

5. Collaborate across disciplines and with nontechnical, as well as technical, people.

6. Discuss customer needs at the customer’s level, including through the process of gathering 
requirement specifications.

7. Expand technical competence beyond the fundamentals in areas such as software and 
interface development, databases, concurrent systems, refactoring, design patterns, and 
systems integration.

8. Create robust and testable software, with regard to architectural domain, security 
considerations, deployment, maintenance, validation, and verification.

9. Act with cultural awareness and ethical integrity in a global community.
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Appendix C: CSCD 350 Software Engineering Assignment Examples

C.1. Project Grounding and Conceptualization [page 28]

This assignment forces individual students to decompose the problem domain of a project in a 
disciplined manner by using the tools, techniques, and thinking highlighted here. It is the first step 
of the development process for them.

C.2. Project Software Requirements Specification Elicitation [page 32]

This assignment cross-references many layers of the development process to formalize a plan for 
it. Its decisions derive from C.1.

C.3. Project Software Requirements Specification [page 36]

This assignment serves as a culmination of the development process. Teams use this description to 
build and test parts of the project.
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CS 350 Task 1: Project Grounding and Conceptualization

This task establishes a guided introductory framework for the primary elements of the quarter project. In real life, you would
have to assemble the equivalent of such a list yourself. It would be far larger, more complex, and messier, and would take
much longer to compile.  Based on the high-level  context being discussed in class  at  this point,  your job is to perform
preliminary background research on each element in this outline. At this inception phase in the top-down development
process, your answers will necessarily be general. In real life, it would be your responsibility to compile something to the effect
of this list based on a subjective breadth and depth of coverage. Nobody would ask to see it, but it would be clear if you had
not done it. This list establishes the vocabulary and context for understanding of the problem domain and the initial design
thinking for the solution domain to come.

Lecture 6 covered the definitions of the bold words.

1. Briefly discuss what each element means to you so far with respect to your current understanding of the project as
introduced in the kickoff “meeting” in lecture. Do not just provide a blanket definition or something factually correct but
useless; e.g., dogs bark, or the  APU does  APU stuff. Your interpretations ultimately may not be relevant to our actual
solution later, but they must be arguably within its purview. You must address each element separately as structured here
and cite its primary source in the format  [@url], where  url is the complete text link to your reference (minus any
http[s]://). (Do not make it a dynamic embedded link.) Use at least six sources in total; Wikipedia is acceptable, but it
serves better as a starting point (a resource) than actual information (a reference). Put the term in bold. Indicate your name
at the top of the document and the total word count at the bottom.

2. Indicate the grammatical category as noun, adjective, preposition, verb, or other.

For each element:

3. Briefly address these aspects from a consistent, coherent, practical, computational perspective. If multiple interpretations
are possible, choose the most representative. Include the head words:

data: what it is; properties that describe its existence. For each, indicate whether it is static (unchanging) or 
dynamic (changing) and why

control: what it can do; actions that describe its capabilities
behavior: what it actually does or is done with it; appropriate actions to satisfy a goal; user stories or use cases

The entries should be reasonably consistent; e.g., if control acts on something, then corresponding data is likely.

4. Indicate the role(s): input, processing, or output and why.

5. Indicate the paradigm(s) of design pattern: creational, structural, or behavioral and why.

6. Indicate the concern(s) of an MVC architecture: model, view, or controller and why.

7. Indicate the expected difficulty to manipulate it programmatically: easy, moderate, or hard and why.

8 Indicate the expected risk of not being able to do it or doing it wrong: low, moderate, or high and why.

9. Describe a plausible (for this course) two- or three-dimensional visual presentation of the content.

For example:

1. landing gear, main: supports and stops an aircraft while on the ground; retracted in flight 

source: [@en.wikipedia.org/wiki/Landing_gear]
category: noun
data: wheels (static because they do not need to rotate in our project); strut (dynamic because it needs to

extend and retract)
control: wheels have braking; strut can extend and retract
behavior: the pilot commands the gear to retract after takeoff and to extend before landing
role: output because it is a mechanical device that supports and stops a plane
pattern: creational because it must be defined; structural because it connects to the airplane
concern: model because it is something manipulated; view because we need to see the state
difficulty: moderate because it involves motion between two states
risk: high risk because it involves code for motion; not having this prevents the gear from functioning
presentation: a down-arrow for extended, up-arrow for retracted
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A. Address all the following elements in order:

1. acoustic proximity fuze
2. acoustic sensor
3. acquisition process
4. active radar sensor
5. active sonar sensor
6. actuator
7. attenuation
8. battleship
9. bomb
10. bomber aircraft
11. countermeasure
12. cross-section/reflectivity
13. defensive maneuver
14. depth charge
15. depth fuze
16. destroyer
17. distance fuze
18. engagement process
19. evasive maneuver
20. fighter aircraft
21. lethality process
22. main battery gun
23. missile
24. mobility process
25. munition
26. offensive maneuver
27. passive radar sensor
28. passive sonar sensor
29. power
30. radar proximity fuze
31. sensor
32. sensor fusion
33. submarine
34. thermal proximity fuze
35. thermal sensor
36. timed fuze
37. torpedo
38. triangulation
39. trilateration

B. Group the elements from (A) (by name only) into a higher-level organization that makes sense to you. For example, head, 
body, tail, legs, teeth, eyes, claws, paws, ears, nose, bark for a dog could be organized as:

senses
eyes
ears
nose

movement
legs
paws

defense
claws
teeth
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communication

bark
tail
paw

and so on...

Some terms may belong to more than one category. Be sure to account for all elements. There is no order within a group.

The real world is very messy with ill-defined boundaries. Not everything here will fall cleanly into the specified partitioning. 
Use your best judgment. Team collaboration would iron out the inconsistencies to establish a consensus.

Tasks C and D apply to the spreadsheet posted with this task. Do not otherwise modify the existing structure or contents.

C. Indicate the bold designations from 2 through 8 for each element as a lowercase x in the corresponding cells.

D. Add three elements related to this element respectively in the Related Elements columns. Limit each to a word or two, and
do not clarify with parenthesis or commas. Do not reuse any of the elements from (A). 

Deliverables

Submit Parts A and B in a PDF document. Submit Parts C and D in CSV format. Incorrect formats will incur a stiff penalty.

Start early. Do not underestimate the time it will take to do this work. The analysis stage of a project is critical to do as 
completely and correctly as possible. Nobody is born knowing this stuff, and there are no shortcuts to learning something 
about it. This course is not about materiel test and evaluation or video games, etc.; it is about applying software engineering 
to a concrete example that we can work with. This same process works with any project.

Assessment

This is a software engineering class that is designed so you learn how to analyze problems, design and implement solutions, 
and verify that you have done so correctly. There is no difference in this respect between establishing and following a process 
for doing this with code or non-code. Remember, over 80% of software engineering involves non-code, such at this 
document. Also remember that most errors occur in thinking and understanding, not in execution (or errors in execution stem
from the former). Take this process seriously because it is helping you to train your mind to read, understand, plan, execute, 
verify, and reflect at all levels of software development. It is your responsibility to determine whether you understand this task 
and to complete it properly. Ask if you are unsure.

Follow our process: read ➜ understand ➜ plan ➜ execute ➜ verify ➜ reflect
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1 acoustic proximity fuze

2 acoustic sensor

3 acquisition process

4 active radar sensor

5 active sonar sensor

6 actuator

7 attenuation

8 battleship

9 bomb

10 bomber aircraft

11 countermeasure

12 cross-section/reflectivity

13 defensive maneuver

14 depth charge

15 depth fuze

16 destroyer

17 distance fuze

18 engagement process

19 evasive maneuver

20 fighter aircraft

21 lethality process

22 main battery gun

23 missile

24 mobility process

25 munition

26 offensive maneuver

27 passive radar sensor

28 passive sonar sensor

29 power

30 radar proximity fuze

31 sensor

32 sensor fusion

33 submarine

34 thermal proximity fuze

35 thermal sensor

36 timed fuze

37 torpedo

38 triangulation

39 trilateration
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CS 350 Task 2: Project Software Requirements Specification Elicitation

This task lays out the framework for a proposed Software Requirements Specification (SRS) related to our project. It relies on
the breadth and depth of understanding developed in Task 1 to establish and bidirectionally cross-reference the following
hierarchy:

• Scenarios
• User Stories
• Questions
• Requirements
• Specifications
• Requirement Verification
• Specification Verification
• Validation

Lectures 14 onward cover them in more detail. Note that the final component, validation, is not in play because we have no
good definition of what the customer’s needs are. We (intentionally) glossed over this step early in the development process.
Now we would be in trouble. Think about the first panel in The Cartoon.

The color coding highlights the cross-references here for clarity, but it is not part of the solution.

Part 1: Scenarios

A scenario is defined for this task as a general end-to-end story narrating one complete action, as done on the board in 
Lecture 12 for a ship firing a missile at a plane.

Given our scope from Task 1 and lecture, select two of the following scenarios, then title three of your own, all numbered 1 
through 5, and finally narrate the reasonably complete process of performing a corresponding story action. Do not use any 
from lecture as yours.

• Flying an airplane to a location
• Dropping a bomb from an airplane onto a ship
• Detecting another submarine by using an acoustic sensor

Form of Solution
<scenario_num>: <scenario_title>

<narrative>

Example
1: Dropping water balloons from a tower

The holding mechanism at the top of the tower releases the balloon. The balloon falls straight down under gravity. It impacts 
the ground.

Part 2: User Stories

A user story is a specific part of a scenario from the user’s perspective in the form:

As an <actor> I want to do <action> so that <achievement>.

For each of your scenarios from Part 1, title and state a user story, numbered 1.

Form of Solution
<scenario_num>.<user_story_num>: <user_story_title>

<narrative>

Example
1.1: Aiming at friend

As a friend I want to drop a water balloon on another friend so that he gets wet.
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Part 3: Questions

A question elicits a targeted response to an aspect that needs further clarification.

For each of the user stories from Part 2, state and justify two representative W5H questions, numbered 1 through 2, that 
would be important to clarify.

Form of Solution
<scenario_num>.<user_story_num>.<question_num>: <question>

<justification why>

Example
1.1.1: How is the water balloon secured?

Holding onto the water balloon properly will ensure that it is dropped at the right time.

Part 4: Requirements

A requirement states the form of the solution that is expected. It does not answer a question.

For each of the questions from Part 3, state and justify two representative requirements, numbered 1 through 2, that are 
important to satisfy. 

Form of Solution
<scenario_num>.<user_story_num>.<question_num>.<requirement_num>: <requirement>

<justification why>

Example
1.1.1.1: Balloon shall contain water

It is a water balloon.

Part 5: Specifications

A specification constrains the form or scope of the solution for a requirement.

For each requirement from Part 4, state and justify two representative specifications, numbered 1 through 2. 

Form of Solution
<scenario_num>.<user_story_num>.<question_num>.<requirement_num>.<specification_num>: <specification>

<justification why>

Example
1.1.1.1.1: Balloon shall contain at least one liter of water.

This amount produces the best effect.

Part 6: Requirement Verification

Requirement verification defines how to determine whether a requirement has been satisfied; i.e., did we build the product 
right?

For each requirement from Part 4, briefly describe a go/no-go check, numbered 1.

Form of Solution
<scenario_num>.<user_story_num>.<question_num>.<requirement_num>.A.<verification_num>: <description>

Example
1.1.1.1.A.1: Is water present in the balloon?
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Part 7: Specification Verification

Specification verification defines how to determine whether a specification has been satisfied; i.e., did we build the product 
right?

For each specification from Part 5, briefly describe a go/no-go check, numbered 1.

Form of Solution
<scenario_num>.<user_story_num>.<question_num>.<requirement_num>.<specification_num>.<verification_num>: <description>

Example
1.1.1.1.1.1: Is at least one liter of water present in the balloon?

Part 8: Validation

Validation defines how to determine whether the solution satisfies the customer’s needs; i.e., did we build the right product?

No action is required for this part because we cannot do it without having formally defined the customer’s needs. Therefore, 
we have no disciplined way to determine whether we have satisfied them.

Deliverable

Submit one PDF document with each part in a separately named section in order as indicated below (presented in columns 
here only to save space). Do not nest the sections or use columns. 

Part 1: Scenarios

1 blah blah
2 blah blah
3 blah blah
4 blah blah
5 blah blah

Part 2: User Stories

1.1 blah blah
2.1 blah blah
3.1 blah blah
4.1 blah blah
5.1 blah blah

Part 3: Questions

1.1.1 blah blah
1.1.2 blah blah

2.1.1 blah blah
2.1.2 blah blah

3.1.1 blah blah
3.1.2 blah blah

4.1.1 blah blah
4.1.2 blah blah

5.1.1 blah blah
5.1.2 blah blah

Part 4: Requirements

1.1.1.1 blah blah
1.1.1.2 blah blah
1.1.2.1 blah blah
1.1.2.2 blah blah

2.1.1.1 blah blah
2.1.1.2 blah blah
2.1.2.1 blah blah
2.1.2.2 blah blah

3.1.1.1 blah blah
3.1.1.2 blah blah
3.1.2.1 blah blah
3.1.2.2 blah blah

4.1.1.1 blah blah
4.1.1.2 blah blah
4.1.2.1 blah blah
4.1.2.2 blah blah

5.1.1.1 blah blah
5.1.1.2 blah blah
5.1.2.1 blah blah
5.1.2.2 blah blah

Part 5: Specifications

1.1.1.1.1 blah blah
1.1.1.1.2 blah blah
1.1.1.2.1 blah blah
1.1.1.2.2 blah blah
1.1.2.1.1 blah blah
1.1.2.1.2 blah blah
1.1.2.2.1 blah blah
1.1.2.2.2 blah blah

2.1.1.1.1 blah blah
2.1.1.1.2 blah blah
2.1.1.2.1 blah blah
2.1.1.2.2 blah blah
2.1.2.1.1 blah blah
2.1.2.1.2 blah blah
2.1.2.2.1 blah blah
2.1.2.2.2 blah blah

3.1.1.1.1 blah blah
3.1.1.1.2 blah blah
3.1.1.2.1 blah blah
3.1.1.2.2 blah blah
3.1.2.1.1 blah blah
3.1.2.1.2 blah blah
3.1.2.2.1 blah blah
3.1.2.2.2 blah blah

4.1.1.1.1 blah blah
4.1.1.1.2 blah blah
4.1.1.2.1 blah blah
4.1.1.2.2 blah blah
4.1.2.1.1 blah blah
4.1.2.1.2 blah blah
4.1.2.2.1 blah blah
4.1.2.2.2 blah blah

5.1.1.1.1 blah blah
5.1.1.1.2 blah blah
5.1.1.2.1 blah blah
5.1.1.2.2 blah blah
5.1.2.1.1 blah blah
5.1.2.1.2 blah blah
5.1.2.2.1 blah blah
5.1.2.2.2 blah blah

Part 6: Requirement Verification

1.1.1.1.A.1 blah blah
1.1.1.2.A.1 blah blah
1.1.2.1.A.1 blah blah
1.1.2.2.A.1 blah blah

2.1.1.1.A.1 blah blah
2.1.1.2.A.1 blah blah
2.1.2.1.A.1 blah blah
2.1.2.2.A.1 blah blah

3.1.1.1.A.1 blah blah
3.1.1.2.A.1 blah blah
3.1.2.1.A.1 blah blah
3.1.2.2.A.1 blah blah

4.1.1.1.A.1 blah blah
4.1.1.2.A.1 blah blah
4.1.2.1.A.1 blah blah
4.1.2.2.A.1 blah blah

5.1.1.1.A.1 blah blah
5.1.1.2.A.1 blah blah
5.1.2.1.A.1 blah blah
5.1.2.2.A.1 blah blah

Part 7: Specification Verification

1.1.1.1.1.1 blah blah
1.1.1.1.2.1 blah blah
1.1.1.2.1.1 blah blah
1.1.1.2.2.1 blah blah
1.1.2.1.1.1 blah blah
1.1.2.1.2.1 blah blah
1.1.2.2.1.1 blah blah
1.1.2.2.2.1 blah blah

2.1.1.1.1.1 blah blah
2.1.1.1.2.1 blah blah
2.1.1.2.1.1 blah blah
2.1.1.2.2.1 blah blah
2.1.2.1.1.1 blah blah
2.1.2.1.2.1 blah blah
2.1.2.2.1.1 blah blah
2.1.2.2.2.1 blah blah

3.1.1.1.1.1 blah blah
3.1.1.1.2.1 blah blah
3.1.1.2.1.1 blah blah
3.1.1.2.2.1 blah blah
3.1.2.1.1.1 blah blah
3.1.2.1.2.1 blah blah
3.1.2.2.1.1 blah blah
3.1.2.2.2.1 blah blah

4.1.1.1.1.1 blah blah
4.1.1.1.2.1 blah blah
4.1.1.2.1.1 blah blah
4.1.1.2.2.1 blah blah
4.1.2.1.1.1 blah blah
4.1.2.1.2.1 blah blah
4.1.2.2.1.1 blah blah
4.1.2.2.2.1 blah blah

5.1.1.1.1.1 blah blah
5.1.1.1.2.1 blah blah
5.1.1.2.1.1 blah blah
5.1.1.2.2.1 blah blah
5.1.2.1.1.1 blah blah
5.1.2.1.2.1 blah blah
5.1.2.2.1.1 blah blah
5.1.2.2.2.1 blah blah
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If the document were nested (simply by sorting the indices), it would produce this embedded structure. However, we do not 
normally want this form because it confounds the context of what we are looking at. For example, the Requirements section 
should be exclusively about requirements: nothing less, nothing more. If we need to understand where a requirement comes 
from or where it goes, then the cross-referencing leads us to that independent section.

1 blah blah
1.1 blah blah
1.1.1 blah blah
1.1.1.1 blah blah
1.1.1.1.1 blah blah
1.1.1.1.1.1 blah blah
1.1.1.1.2 blah blah
1.1.1.1.2.1 blah blah
1.1.1.1.A.1 blah blah
1.1.1.2 blah blah
1.1.1.2.1 blah blah
1.1.1.2.1.1 blah blah
1.1.1.2.2 blah blah
1.1.1.2.2.1 blah blah
1.1.1.2.A.1 blah blah
1.1.2 blah blah
1.1.2.1 blah blah
1.1.2.1.1 blah blah
1.1.2.1.1.1 blah blah
1.1.2.1.2 blah blah
1.1.2.1.2.1 blah blah
1.1.2.1.A.1 blah blah
1.1.2.2 blah blah
1.1.2.2.1 blah blah
1.1.2.2.1.1 blah blah
1.1.2.2.2 blah blah
1.1.2.2.2.1 blah blah
1.1.2.2.A.1 blah blah

2 blah blah
2.1 blah blah
2.1.1 blah blah
2.1.1.1 blah blah
2.1.1.1.1 blah blah
2.1.1.1.1.1 blah blah
2.1.1.1.2 blah blah
2.1.1.1.2.1 blah blah
2.1.1.1.A.1 blah blah
2.1.1.2 blah blah
2.1.1.2.1 blah blah
2.1.1.2.1.1 blah blah
2.1.1.2.2 blah blah
2.1.1.2.2.1 blah blah
2.1.1.2.A.1 blah blah
2.1.2 blah blah
2.1.2.1 blah blah
2.1.2.1.1 blah blah
2.1.2.1.1.1 blah blah
2.1.2.1.2 blah blah
2.1.2.1.2.1 blah blah
2.1.2.1.A.1 blah blah
2.1.2.2 blah blah
2.1.2.2.1 blah blah
2.1.2.2.1.1 blah blah
2.1.2.2.2 blah blah
2.1.2.2.2.1 blah blah
2.1.2.2.A.1 blah blah

3 blah blah
3.1 blah blah
3.1.1 blah blah
3.1.1.1 blah blah
3.1.1.1.1 blah blah
3.1.1.1.1.1 blah blah
3.1.1.1.2 blah blah
3.1.1.1.2.1 blah blah
3.1.1.1.A.1 blah blah
3.1.1.2 blah blah
3.1.1.2.1 blah blah
3.1.1.2.1.1 blah blah
3.1.1.2.2 blah blah
3.1.1.2.2.1 blah blah
3.1.1.2.A.1 blah blah
3.1.2 blah blah
3.1.2.1 blah blah
3.1.2.1.1 blah blah
3.1.2.1.1.1 blah blah
3.1.2.1.2 blah blah
3.1.2.1.2.1 blah blah
3.1.2.1.A.1 blah blah
3.1.2.2 blah blah
3.1.2.2.1 blah blah
3.1.2.2.1.1 blah blah
3.1.2.2.2 blah blah
3.1.2.2.2.1 blah blah
3.1.2.2.A.1 blah blah

4 blah blah
4.1 blah blah
4.1.1 blah blah
4.1.1.1 blah blah
4.1.1.1.1 blah blah
4.1.1.1.1.1 blah blah
4.1.1.1.2 blah blah
4.1.1.1.2.1 blah blah
4.1.1.1.A.1 blah blah
4.1.1.2 blah blah
4.1.1.2.1 blah blah
4.1.1.2.1.1 blah blah
4.1.1.2.2 blah blah
4.1.1.2.2.1 blah blah
4.1.1.2.A.1 blah blah
4.1.2 blah blah
4.1.2.1 blah blah
4.1.2.1.1 blah blah
4.1.2.1.1.1 blah blah
4.1.2.1.2 blah blah
4.1.2.1.2.1 blah blah
4.1.2.1.A.1 blah blah
4.1.2.2 blah blah
4.1.2.2.1 blah blah
4.1.2.2.1.1 blah blah
4.1.2.2.2 blah blah
4.1.2.2.2.1 blah blah
4.1.2.2.A.1 blah blah

5 blah blah
5.1 blah blah
5.1.1 blah blah
5.1.1.1 blah blah
5.1.1.1.1 blah blah
5.1.1.1.1.1 blah blah
5.1.1.1.2 blah blah
5.1.1.1.2.1 blah blah
5.1.1.1.A.1 blah blah
5.1.1.2 blah blah
5.1.1.2.1 blah blah
5.1.1.2.1.1 blah blah
5.1.1.2.2 blah blah
5.1.1.2.2.1 blah blah
5.1.1.2.A.1 blah blah
5.1.2 blah blah
5.1.2.1 blah blah
5.1.2.1.1 blah blah
5.1.2.1.1.1 blah blah
5.1.2.1.2 blah blah
5.1.2.1.2.1 blah blah
5.1.2.1.A.1 blah blah
5.1.2.2 blah blah
5.1.2.2.1 blah blah
5.1.2.2.1.1 blah blah
5.1.2.2.2 blah blah
5.1.2.2.2.1 blah blah
5.1.2.2.A.1 blah blah

Assessment

Each part and its contents will be evaluated with respect to the rest of the document. Your responses need only be reasonable
and consistent, not 100% correct or optimal. You are not qualified in the subject matter to make such decisions. However, 
keep in mind that in industry, you would also not be qualified, but you would be expected to get everything right. Think about
the role of Task 1 in bridging the gap between knowing nothing and knowing something, but not enough. What would you 
do further?

Follow our process: read ➜ understand ➜ plan ➜ execute ➜ verify ➜ reflect
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CS 350 Project Software Requirements Specification

Description

This document serves as the central repository guiding the requirements and specifications for the remainder of 
the project. Other resources on Shelby and in lecture may also play a role, especially Javadoc. A large part of this 
software engineering experience is learning how to manage the endless resources. Be sure to apply the iterative 
process of reading, understanding, approaching, executing, and verifying at every stage. There is only one chance
to get these solutions correct. Solutions that do not compile will receive no credit. Ask questions! Think!

All package names in the project assume the prefix f16cs350 here. Unless otherwise specified, throw a 
RuntimeException for any error.

Part I.a: Terrain Loader

The role of the terrain loader is to read a terrain definition file and translate it into a collection of polygons that 
supply the terrain in the world model. The logical model is as follows:

• A node is point in three-dimensional space defined by a latitude, a longitude, and an altitude.
• A surface is an ordered collection of at least three nodes.
• A terrain is an unordered collection of surfaces.

The file definition is as follows:

RLAT indexl degrees:minutes:seconds

Defines a latitude reference with index indexl for a latitude point with degrees degrees, minutes minutes, and 
seconds seconds. It maps to datatype atc.datatype.Latitude_ATC.

RLON indexo degrees:minutes:seconds

Defines a longitude reference with index indexo for a longitude point with degrees degrees, minutes minutes, 
and seconds seconds. It maps to datatype atc.datatype.Longitude_ATC.

RALT indexa feet

Defines an altitude reference with index indexa for an altitude point at feet feet. It maps to datatype 
atc.datatype.Altitude_ATC.

NODE indexn indexl indexo indexa 

Defines a node with index indexn composed of latitude reference indexl, longitude reference indexo, and 
altitude reference indexa. It maps to datatype atc.datatype.CoordinatesWorld3D_ATC.

SURFACE indexs indexni

Defines a surface with index indexs composed of at least three node references indexni. It maps to data structure
List<atc.datatype.CoordinatesWorld3D_ATC>.

TERRAIN indexsi

Defines the one and only terrain composed of at least one surface reference indexsi. Duplicate surfaces are not 
allowed. It maps to data structure List<List<atc.datatype.CoordinatesWorld3D_ATC>>.

These six statement types may appear in any order. Whitespace does not matter. Everything is case-insensitive. 
Indexes must be unique within the context of a statement type, but may be reused by other statement types. For 
example, index 1 may be used for RLAT and RLON statements, but it must not be used for two RLAT statements. 
Ignore C++-style comments. Indexes are always positive.
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The following example appeared in Lecture 32 to demonstrate the development of the terrain engine:

RLAT 1 47:40:58.8 
RLON 1 117:19:21
RALT 1 1957

RLAT 2 47:50:58.8 
RLON 2 117:19:21
RALT 2 2000

RLAT 3 47:40:58.8 
RLON 3 117:9:21 
RALT 3 1500

RLAT 4 47:30:58.8 
RLON 4 117:19:21 
RALT 4 1000

RLAT 5 47:40:58.8 
RLON 5 117:29:21 
RALT 5 750

RLAT 6 47:43:0 
RLON 6 117:17:0 
RALT 6 4000

NODE 1 1 1 1
NODE 2 2 2 2
NODE 3 3 3 3
NODE 4 4 4 4
NODE 5 5 5 5
NODE 6 6 6 6

SURFACE 1 2 3 1
SURFACE 2 4 6 5

TERRAIN 1 2

It maps to this Java code:

List<List<CoordinatesWorld3D_ATC>> terrain = new ArrayList<>();

List<CoordinatesWorld3D_ATC> surface1 = new ArrayList<>();

surface1.add(new CoordinatesWorld3D_ATC(
               new Latitude_ATC(47, 50, 58.8), new Longitude_ATC(117, 19, 21), new Altitude_ATC(2000)));
surface1.add(new CoordinatesWorld3D_ATC(
               new Latitude_ATC(47, 40, 58.8), new Longitude_ATC(117,  9, 21), new Altitude_ATC(1500)));
surface1.add(new CoordinatesWorld3D_ATC(
               new Latitude_ATC(47, 40, 58.8), new Longitude_ATC(117, 19, 21), new Altitude_ATC(1957)));

terrain.add(surface1);

List<CoordinatesWorld3D_ATC> surface2 = new ArrayList<>();

surface2.add(new CoordinatesWorld3D_ATC(
               new Latitude_ATC(47, 30, 58.8), new Longitude_ATC(117, 19, 21), new Altitude_ATC(1000)));
surface2.add(new CoordinatesWorld3D_ATC(
               new Latitude_ATC(47, 43,  0),   new Longitude_ATC(117, 17,  0), new Altitude_ATC(4000)));
surface2.add(new CoordinatesWorld3D_ATC(
               new Latitude_ATC(47, 40, 58.8), new Longitude_ATC(117, 29, 21), new Altitude_ATC(750)));

terrain.add(surface2);

Create class project.loader.terrain.TerrainLoader as defined in the Javadoc public API. The constructor takes a 
file handle to the definition file. The parse() method returns the terrain as defined above. No other public 
methods are permitted.
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My solution is available online for comparison at shelby.ewu.edu/cs350_elicit_terrain. For example, this 
input
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produces this output (cut off on the right):
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Part I.b Communication Loader

The role of the communication loader is to translate bidirectionally between basic flight-related utterances and 
their encoded representation ostensibly stored on various data recorders in esoteric formats.

The translator uses a dictionary to substitute known words with numerical codes, and vice versa. For example, 
dictionary d={1=DOG, 2=THE, 3=CAT, 4=CHASED} accommodates encoding the utterance THE DOG CHASED THE 

CAT as 2 1 4 2 3. (For simplicity, all text is uppercase with no punctuation. Numbers must be spelled out; e.g., 13 
is ONE THREE) The default dictionary contains the majority of the flight-related words and variants needed to 
process expected utterances in the project:

a, above, across, affirmative, after, again, ah, airport, alpha, altitude, american, an, and, approach, approved, 
are, as, at, atis, before, begin, behind, below, bravo, center, cessna, charlie, clearance, cleared, climb, contact, 
correct, course, cross, declare, decrease, degrees, delay, delivery, delta, departure, descend, direct, discretion, 
dme, do, east, echo, eight, emergency, enable, engine, established, execute, executing, expect, failure, feet, filed, 
fire, five, flight, for, four, foxtrot, frequency, front, fuel, gate, golf, has, have, heading, heavy, hold, hotel, how, 
hundred, ident, if, ils, immediate, inbound, increase, india, intentions, intercept, is, juliett, kilo, land, landing, 
leaving, left, level, lima, looking, maintain, mayday, mike, minute, minutes, missed, navigation, ndb, negative, 
niner, north, northeast, northwest, not, november, o'clock, of, one, only, option, or, oscar, out, outbound, own, 
pan-pan, papa, per, pilot, point, problem, proceed, quebec, radar, ramp, readback, ready, report, request, 
resume, right, risk, roger, romeo, runway, say, second, seconds, service, seven, sierra, sight, six, south, southeast,
southwest, speed, squawk, standby, takeoff, tango, taxi, taxiway, terminal, terminated, terrain, the, then, 
thousand, three, to, tower, traffic, turn, two, um, unable, uniform, united, until, vector, vfr, via, victor, vor, west,
what, when, where, whether, whiskey, who, why, wilco, will, with, x-ray, yankee, you, zero, zulu

Although they are alphabetized here, the order does not matter. The dictionary also allows custom entries; e.g., 
dÈ{5=SHELBY} accommodates 5 4 2 3.

Each utterance also has a timestamp to indicate when it occurred. For example:

Original Encoded
10.0 THE DOG CHASED THE CAT 10.0 2 1 4 2 3
10.5 SHELBY CHASED THE CAT 10.5 5 4 2 3
11.7 THE CAT CHASED THE DOG SHELBY 11.7 2 3 4 2 1 5

To ensure that the encoding and decoding entities have the same dictionary, the encoded form includes a 
checksum, which is an arbitrary hash of the dictionary. The encoded form might appear as follows:

Encoded with Checksum
12345
10.0 2 1 4 2 3
10.5 5 4 2 3
11.7 2 3 4 2 1 5

With this representation, it should be possible to bidirectionally translate individual utterances and entire sequences
of utterances, known here as a log. This approach is simple and effective (it would qualify as a CSCD 211 lab), but
the representation is not consistent with what actually happens with realistic data transfers. For exposure to more 
real-world environments, we use a fixed-size base-encoded representation that resembles a binary file. For 
example:

Fixed-Size Base-Encoded
12345
01000000201040203
010500005040203
0117000020304020105

The time values in blue appear in format iiirrrr, where i and r stand for the integer and real parts, 
respectively. The decimal place disappears because its position is known and never moves. Thus, 10.5 becomes 
0105000. The utterances appear in format ii, so 5 4 2 3 appears as 05040203. Fixed fields eliminate the need 
for delimiters. For simplicity, the checksum does not undergo any transformation.

40 of 168



A problem with this example is that two digits can accommodate only 100 words. One way to change the word 
space is to change the number of digits; i.e., the field size can be appropriate for the dictionary size (at least within
an order of magnitude). Our solution accommodates any field size as a configuration parameter in the constructor.

Another way to make better use of the available space is to change the numerical base. Two digits in base 10 
accommodate 100 words (from 99), but in base 16 (hexadecimal), it is 256 (from FF). Our solution accommodates
any base between two (binary) and 36 (hexatrigesimal) as a configuration parameter in the constructor. (Base 36 is
not remotely as rare as you might expect.)

The following code snippet illustrates a typical execution story for encoding:

CommunicationLoader loader1 = new CommunicationLoader(16, 2); // base, field_size

loader1.registerCustomWord(loader1.getNextFreeIndex(), "DOG");

int checksum = loader1.getDictionaryChecksum();

String encoding = loader1.encodeStatement(123.45, 
                    "dog one two three cleared to land runway three one left");

System.out.println("checksum=" + checksum);

System.out.println("encoding=" + encoding);

The output is:

checksum=1768562

encoding=12D644C773ACA71DA85B8EA7735E

The number of places in the blue time field is determined by  élog(9999999) / log(base)ù, where 9999999 
derives from the maximum time 999.9999. 12D644 in hex is 1234500 in decimal, and therefore 123.4500 
because the implied decimal point is always three places from the left. Assume we always receive a time that fits 
into seven base-10 places.

The remainder of the output is based on the particular word substitutions in the dictionary with a field size of two. 
Your output may differ due to your implementation, which is fine. The critical part is that your decoder function in
reverse according to the same scheme.

The following code snippet illustrates a typical execution story for decoding this example:

String log = ("1768562\n" +                     // checksum
              "12D644C773ACA71DA85B8EA7735E");  // encoding

CommunicationLoader loader2 = new CommunicationLoader(16, 2);

loader2.registerCustomWord(loader2.getNextFreeIndex(), "DOG");

String decoding = loader2.decodeLog(log);

The output is:

decoding=

123.4500: DOG ONE TWO THREE CLEARED TO LAND RUNWAY THREE ONE LEFT

Note that the entire log, including checksum, can be decoded at once with decodeLog(), but there is no way to 
encode all at once. You must call getDictionaryChecksum() once and encodeStatement() for each statement. 
For bidirectional translation to work correctly, the configurations in the constructors must match exactly, as must 
the dictionaries. The checksum verifies both. In a real system, it would also verify the encoding, but this aspect is 
not considered because we assume no errors can occur in transmission.
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Hints

This task involves math (actually only arithmetic). The math is not complex or difficult, but it offers plenty of 
opportunity for something to go wrong. Be sure to understand what you are telling your code to do. Do not hack 
the math! It will not work out well for you. Stop and think. Work it out on paper first. Ask questions. Start early.

Consider using Integer.toString(int,int) and Integer.valueOf(String,int) for base conversions and 
HashMap for the dictionary.

The larger solution is composed of its parts. If the parts do not work, neither will the whole. Approach your 
solution bottom-up by getting the parts working before assembling them. The following methods may be helpful.

Use this method as a warm-up exercise to be sure you truly understand how numbers work. 

int calculateMaxValue(int base, int size)

It returns the maximum base-10 value that can be represented in size digits in base base. For example, familiar 
base 10 with size 3 returns 999 because 9 is the largest digit that can fill any place, and there are three places. 
Similarly, base 16 returns 4095 from FFF.

Make sure you can encode a time and get the same time back when you decode it:

String encodeTime(double time)

double decodeTime(String time)

Make sure you can encode a statement and get the same statement back when you decode it. Since this statement
translation uses the time translation, the latter must be working at this point.

String encodeStatement(double time, String words)

String decodeStatement(String statement)

Decoding the entire log is the process of decoding each statement, plus the checksum aspect.

String decodeLog(String log)

Make sure you can add a custom word and that it changes the dictionary checksum:

String registerCustomWord(String index, String word)

The typical form of this call is:

registerCustomWord(getNextFreeIndex(), word)

Create class project.loader.communication.CommunicationLoader such that it satisfies the description here and
in the Javadoc. No other public methods are permitted.

The Javadoc indicates in square brackets the number of lines of functional code (i.e., not related to error checking)
my solution took. Use them as guidelines for your solution. Do not make yours more complex than necessary. 
Think before doing! Verify after doing! No hacking! No magic numbers will work in all cases, so do not even think 
of using any! Ask yourself what every line of code really does, and do not proceed if you cannot confidently 
articulate a reasonable answer to yourself and your teammates.

Methods isValidIndex() and isValidCustomIndex() are no longer required.
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My solution is available online for comparison at shelby.ewu.edu/cs350_elicit_communication. For 
example, this input

produces this output:

43 of 168



In the inverse direction, this input

produces this output:
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Examples

The following outputs are from the same example but by calling CommunicationLoader with different 
configurations. The blue portion is the timestamp.

(2,8):

00010010110101100100010011000111011100111010110010100111000111011010100001011011100011101
01001110111001101011110

(8,3):

04553104307163254247035250133216247163136

10,3):

1234500199115172167029168091142167115094

(16,4):

12D64400C7007300AC00A7001D00A8005B008E00A70073005E

(36,2):

0QGJO5J374S4N0T4O2J3Y4N372M

All produce the identical decoding:

123.4500: DOG ONE TWO THREE CLEARED TO LAND RUNWAY THREE ONE LEFT
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Part II: World Loader

The role of the world loader is to read the commands that define the navigation aids and airports in the world. 
Implement project.loader.world.WorldLoaderParser to accept the language as follows:

• The constructor is public WorldLoaderParser(WorldLoader loader, InputStream stream), where 
stream contains the commands. Instantiate your own WorldLoader in your tester, which will instantiate your 
WorldLoaderParser as defined here. Call WorldLoader.load() to execute your parser on your input and 
present the results in XML format.

• Method void parse() executes the parser, which calls WorldLoader.addNavaids() and 
WorldLoader.addAirports() as indicated below.

Be sure to use JAR 0.5 or later.

Punctuation is not part of commands unless it is in blue. Vertical bar indicates logical or. Asterisk indicates zero or 
more instances of the preceding term or parenthetical group; plus indicates one or more. Square brackets indicate
an optional group. Singular and plural forms (with an [S] suffix) need not correspond grammatically to the 
number of elements in a list.

Whitespace, except in literals, does not matter. All text except identifiers is case insensitive. All statements appear 
on a separate line.

Identifiers must be unique within the navaid definitions and the airport-component definitions.

Italicized fields are defined as follows:

Field Format Datatype

Altitude Number Altitude_ATC

Beacon ( Distance , Altitude ) NavaidILSBeaconDescriptor

Bearing Real AngleNavigational_ATC

CoordinatesAnchor < Number , Number > CoordinatesAnchor_ATC

CoordinatesCartesian { Number , Number } CoordinatesCartesianAbsolute_ATC

CoordinatesWorld Latitude : Longitude CoordinatesWorld_ATC

CoordinatesWorld3D Latitude : Longitude : Altitude CoordinatesWorld3D_ATC

Distance Real Distance_ATC

FrequencyUHF Integer UHFFrequency_ATC

FrequencyVHF Real† VHFFrequency_ATC

id any ordinary Java identifier with letters, numbers, and underscores String

Integer any ordinary integer, with optional - or + int

Latitude Integer # Integer ' Number " Latitude_ATC

Longitude Integer # Integer ' Number " Longitude_ATC

Number Integer | Real double

Real any ordinary real value, with optional - or + double

String any ordinary string delimited by single quotes; no escape characters String

†Whole values require a .0 suffix.

Anchor and Cartesian coordinates are in feet relative to a reference point on the component that they belong to.

1. CREATE NAVAID AIRWAY id1 FROM id2 TO id3

Creates airway id1 from navaid id2 to navaid id3. Use ComponentNavaidAirway.

2. CREATE NAVAID FIX id AT CoordinatesWorld

Creates navigation fix id at coordinates CoordinatesWorld. Use ComponentNavaidFix.
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3. CREATE NAVAID NDB id AT CoordinatesWorld3D ON FREQUENCY FrequencyUHF

Creates nondirectional beacon id on frequency FrequencyUHF at coordinates CoordinatesWorld3D. Use 
ComponentNavaidNDB.

4. CREATE NAVAID VOR id AT CoordinatesWorld3D ON FREQUENCY FrequencyVHF

Creates VOR stationid on frequency FrequencyVHF at coordinates CoordinatesWorld3D. Use 
ComponentNavaidVOR.

5.CREATE NAVAID ILS id AT CoordinatesWorld3D BEARING Bearing ON FREQUENCY FrequencyVHF
WITH BEACONS Beacon1 Beacon2 Beacon3

Creates instrument landing system id on frequency FrequencyVHF at coordinates CoordinatesWorld3D with its 
inner (n=1), middle (2), and outer (3) marker beacons respectively Beaconn at angle Bearing. Use 
ComponentNavaidILS.

6. CREATE AIRPORT id1 AT CoordinatesWorld3D WITH [BUILDING[S] id2+] [GATE[S] id3+]
[TOWER[S] id4+] [SIGN[S] id5+] [RAMP[S] id6+] [TAXIWAY[S] id7+] RUNWAY[S] id8+

Creates airport id1 at coordinates CoordinatesWorld3D with runways id8 and buildings id2, gates id3, 
towers id4, signs id5, ramps id6, and taxiways id7. Use ComponentAirport.

7. CREATE BUILDING id1 FROM id2

Creates building id1 from polyline id2. Use ComponentAirportBuilding.

8. CREATE GATE id CALLED String AT CoordinatesCartesian

Creates terminal gate id named String at coordinates CoordinatesCartesian. Use ComponentAirportGate.

9. CREATE RAMP id1 FROM id2

Creates ramp id1 from polyline id2. Use ComponentAirportRamp.

10. CREATE RUNWAY id1 FROM id2

Creates runway id1 from polyline id2. Use ComponentAirportRunway.

11. CREATE SIGN id LABELED String AT CoordinatesCartesian

Creates information sign id labeled String at coordinates CoordinatesCartesian. Use 
ComponentAirportSign.

12. CREATE TAXIWAY id1 FROM id2

Creates taxiway id1 from polyline id2. Use ComponentAirportTaxiway.

13. CREATE TOWER id AT CoordinatesCartesian

Creates tower id at coordinates CoordinatesCartesian. Use ComponentAirportTower.

14. ADD AIRPORT[S] idn+

Adds airports idn to the world through WorldLoader.addAirports().

15. ADD NAVAID[S] idn+

Adds navaids idn to the world through WorldLoader.addNavaids().

16. DEFINE POLYLINE id AS ({CoordinatesAnchorn1 CoordinatesAnchorn2} | CoordinatesAnchorn3)+

Defines polyline id as connections of coordinates. The first form specifies a line segment from n1 to n2. The 
second specifies n3 as a continuation from the previous point. Use GeometryPolyline.addLine().
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My solution is available online for comparison at shelby.ewu.edu/cs350_elicit_world. For example, this 
input

produces this raw XML output:

The blue dots indicate where Chrome wrapped the text in the input area. Everything is actually on the same line.
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Paste the XML contents into a text file with an XML extension and open it back up in the browser to see the 
pretty-printed form (abridged here):
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Part III: System Test and Evaluation

In this final part, you will evaluate my complete working solution in the role of the intended end user, an NTSB 
trainee. 

Be sure to use JAR 0.7 or later. Execute it from the command line of your operating system:

java -jar cs350-project-release-v0_7.jar

If you execute it by double-clicking from your GUI, any error or terminal output messages are lost. The error 
handling in general is not friendly, so be careful. If you get any error, restart the simulator and try again. It is not 
unusual to have a transient startup failure resulting from a delay in your virtual machine to bring all the necessary 
services online in time.

The Javadoc is provided to show what the final implementation looks like. You do not need to use it.

The sample controller file sample.nsc contains this basic annotated example that produces a variation on the 
output below. Use the provided files, not the text here.

// putting the filename in a comment at the top allows for easy copy/paste execution
// @LOAD 'sample.nsc'

TRANSMIT 'starting the sample'

@IMPORT TERRAIN 'sample.trn'
@IMPORT COMMUNICATION 'sample.com' BASE 16 SIZE 2
@IMPORT WORLD 'sample.wld' 

// place the airplane at the center of the radar display at 5000 feet traveling west
CREATE AIRPLANE airplane1 
  AT 47#40'58":117#19'21":5000 
  COURSE 270 
  POWER 50 
  GEAR DOWN

@COMMIT

@CREATE RADAR radar1 AT 47#40'58":117#19'21" SIZE 0#25'0"

// wait a few seconds for the airplane to fly straight before turning to the right
@WAIT 10

COMMAND airplane1 AILERON 8
COMMAND airplane1 ELEVATOR 12

// exit after 65 seconds of simulation time
@SCHEDULE 60 <TRANSMIT 'ending the sample in five seconds'>
@SCHEDULE 65 <@EXIT>

The communication file sample.com calls out every 10 seconds for a minute:

1762906
0186A01273C591
030D4012ACC591
0493E012A7C591
061A801240C591
07A120123DC591
0927C0127365
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Command Line Interface

Enter commands into the bottom field. Use the up and down arrows to scroll through the command history in the 
middle field. Output from the simulation appears in the top field. The current simulation time appears at the top. 
Execute the sample with @LOAD 'sample.nsc'

Instrument Panel

There is one instrument panel per CREATE AIRPLANE command (below). All the instruments work, but most are 
not relevant to the requirements of this project. Probably the only ones you may need are these:

A: Airspeed indicator in knots.

B: Altimeter. The orange caret, thick needle, and thin needle are respectively 10 thousands, one thousands, and 
hundreds of feet above sea level, which is the case when there is no terrain. The blue bug is altitude in 
thousands of feet above the ground. It turns red below one thousand feet to indicate a TAWS (Terrain 
Awareness and Warning System) alert.

C: GPS. The TOP button alternates between north up and track up. The + and – buttons zoom.

D: Vertical speed indicator in feet per minute

E: Thrust indicator (sort of). It is actually a tachometer, but we are using it to indicate the power of the two 
engines. The longer needle refers to the left engine; the shorter one is the right. When both engines are 
producing the same power, the needles are joined, as here.

F: Control indicator. Each dot corresponds to a control input. A green dot refers to the expected state; red 
refers to the actual. When they agree, the overlapping color is orange. The left two dots are the left and right 
engines from minimum power upward to maximum. The bottom center dot is the rudder. The right dot is the
flaps. The center dot depicts a control stick with aileron on the horizontal axis and elevator on the vertical. 
The word GEAR appears at the top left when the gear is down.
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Three-Dimensional State Viewer

There is one state viewer per CREATE AIRPLANE command (below). It shows only the airplane itself, not the world
in which it is operating. Change the camera perspective with the cursor keys. The box in the middle indicates the 
axes of the world: purple is the pitch plane, red roll, and yellow yaw. The airplane model does not reflect any 
other details of the actual state, like the position of the flight control surfaces or landing gear.

A B

E

C

F

D
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Radar Display

There is one radar display per CREATE RADAR command (below). It shows each airplane within the boundaries.

The symbols specify (left to right) the airplane identifier, the transponder squawk code (not used), the altitude in 
thousands of feet, and the speed in knots. The tags /TCAS and /TAWS appear when a traffic and terrain warnings 
are issued, respectively.

The green line is the breadcrumb track depicting where the airplane was over time. The teal line projects where it 
will be in 30 seconds at the current course and speed.

For the sample world sample.wld,

CREATE NAVAID FIX myfix1 AT 47#40'58.8" : 117#24'00"
CREATE NAVAID FIX myfix2 AT 47#40'58.8" : 117#15'00"

CREATE NAVAID AIRWAY myairway1 FROM myfix1 TO myfix2

CREATE NAVAID NDB myndb1 AT 47#40'58.8" : 117#15'00" : 1200 ON FREQUENCY 220

CREATE NAVAID VOR myvor1 AT 47#44'00" : 117#19'21" : 1000 ON FREQUENCY 123.45

CREATE NAVAID ILS myils1 AT 47#40'15" : 117#19'21" : 1500 BEARING 45.8 ON FREQUENCY 112.325 
 WITH BEACONS (1,1200) (2,1800) (3.5,2400)

ADD NAVAIDS myfix1 myairway1 myvor1 myndb1 myils1

DEFINE POLYLINE mypoly1 AS { <-100,5000> <100,5000> } <100,-5000> <-100,-5000> <-100,5000>
DEFINE POLYLINE mypoly2 AS { <-100,0> <-500,0> } <-500,100> <-100,100>
DEFINE POLYLINE mypoly3 AS { <-500,1000> <-500,-1000> } <-1500,-1000> <-1500,1000> <-500,1000>
DEFINE POLYLINE mypoly4 AS { <-1500,500> <-2000,500> } <-2000,0> <-1500,0>

CREATE RUNWAY myrunway1 FROM mypoly1

CREATE TAXIWAY mytaxiway1 FROM mypoly2

CREATE RAMP myramp1 FROM mypoly3

CREATE BUILDING mybuilding1 FROM mypoly4
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CREATE GATE mygate1 CALLED '99Z' AT {-2000,250}

CREATE TOWER mytower1 AT {-1750,-500}

CREATE SIGN mysign1 LABELED '0'  AT {-125,-6100}
CREATE SIGN mysign2 LABELED '18' AT {-400,+5300}

CREATE AIRPORT myairport1 AT 47#40'58":117#19'21":800 WITH BUILDING mybuilding1 GATE mygate1 TOWER mytower1
 SIGNS mysign1 mysign2 RAMP myramp1 TAXIWAY mytaxiway1 RUNWAY myrunway1

ADD AIRPORT myairport1

the left display is zoomed out to show the navigational aids. The right display is the airport to be used here.
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The terrain appears color-coded from “cool” blue for low elevation to “hot” red for high. The gradient is relative 
between the lowest to the highest elevations. See the terrain file for the correspondence.

The GPS view is similar. You may have to zoom in before all features appear.
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Execution Log

The states of every airplane are recorded by time in file airplane.log. See Task 4b for details on the 29 fields.

Control Language

The controller language sets up and executes a simulation.

Punctuation is not part of commands unless it is in blue. Vertical bar indicates logical or. Asterisk indicates zero or 
more instances of the preceding term or parenthetical group; plus indicates one or more. Square brackets indicate
an optional group.

Whitespace, except in literals, does not matter. All text except identifiers is case insensitive. C++ comments are 
supported. Statements may wrap over multiple lines.

Italicized fields are defined as follows:

Field Format

Altitude Number

CoordinatesWorld Latitude : Longitude

CoordinatesWorld3D Latitude : Longitude : Altitude

Deflection Number [ / Number ]

id any ordinary Java identifier with letters, numbers, and underscores

Integer any ordinary integer, with optional - or +

Latitude Integer # Integer ' Number "

Longitude Integer # Integer ' Number "

Number Integer | Real

Real any ordinary real value, with optional - or +

String any ordinary string delimited by single quotes; no escape characters

The commands are organized here according to their design roles, not their user roles. Although they map 
reasonably well to the creational, structural, and behavioral categories from the Design Patterns course, the 
alignment is not exact because some commands play more than one role.

Creational Commands

Creational commands are concerned with creating entities in the simulation environment.

1. CREATE AIRPLANE id AT CoordinatesWorld3D COURSE Number1 POWER Number2 GEAR ( UP | DOWN )

Creates airplane id at coordinates CoordinatesWorld3D with course Number1 at combined power setting 
Number2 and the gear state.

2. @CREATE RADAR id AT CoordinatesWorld SIZE Latitude

Creates radar display id centered at CoordinatesWorld and covering the square area Latitude.
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Structural Commands

Structural commands are concerned with connecting entities that were created.

3. @LOAD String

Loads controller file String as defined in Part III. Use these strategically to reduce redundant setup.

4. @IMPORT WORLD String

Imports world definition file String as defined in Part II.

5. @IMPORT TERRAIN String

Imports terrain definition file String as defined in Part I.a.

6. @IMPORT COMMUNICATION String BASE Integer1 SIZE Integer2

Imports communication definition file String with base Integer1 and size Integer2 as defined in Part I.b.

7. @COMMIT

Commits the initial configuration of the environment. Call this command after all @IMPORT and CREATE 
AIRPLANE commands, but before any @CREATE RADAR commands.

Behavioral Commands

Behavioral commands are concerned with manipulating entities that were created and connected.

8. COMMAND id AILERON Deflection

Deflects the right aileron of airplane id up (positive) or down (negative) according to Deflection for a right or 
left turn, respectively. (The opposite happens to the left aileron.) If the slash argument is present, the deflection 
specifies the expected and actual angles, respectively; if not, both are the same.

9. COMMAND id ELEVATOR Deflection

Deflects the elevator of airplane id up (positive) or down (negative) according to Deflection. If the slash 
argument is present, the deflection specifies the expected and actual angles, respectively; if not, both are the 
same.

10. COMMAND id RUDDER Deflection

Deflects the rudder of airplane id right (positive) or left (negative) according to Deflection. If the slash argument 
is present, the deflection specifies the expected and actual angles, respectively; if not, both are the same. Do not 
turn the airplane with the rudder — use the ailerons!

11. COMMAND id GEAR ( UP | DOWN )

Raises or lowers the landing gear of airplane id. The airplane cannot stall with the gear down.

12. COMMAND id FLAPS ( Integer | UP ) [ / Number ]

Extends the flaps of airplane id downward to position Integer Î{1,2,3,4} or completely retracted up. If Number 
is present, the extension specifies the expected position and actual deflection angle, respectively; if not, both are 
the same position.

13. COMMAND id POWER Number1 [ / Number2 ]

Commands the engines of airplane id to Number1 percent power. If Number2 is present, the power specifies the 
left and right engines, respectively; if not, both are the same. 
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14. TRANSMIT String

Transmits statement String, which appears in the output window of the command-line interface.

15. @FORCE id [ POSITION CoordinatesWorld ] [ ALTITUDE Altitude ] [ COURSE Number1 ] 
          [ POWER Number2 ]

Forces airplane id to position CoordinatesWorld and/or altitude Altitude and/or course Number1 and/or 
power Number2. At least one field must be present.

16. @CONFIG CLOCK Number1 Number2

Reconfigures the system clock to update the simulation time by Number2 seconds every Number1 wall-clock 
seconds. The default at startup is 0.1 for both. Do not mess with this for real tests!

17. @CONFIG RADAR id1 ( idn = Stringn )+

Reconfigures radar display id1 with value Stringn for parameter idn as follows:

Parameter Values Description
backcolor hexadecimal RGB color Sets the background color for better contrast in screenshots for the report
is_persistent boolean Disables the decay effect of aircraft to accommodate screenshots of the entire display
has_grid boolean Enables the reference grid with a spacing of one nautical mile
has_range boolean Enables the range grid at increments of one nautical mile
has_terrain boolean Enables terrain rendering
has_breadcrumbs boolean Enables breadcrumb rendering of aircraft movement
breadcrumb_rate integer Sets the sampling rate for breadcrumb recording

18. @CONFIG DISPLAY ( idn = Stringn )+

Reconfigures the display elements with value Stringn for parameter idn as follows:

Parameter Values Description
update_instrument_panels boolean Enables updating instrument panels
update_3d_views boolean Enables updating airplane three-dimensional state viewers
update_radar_displays boolean Enables updating radar displays

19. @WAIT Number

Waits Number simulation seconds before executing the next command.

20. @SCHEDULE Number < command >

Schedules command command to execute at time Number simulation seconds. If the time is in the past, the 
command executes immediately.

Notice how this command supports the communication loader in Part I.b by scheduling TRANSMIT commands 
behind the scenes for the specified phrases at the specified times.

21. @PAUSE

Pauses the simulation clock until any command is issued. See @RESUME.

22. @RESUME

Resumes the simulation clock after a pause without causing any other action.

23. @EXIT

Exits the simulation gracefully. Closing any of the windows with the mouse may not shut down all services 
properly and flush the output streams.
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Report Requirements

This final part of the project addresses selective testing and evaluation of the provided solution. It focuses 
predominantly on breadth of coverage, not depth. The goal is to demonstrate that each unit of functionality 
reasonably works for at least one representative scenario. A real test plan for a project of this relatively small size 
could easily expand to hundreds or even thousands of times the size of this section.

Deliverable

You need to produce one document with all your tests. Tests are stated in the form of requirements. Unless 
otherwise specified, you may satisfy each however you want. Each must address the following in exactly this form,
including the number, in a separate section:

The test designator and title in bold; e.g., Test A.1: Constant speed straight and level

1. The rationale behind the test; i.e., what is it testing and why we care.

2. A general English description of the initial conditions of the test.

3. The commands for (2), which must appear in a standalone form that could be directly copied into a text file to
reproduce the test without manual intervention. Do not crossreference other tests.

4. A brief English narrative of the expected results of executing the test. (Proper testing discipline demands that
you do this before running the test.)

5. At least one graphical representation of the actual results. The form is your choice.

6. A brief discussion on how the actual results differ from the expected results.

7. A suggestion for how to extend this test to cover related aspects not required here.

Your document must be formatted professionally. It must be consistent in all respects across all team members. 
Code references must be in monospace font. Use any resources available, such as screenshots and log excerpts, to
make a reasonably convincing claim. Provide nothing less, but also nothing more.

Tests

Each test is independent. Import terrain sample.trn for group G only. Except for loss of control and wild 
maneuvers, use realistic pitch angles under 10 degrees and bank angles under 20 degrees. There is no guarantee 
that all tests are possible because we are evaluating an unknown system. If in doubt, ask for clarification.

Teams of three should do 12 tests from these options. Teams of two do eight in some reasonable fashion of your 
choice.

A. Enroute Operations

Do three from this group. 

Import world sample.wld. Assume all tests start at 5,000 feet. Tests A.7 through A.12 repeat A.1 though A.6, 
respectively, but start with power 30 and increase to power 100.

Test A.1: Constant speed straight and level

Fly straight and level without changing speed.

Test A.2: Constant speed straight and climbing

Fly straight without changing speed, but climb at 1,000 feet per minute.

Test A.3: Constant speed straight and descending

Fly straight without changing speed, but descend at 1,000 feet per minute.
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Test A.4: Constant speed turning and level

Fly a clockwise circle without changing altitude.

Test A.5: Constant speed turning and climbing

Fly a clockwise circle while climbing at 2,000 feet per minute.

Test A.6: Constant speed turning and descending

Fly a clockwise circle while descending at 2,000 feet per minute.

Test A.7: Increasing speed straight and level
Test A.8: Increasing speed straight and climbing
Test A.9: Increasing speed straight and descending
Test A.10: Increasing speed turning and level
Test A.11: Increasing speed turning and climbing
Test A.12: Increasing speed turning and descending

B. Takeoff Operations

Do one from this group.

Test B.1: Takeoff

Start at the south end of the runway at 800 feet, increase to 50% power, wait for two seconds, increase to 100%,
lift off, raise the landing gear, turn east at 3,500 feet, and reduce to 80% power.

C. Landing Operations

Do two from this group.

Test C.1: Landing straight in without flaps

Start south of the airport at 6,000 feet heading north at 100 knots. Touch down on the runway and come to a 
stop. Assume the runway elevation is 800 feet.

Test C.2: Landing straight in with flaps

Do C.1, but lower the flaps one increment at a time and stabilize during the descent to touchdown.

Test C.3: Landing approach

Start west of the airport at 5,000 feet heading east at 120 knots. Cross over the center of the runway, turn right, 
and land as in C.1.

D. Aircraft Failure

Do one from this group.

Test D.1: Aileron failure

Fly straight and level, then command a turn to the right that actually turns to the left.

Test D.2: Engine Failure

Fly straight and level at full power in both engines, then cut the left engine to zero power.
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E. Pilot Failure (Loss of Control)

Do one from this group.

Test E.1: Stall

Fly straight and level at full power, reduce power to just above stall, hold it, then stall.

Test E.2: Excessive bank

Fly straight and level, then bank excessively to the right.

F. Midair Collisions

Do both from this group.

Test F.1: Collision

Create two airplanes at opposing positions heading toward each other until they collide.

Test F.2: Collision averted (playing chicken)

Create two airplanes at opposing positions heading toward each other until they perform crazy maneuvers at the 
last moment to avert the collision.

G. Terrain Collisions

Do two from this group. Import terrain sample.trn.

Test G.1: Collision

Fly straight and level into the mountain.

Test G.2:   Collision a  verted (playing chicken)  

Fly straight and level toward the mountain, but perform a crazy maneuver at the last moment to avert the 
collision.

Test G.3: Nap of the earth

Fly as closely as possible to the terrain through a variety of turns.

H. Flight Dynamics

Do neither or both from this group.

Test H.1: Discrete turn

From straight and level, turn right with a bank of 20 degrees commanded instantaneously.

Test H.2: Continuous turn

From straight and level, turn right with a bank of 20 degrees commanded stepwise by five degrees per simulation 
second. Compare the turning performance with H.1.
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Appendix D: Most Relevant Publications

These papers represent various perspectives related to the overall plan in this proposal:

• “A Meta-Case Study of Modeling, Simulation, Visualization, and Analysis for Real-World 
Software Systems Engineering Education” compares eight projects in a way similar to the 
proposed process of tearing them apart and rebuilding them. [page 63]

• “Experiencing Real-World Multidisciplinary Software Systems Engineering Through Aircraft 
Carrier Simulation” describes one project in extensive detail. [page 77]

• “Multiagent Test Range: Fostering Disciplined Software Engineering Practices in Students via 
Modeling, Simulation, Visualization, and Analysis” shows the QMSVA perspective. [page 107]

• “A Quasi-Network-Based Fly-by-Wire Simulation Architecture for Teaching Software 
Engineering” describes a project with low-level engineering details. [page 116]

• “A Holistic Multidisciplinary Approach to Teaching Software Engineering Through Air Traffic 
Control” describes a project with high-level managerial details. [page 124]

• “Toward Introspective Human Versus Machine Learning of Simulated Airplane Flight 
Dynamics” uses student subjects to evaluate a machine learning approach. [page 131]
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Peer Reviewed Paper Presented at AlaSim 2016

A Meta-Case Study of Modeling, Simulation, Visualization, and Analysis for
Real-World Software Systems Engineering Education

Dan Tappan
Department of Computer Science, Eastern Washington University, Cheney, WA

Keywords: software engineering, systems engineering, pedagogy

ABSTRACT: The foundation of modern systems of systems is computer systems controlling electrical systems in turn
controlling mechanical systems. Despite the core role computers play, computer science students do not generally see
or appreciate this perspective because few classroom projects demonstrate it. This work showcases eight recent projects
that employ a systems-engineering approach to teaching software engineering. Specifically, it shows how modeling,
simulation, visualization, and analysis serve as a powerful toolkit for the analysis, design, implementation, testing, and
evaluation of engaging real-world projects related to aviation, military, construction, and railroad applications.

1. Introduction

Modern  technology  is  a  complex  system  of  systems
composed of mechanical systems controlled by electrical
systems  controlled  by  software  systems.  Software
engineering  is  not  just  about  software  anymore.  The
systems-engineering  processes  of  analysis,  design,
implementation,  testing,  evaluation,  verification,
validation,  and  accreditation demand far  more  than  the
typical  classroom environment  can  address.  This  paper
presents an overview of a highly successful reusable Java-
based  software  architecture  and  corresponding  holistic
pedagogical  approach  that  utilize  modeling,  simulation,
visualization,  and  analysis  at  all  levels  with  an
overarching focus on software quality assurance. It uses
multiagent  continuous  time-stepped  simulations  for
interactive virtual worlds that capture a vast breadth and
depth of multidimensional  exposure to realistic systems
while  still  being  manageable  for  students  and  the
instructor.  This  overview  highlights  commonalities  and
results from a survey of eight recent projects:

• AAR: aircraft  accident  reenactment  environment  for
creating, recreating, and analyzing events

• ACO: aircraft  carrier  operations  with  fighters  taking
off,  landing,  and  repositioning,  and  refueling
from tankers

• ATC: air  traffic  control  with  airplanes  operating  on
the  ground  and  in  the  air  in  various  airspace
configurations and contexts

• FBW: fly-by-wire  control  system  with  networked
control surfaces and external components of an
airplane on a test stand

• HCE: heavy  construction  equipment  toolkit  with
sensors  and  electrical,  mechanical,  hydraulic,
and pneumatic actuators

• MTR: military  test  range  with  airplanes,  ships,  and
submarines using sensors and weapons

• RLM: railroad  layout  manager  with  tracks,  cars,
engines, and signaling and safety systems

• UAV: unmanned  aerial  vehicle  remote  cockpit  with
instrumentation and flight data recording

This  approach  forces  students  to  develop  and  apply
critical-thinking  and  technical-communication  skills  by
pushing  them  out  of  their  comfort  zone  into
overwhelmingly  unfamiliar  real-world  environments.  It
helps establish the endless dots and their interconnections
and interrelationships to learn about the problem domain
of  the  subject  matter,  to  translate  it  into  the  solution
domain,  and  to  evaluate  the  results.  Modeling  and
simulation here uses software as a surrogate for the real
world  to  investigate  what-if  scenarios  from  countless
perspectives. It dovetails with the scientific method as a
disciplined  approach  for  envisioning,  building,  and
conducting repeatable controlled experiments in support
of  developing  quality  software  systems  of  systems.
Finally,  it  emphasizes  an  array  of  underutilized
visualization  techniques  as  an  expressive  yet  intuitive
means of conveying information to all stakeholders in the
development process.

2. Software Systems Engineering

The term software systems engineering as a combination
of  software engineering and  systems engineering is  not
mainstream yet.  In  fact,  it  produces  only 340 thousand
hits on Google versus 34 and 16 million for the other two,
respectively. However, despite the lack of terminological
recognition,  the  fusion  of  these  fields  is  indeed  how
professionals  develop  complex  systems  of  systems.
Although  the  students  referenced  in  this  paper  are
studying computer science as their major discipline, they
cannot be completely oblivious to the central role that it
plays in the larger world where they plan to spend their
careers.  The  multidisciplinary  nature  of  these  projects
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fosters  an  understanding  and  appreciation  of  such  a
holistic perspective.

2.1  Software Engineering

Software  engineering  is  a  complex,  multidimensional,
multifaceted process. There are countless ways to conduct
it.  This paper considers the following traditional  stages:
analysis is  the  process  of  understanding  the  problem
domain; design is mapping the many real-world elements
of  the  analysis  to  the  corresponding  virtual-world
elements  of  the  solution  domain;  implementation is
building  the  solution  with  appropriate  tools  and
techniques;  and  finally,  testing   and   evaluation is
demonstrating that  the solution works and is  consistent
with  the  original  problem,  as  well  as  refining  and
optimizing it.

In reality, the process invariably ends up looking like a
variant  of  the  popular  joke  in  Figure  2.1,  which
apparently  has  been  floating  around the  public  domain
since  the  advent  of  software  engineering.  The  panes
correspond  from  top  left  to  bottom  right  as:  how  the
customer explained it; how the project leader understood
it;  how  the  analyst  designed  it;  how  the  programmer
wrote it; what the beta testers received; how the business
consultant described it; how the project was documented;
what operations installed;  how the customer was billed;
how it  was  supported;  what  marketing  advertised;  and
finally what the customer really needed.

The particulars of each pane are irrelevant.  What really
matters  is  the  larger  perspective  that  every  manner  of
absurdity happens from one step to the next. While there
are unquestionably many genuinely unavoidable pitfalls
in software engineering, many need not become problems
with  some  reasonable  care.  The  approach  throughout
these projects aims to reduce the endless disconnects as
students translate from one stage to the next. Far too often
their “strategy” is to try anything that comes to mind with
the  hope  that  it  works.  In  fact,  one  student  blatantly
admitted  that  he  “kept  throwing  more  code  at  the
compiler  until  it  shut  up.”  In  the  world  of  physical

engineering, developing what-if mockups and prototypes
is commonplace and extremely useful, but because of the
investment in actually building something, engineers put
more  thought  into  the  design.  In  the  virtual  world  of
programming, students develop the bad habit of believing
that  haphazard  trial  and  error  is  an  actual  strategy  to
problem-solving because it appears to come at no cost. In
reality, they often do not know why their solutions fail to
work,  or  if  the solutions do actually  work,  they cannot
articulate  why.  Neither  perspective  is  conducive  to
producing quality software.

2.2  Systems Engineering

Systems engineering is a superset of software engineering
that  involves  a  vast  array of  systems of  systems of  all
types.  While  systems  engineering  often  tends  to  be  a
higher-level,  more  managerial  and  less  technical
perspective, this work focuses on the engineering aspects
of  multidisciplinary  systems.  In  fact,  the  breadth  and
depth of subject  matter throughout these projects aligns
quite well with  mechatronics, which is an amalgamation
of at least the disciplines represented in Figure 2.2.

Computer science students are naturally not expected to
have a background in all of these areas. These projects,
especially in the analysis stage, offer many opportunities
for  students  to  familiarize  themselves  with  the  subject
matter  to  the  degree  necessary  to  do  something
computational  with  it.  This  approach  provides  good
training because in the working world, professionals are
always being immersed into unfamiliar environments. The
ability to adapt and learn quickly is essential.

3. Pedagogical Foundation

The pedagogical foundation is extensive and covered in
great  detail  in  [2].  The goal  here  is  to  provide  just  an
overview  of  how  modeling  and  simulation  relate  to
thinking and doing for software systems engineering.

3.1  Modeling

Modeling can be considered the process of translating a
problem in the real  physical  world to a  solution in the
virtual computer world, as depicted by the right arrow in

Figure 2.2: Systems Engineering Convergence [1]

Figure 2.1: Software Engineering in Practice
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Figure  3.1.  By  and  large,  students  do  understand  this
direction  because  they  are  accustomed  to  receiving
problems  to  solve.  What  they  rarely  recognize  is  the
inverse direction depicted by the left arrow. In this case, if
their solution were given to someone with no knowledge
of the original problem, it is very unlikely that this person
would be able to recreate it correctly. The reason relates to
the cartoon in Figure 2.1, which reflects an endless parade
of translation errors  where important  details  are lost  or
mangled, and new unfounded ones mysteriously appear.
The  result  is  poor  software,  which  Weinberg  [3]
characterizes eloquently:  “If builders built  buildings the
way  programmers  write  programs,  then  the  first
woodpecker that came along would destroy civilization.”

The pedagogical emphasis in this paper is on how to teach
students to translate the problem domain to the solution
domain  appropriately  and  to  verify  the  translation.
Section 5.1 covers this process in much more detail. Here
it suffices to define the approach as “slicing and dicing”
the problem domain into increasingly smaller pieces that
ultimately have clear translations, such as in Figure 3.2. In
particular, students need to be able to articulate what they
want,  how to get  it,  and how to know that  they got it.
These steps correspond generally to analysis, design, and
testing, respectively, but for small, bite-sized pieces that
are easier to understand and process.  They also capture
both  directions  in  Figure  3.1.  One  of  the  simplest
approaches plays a commanding role: posing and getting
resolution  on  any  number  of  who,  what,  when,  where,
why, and how (W5H) questions, which form the backbone
of mental models for understanding anything in the world
[4,5].

Establishing  small  pieces  helps  combine  them
meaningfully into ever-larger ones, which ultimately leads
to  systems  of  systems.  Figure  3.3 shows  the  data-
information-knowledge-wisdom  (DIKW)  hierarchy,
which  helps  guide  this  process  by  establishing  these
pieces as dots and providing a framework for connecting
them appropriately [7]. This process reflects learning by
accumulating experience.

• Data: raw entities with no context

• Information: entities in one context

• Knowledge: entities in multiple contexts

• Wisdom: generalized principles created by connect-
ing a network of contexts from different
sources  for  predictive,  anticipatory, pro-
active understanding

Finally,  Bloom’s  Taxonomy  of  Educational  Objectives
plays  the  overarching  role  of  helping  foster  critical
thinking by leading students upward from the low-level,
data-oriented  learning  activities  of  remembering,
understanding,  and  applying to  the  high-level,
knowledge-oriented activities of  analyzing,  creating, and
evaluating  [8].  In  many  respects,  this  flow  also
corresponds  to  analysis,  design,  implementation,  and
testing in software development.

3.2  Simulation

The role of simulation in these projects is two-fold. First,
it makes them interesting, which helps entice students to
take  the  process  of  learning to  develop them seriously.
Second,  it  provides  a  disciplined  way  of  evaluating
whether their solutions work correctly, and if so, then how
well. The basis is the scientific method, which is common
to all sciences except ironically computer science [9,10].
Figure  3.4 captures  the typical  process  flow, which  for
software development tends to reflect the following steps:

• Determine what needs to be tested.

• Define an appropriate test.

• Run controlled experiments.

• Collect and interpret results.

• Report  on  whether  the  test  passed.  If  not,  make
proposed corrections to the program and run the same
test again. If so, refine the program to make the results
better until meeting a specified level of performance.

Figure 3.3: DIKW Hierarchy

Data Information Knowledge Wisdom

 
  

Figure 3.1: Real to Virtual-World Correspondence

Figure 3.2: Domain Decomposition [6]

Problem Domain Solution Domain
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A third use of  simulation is  the traditional  purpose for
developing such software:  to  evaluate what-if  scenarios
about  the  problem domain  by  using  the  software  as  a
surrogate. This use plays only a minor role here, primarily
for demonstration and discussion, because the students are
not studying to become subject-matter experts.

4. Project Showcase

Each  project  investigates  a  rich  breadth  and  depth  of
aspects  that  exercise  important  elements  of  software
engineering.  The  overview  here,  however,  is  of  the
general characteristics of each.

4.1  Unmanned Aerial Vehicle

Project UAV involved the architecture for interacting with
the flight dynamics model of an unmanned aerial vehicle,
as  well  as  receiving  and  interpreting  navigation
information from ground stations [12].  It  also involved
implementing parts of the instrumentation in Figure 4.1 to
present the results of this processing to the pilot.

4.2  Air Traffic Control

Project  ATC  involved  a  large-scale  world  of  arbitrary
aircraft, navigation systems, airports, and airspace under
the command of various air traffic controllers [13]. Figure
4.2 depicts the respective views of ground, approach, and
enroute controllers, each with a different perspective on
the same world and different goals and procedures.

The same underlying display accommodated all variants.
Figure  4.3 shows  a  composite  view with  almost  every
option  enabled  simultaneously.  A  hallmark  of  good
software design is being able to apply the same solution to
many related problems without undue effort [14].

4.3  Fly-by-Wire Aircraft Control

Project FBW involved a hierarchical network of networks
that  coordinated controllers, sensors,  and actuators on a
fly-by-wire aircraft on a test stand [15]. Figure 4.4 depicts
the  flight  control  surfaces  and  other  components  like
engines  and  landing  gear,  which  had  very  specific
behaviors  that  had to be ensured.  (See Figures  5.7 and
5.8.)

Figure 4.2: ATC Controller Viewers

Figure 4.3: ATC Viewer, Composite

Figure 4.1: UAV Viewer

Figure 3.4: Scientific Method [11]
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Figure 4.5 depicts the corresponding fly-by-wire network,
which  the  architecture  utilized  through  rich
communication protocols.

4.4  Aircraft Accident Reenactment

Project  AAR  involves  a  combination  of  projects  UAV,
ATC, and FBW to define,  execute,  and analyze a wide
variety of failures that  lead to aircraft  accidents.  Figure
4.6 depicts a mockup of the expected final form, which is
still under development.

4.5  Aircraft Carrier Operations

Project  ACO involved a very dynamic environment  for
aircraft  carrier  operations  [2].  It  included  fighters  on
board and in the air. Carriers maintained components like
catapults,  blast  barriers,  arresting  wires,  and  optical
landing  systems.  The fighters  interacted  with  them and
airborne tankers to carry out simple training missions by
taking off, refueling, and landing. Figure 4.7 depicts top,
side, and front views of a launch.

4.6  Military Test Range

Project MTR involved the most complex dynamic world
[17].  It  provided  an evaluation environment  for  a  wide
variety  of  weapon  systems  on  different  platforms.
Munitions supported the specific combinations of sensors
and fuzes in Table 4.1.

Sensor

Munition

A
coustic

D
epth

D
istance

R
adar

S
onar, passive

S
onar, active

T
herm

al

T
im

e

Bomb

Depth Charge      

Missile    

Shell 

Torpedo       

Table 4.1: Compatibility Matrix

Similarly, Table 4.2 shows which platforms could engage
each other with which munitions. (Submarines A and B
are above and below water, respectively. The other letters
correspond to the first letter of each munition.)

Figure 4.4: FBW Viewer

Figure 4.6: AAR Viewer Mockup [16]

Figure 4.7: ACO Viewer

Figure 4.5: Fly-By-Wire Network Architecture
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Target

Source

A
irplane

S
hip

S
ubm

arine (A
)

S
ubm

arine (B
)

Airplane M B,M,T B,T D,T

Ship M,S,T S,T D,T

Submarine (A) M,T T T

Submarine (B) T T T

Table 4.2: Applicability Matrix

Acquisition, lethality, engagement, countermeasures, and
other considerations played out in a two-dimensional top-
view world, as in Figure 4.8.

Some of the output, as in Figure 4.9, naturally exported to
the three-dimensional visualizer that Section 5.3 covers.

4.7  Heavy Construction Equipment

Project HCE involved the design and evaluation of heavy
construction  equipment.  Despite  major  differences  in
appearance,  as  in  Figure  4.10,  the underlying  model  is
quite  similar  to  the  fly-by-wire  architecture  in  project
FBW.  Here,  however,  the  actuators  are  electrical,
mechanical,  hydraulic,  and  pneumatic  cylinders  that
connect  fixed  and  variable  linkages  and  free-body

components.  As with FBW, the equipment resides on a
virtual  test  stand  and  does  not  actually  perform  any
function in the world.

4.8  Railroad Layout Manager

Project  RLM  involved  a  railroad  layout  manager  that
captured the usual components like tracks, engines, and
cars.  It  also  supported  complex  signaling  and  safety
systems.  The viewer  in  Figure  4.11 is  characteristic  of
many projects, which present the world from an iconified
top view. Although the graphics are expressive, they are
not  particularly  attractive.  However,  the  architecture  of
these projects accommodates improvements to the model,
view,  and  controller  concerns  (see  Section  5.2.1)
relatively  independently,  which  is  another  hallmark  of
good software design [18].

5. Architectural Framework

The  architectural  framework  contains  the  elements  for
modeling, simulation, visualization, and analysis. For the
most part, only the model and parts of the visualization
differ substantially among projects.

5.1  Modeling

The  first  step  in  making  sense  of  any  project  is  to
establish  what  its  pieces  are  and  consist  of.  The  term

Figure 4.9: MTR Viewer, 3D Perspective

Figure 4.10: HCE Viewer

Figure 4.8: MTR Viewer, 2D Perspective

Figure 4.11: RLM Viewer
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agent generally applies to top-level entities of study like
airplanes,  whereas  a  component is  part  of  one,  such as
landing gear. However, from many perspectives, there is
no  practical  difference,  so the  latter  term is  used  here.
Table 5.1 provides examples of both categories from each
project as defined in Section I.

Project Example

AAR airplane, cockpit control, flight control surface, data logger

ACO fighter, tanker, catapult, arresting gear, refueling boom

ATC aircraft, taxiway, runway, airspace geometry, navigation aids

FBW elevator, aileron, rudder, flap, slat, landing gear, engine

HCE chassis, frame, linkage, joint, lever, hydraulic cylinder

MTR airplane, ship, submarine, sensor, fuze, missile, bomb

RLM track, switch, engine, car, sensor, gate, semaphore, signal light

UAV airplane, instrument, navigational transmitter and receiver

Table 5.1: Components

5.1.1  Data

The next  step is  to  define each component  in terms of
three  aspects.  The  first  is  data,  which  captures  what  a
component  is.  For  example,  Table  5.2 specifies
representative characteristics of a component from Table
5.1. A model is always an abstraction, so not every detail
is captured. Determining what to include, as well as how
to represent it,  is  part  of the model-based thinking that
students need to learn [19].

Project Example

AAR an airplane has a callsign, latitude, longitude, and altitude

ACO a catapult has an acceleration rate to maximum speed

ATC an aircraft has an (x,y,z) position and a direction at a speed

FBW a rudder has a maximum positive/negative deflection angle

HCE a hydraulic cylinder has a minimum and maximum extension

MTR a radar sensor has a maximum range and sensitivity

RLM an engine has a current and maximum speed

UAV an airplane has a yaw, pitch, and roll attitude

Table 5.2: Data

Students  tend  to  experience  surprising  difficulty  in
representing  real-world  data.  The  emphasis  in  these
projects  in  primarily  on  breadth,  not  depth,  so it  is  an
inappropriate use of time to expect students to implement
complex representations themselves. Therefore, the author
provides most as predefined datatypes, such as in Figure
5.1. Each captures the practical essence of its abstracted
role in the project. Most are simplifications, such as a flat-
earth model for latitude and longitude. Each manages its
units and magnitudes and provides error checking, utility
methods, logging, and other useful features.

5.1.2  Control

The  second  aspect  to  define  for  each  component  is  its
control, which captures what it can do. These capabilities
must be consistent with the use of the component, as in
Table  5.3.  They  must  also  be  consistent  with  the  data
because control  operates on data to produce more data.
This  input-processing-output  model  is  the  basis  of  all
computing,  yet  students’  solutions  frequently  have
disconnects  with  control  operating  on  nonexistent  or
incorrect  data,  or  with  data  having  no  corresponding
control. The relationships between data and control must
be clearly established before proceeding.

Project Example

AAR increase the altitude of the airplane

ACO activate the catapult as configured

ATC instruct to change the direction of the aircraft

FBW set the target deflection angle

HCE set the cylinder target extension distance

MTR transmit a radar pulse

RLM set the target engine speed

UAV set the attitude components 

Table 5.3: Control

5.1.3  Behavior

Data  and  control  are  static  in  that  they  define  the
existence  and  capabilities  of  components.  Behavior,  on
the  other  hand,  is  dynamic  because  it  specifies  how
components  function  with  respect  to  an  operational
context.  For  example,  each  action  in  Table  5.4 has  a
purpose. It translates to the control level to manipulate the
data level. All levels must be bidirectionally consistent.

Acceleration, Altitude, AngleMath, AngleNav,
Attitude, AttitudePitch, AttitudeRoll,
AttitudeYaw, Azimuth, Bearing, Callsign,
CoordCartAbsolute, CoordCartRelative,

CoordPolarMath, CoordPolarNav, CoordPolarNav3D,
CoordWorld, CoordWorld3D, Course, Distance,
Drag, Elevation, FieldOfView, FieldOfRegard,
Heading, Identifier, Interval, Latitude, Lift,
Longitude, Percent, Power, Range, Rate, Speed,
Time, Thrust, Track, Vector, Velocity, Weight

Figure 5.1: Datatypes
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Project Example

AAR climb to avoid terrain

ACO launch a fighter to defend the carrier

ATC change aircraft direction to avoid conflicting traffic

FBW deflect the rudder left to coordinate a turn

HCE extend a cylinder to dump the load bucket

MTR ping a target with radar to lock a missile

RLM reduce the engine speed to arrive at a station

UAV change the attitude to execute a landing maneuver

Table 5.4: Behavior

Figure  5.2 demonstrates two extended examples. In both
cases, the goal is to align an airplane with the runway at
point  S. Depending on the arrival position and direction,
the  actions  to  carry  out  differ.  The  top-level  goal
decomposes  into  the  lower-level  steps  a–g or  a–f that
reference the corresponding control.

5.1.4  Decompositional Characteristics

Establishing other characteristics of components does not
exhibit the same ordered road map. Instead, it is up to the
students to decide what is relevant, as well as how and
why, and then to act accordingly on these decisions. This
section covers three of the main breakouts.

Table  5.5 distinguishes  between  independent and
dependent components.  They  generally  align  with  the
definition  of  top-level  agents  versus  lower-level
components,  respectively, but  often the world is  not so
clear.  For  example,  an  airplane  in  project  FBW  is
independent because it  operates on its own, whereas its
landing  gear  is  always  dependent  on  it  because  this
component  would  never  be  found  separate  from  an
airplane. Similarly, in MTR, a (fire-and-forget) missile in
flight is on its own, but before launch, it was dependent
on  the  fighter  carrying  it.  Finally,  a  fighter  aboard  a
carrier  in  ACO  is  initially  dependent  when  parked.  It
becomes both independent and dependent while taxiing.
Upon  takeoff  it  becomes  independent  until  landing.
Students  must  recognize  and  understand  such  dynamic
complexities in order to manage them properly.

Project Independent Dependent

AAR airplane flight data recorder

ACO carrier, tanker catapult, arresting wire

ATC airplane, airport radar station (in a network)

FBW airplane landing gear, engine

HCE chassis bulldozer blade

MTR missile in flight missile on fighter

RLM track layout engine and rail car

UAV airplane flight control surface

Table 5.5: Independent/Dependent Components

Table  5.6 distinguishes  between  static and  dynamic
components, which are generally those that do not change
and  those  that  do,  respectively.  In  project  FBW,  for
example, the wing is merely an attachment point. It has
data defining its shape, but no control that allows it to do
anything with the data.  On the other  hand,  the landing
gear can extend and retract, which changes its state over a
time interval.

Project Static Dynamic

AAR airport layout, terrain air traffic, weather

ACO parking area, taxiway refueling booms, tailhook

ATC taxiway, runway, airspace airplane, weather pattern

FBW fuselage, wing landing gear, engine

HCE chassis, support linkage, actuator

MTR sea floor and surface bomb, missile, torpedo

RLM straight and curved track switch track, drawbridge

UAV instrument panel background instrument needle

Table 5.6: Static/Dynamic Components

Dynamic components can change state in different ways.
Table  5.7 distinguishes  between  discrete events,  which
happen instantaneously, and  continuous ones,  which are
relatively smooth transitions. In project FBW, switching
the landing light on or off is instantaneous, whereas the
landing  gear  takes  time  to  change  state.  Students  are
familiar  with  discrete  events  because  ordinary
programming  operates  this  way:  calling  a  method
executes  it  immediately,  and  the  program  does  not
proceed until  execution is complete.  Continuous events,
on the other  hand,  are  much more difficult  to  manage,
especially in a controlled way for simulation purposes.

Figure 5.2: Landing Approaches
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Project Discrete Continuous

AAR aircraft responds to radio call aircraft descends to altitude

ACO fighter reports position carrier changes direction

ATC engines start airplane taxis to runway

FBW landing light illuminates landing gear retracts

HCE hydraulic pump activates hydraulic cylinder extends

MTR radar pulse propagates torpedo tracks target

RLM switch track changes drawbridge goes up

UAV navigation aid turns on aircraft accelerates in a dive

Table 5.7: Discrete/Continuous Components

5.2  Simulation

Simulation is the realization of the operational context of
behavior  in  Section  5.1.3  with  respect  to  the  scientific
method in Section 3.2. It involves setting up and running
controlled  experiments  and  collecting  results  for
visualization and analysis.

5.2.1  Simulation Framework

The  simulation  framework  is  based  on  a  traditional
model-view-controller  architecture.  This  model  aligns
closely with the simulation model in Section 5.1, and the
view  aligns  with  visualization  in  Section  5.3.  The
controller plays two roles: to interact with the user and to
execute the simulation.

5.2.2  Domain-Specific Languages

All  interaction  with  the  user  (except  for  simple  mouse
manipulation  of  the  views)  is  through  text-based
commands, which can be typed directly from a command
line  or  read  from  a  file.  Each  project  has  its  own
application-specific  language,  as  in  Figure  5.3,  which
plays  three  distinct  roles  based  on  well-established
software design patterns [20].

Creational commands play the role of defining separate
components  at  their  lowest  levels.  The  commands  are
highly  specific  to  the  projects,  but  all  are  of  the  same
basic form:

CREATE something WITH arguments

For example, project MTR uses the following commands
to create two sensors as radar and depth fuzes with certain
characteristics:

DEFINE SENSOR RADAR fuze_radar1
  WITH FIELD OF VIEW 30 POWER 50 SENSITIVITY 10

DEFINE SENSOR DEPTH fuze_depth1
  WITH TRIGGER DEPTH -250

Structural  commands combine the  separate  components
into  higher-level  components  or  top-level  agents.  For
example, the following command creates and assembles a
missile  with  a  previously  created  radar  sensor  and
proximity fuze,  plus  it  defines  additional  characteristics
like a minimum flyout distance before arming:

DEFINE MUNITION MISSILE munition_mission1
  WITH SENSOR sensor_radar1 
  FUZE fuze_proximity1 ARMING DISTANCE 0.5

Behavioral  commands control  the  behavior  of
components.  For  example,  the  following  commands
change the course of a fighter, make it descend, and arm
and fire its missile:

DO fighter1 CHANGE COURSE 315 DESCEND D-900

DO fighter1 ARM missile1

DO missile1 FIRE

Miscellaneous and metacommands control the simulation
itself. For example, the following commands change the
granularity  of  the  simulation  time  steps  and  their
correspondence to wall-clock time, wait 500 milliseconds,
and then exit.

@CLOCK 100 20

@WAIT 500

@EXIT

One of  the  most  useful  metacommands  is  @RUN,  which
reads commands from a file as a script. This capability is
extremely powerful for disciplined testing and evaluation
because it allows students to partition separate tests into
separate  files.  Instead  of  the  usual  approach  of
manipulating their programs directly to set up and execute
tests and save the results, in which they generally undo or
corrupt  previous  tests,  here  everything  remains
independent and more organized. Complex testing often
involves executing different behaviors on the same initial
configuration, which is easy to set up by having files call
other  files.  This  approach  instills  a  lot  of  discipline  in
students,  who  would  otherwise  have  no  other  practical
way of performing such actions.

5.2.3  Simulation Implementation

The  architecture  manages  a  continuous  time-stepped
simulation.  It  maintains  a  collection  of  all  components

Figure 5.3: Script Snippet
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and  periodically  updates  each  according  to  a  single
system  clock  such  that  every  component  performs  its
relevant  actions at  that  instant.  For  example,  extending
landing gear in project FBW involves repeated updates to
the  components  of  the  gear  assembly,  each  of  which
advances the extension by a small amount. The end effect
is the impression of continuous, smooth movement over
time from the start of the physical interval (retracted) to
the end (extended).

5.3  Visualization

Visualization involves far more than just graphics. It is a
means  of  presenting  complex  data  and  information  in
ways  that  convey  the  content,  structure,  and  meaning
intuitively.  No  single  way  captures  all  aspects.  At  the
lowest  level,  the  compositional  nature  of  agents  and
components lends itself to text output that  indicates the
creational and structural elements, such as for a notional
fighter jet in Figure 5.4. Generating such output from an
object-oriented  program  is  straightforward  and
convenient.  Moreover,  doing  so  with  a  common  data
interchange  format  like  XML results  in  a  great  benefit
because  other  tools  can  do  the  tedious  cosmetic  work,
thereby  freeing  students  to  focus  on  more  appropriate
tasks.  For  example,  the  Google  Chrome  web  browser
manages the indentation and color-coding here.

Similarly,  the  value  of  Microsoft  Excel  is
underappreciated  as  a  legitimate  and  surprisingly
powerful  visualization  tool.  The  architecture  of  these
simulations automatically generates a wealth of low-level
data  about  the  states  of  the  components  and  their
intercommunication, as in Figure  5.5. Almost everything
that occurs is captured somewhere in a structured text log
file that by design exports effortlessly to Excel.

While this presentation contains copious raw data, it is not
at all intuitive. Nobody can just look at the endless rows
and  columns  and  truly  see  the  big  picture  of  what  is
happening.  However,  still  within  Excel,  judicious
selection  of  data  fields  easily  generates  a  wealth  of
graphs,  such  as  in  Figure  5.6,  that  convey information
about relationships, especially causes and effects. The eye
is naturally drawn to the visual form, and the brain sees
patterns.  Anomalies  and  discontinuities  are  far  more
apparent. Furthermore, this form can directly contribute to
test  reports  as  a  concise  depiction  wrapped  by  brief
English text for context. This approach greatly reduces the
effort  of  writing.  Students  do  not  generally  consider
communication  to  be  a  significant  part  of  computer
science,  but  in  the  real  world,  it  is  actually  what
professionals often do the most.

For  more  complex  interactions,  especially  for  precisely
timed  tests,  manual  annotation  is  worth  the  proverbial
thousand  words.  For  example,  Figure  5.7 depicts  the
actions of a rudder actuator from project FBW from two
perspectives at the following key time points:

1. at initial position 0º neutral; command to 45º left
2. arrives; command to 45º right
3. arrives; command to 0º
4. arrives; command to 30º left
5. at 15º left preemptively command to 45º right
6. arrives

Figure 5.4: XML Representation

Figure 5.5: Excel Table Representations

Figure 5.6: Excel Graph Representations
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Lower-level  analysis  using  basic  calculus  computed
within  Excel  produces  the  velocity  and  acceleration
breakout in Figure 5.8.

As  many  components  change  position  within  a  two  or
three-dimensional  world,  plotting  their  tracks  in  freely
available Gnuplot over time produces a rich perspective
on their behavior. For example, the tracks in Figure  5.9
follow aircraft  that  were  commanded  to  perform some
actions.  Again,  the  eye  is  naturally  drawn  to  any
disconnects.  This  high  level  does  not  provide  enough
detail to determine specifically what may be wrong, but it
does  help  target  any  problem,  which  can  then  be
diagnosed  by  going  back  into  the  lower-level
visualizations above.

Although  a  major  consideration  in  visualization  is  to
avoid investing costly, tangential effort into purpose-built
graphical  tools,  at  some  point  this  perspective  often
becomes necessary because general-purpose tools have no
inherent relationship to the problem domain. In this case,
the author provides a three-dimensional visualizer written
in JOGL (Java  OpenGL) that  is  used throughout  many
courses, and indeed derives from similar needs in earlier
work in the defense industry [21]. Figure  5.10 depicts a
variety of cartoon-like, yet very informative, sequences of
actions and events.

The capability to integrate domain-specific visualization
is  key.  Metainformation,  such  as  fields  of  view  and
degrees  of  freedom  in  Figure  5.11,  are  invaluable  for
making sense of otherwise hidden aspects of the world.

Finally, as many projects model components in the real
world  with  world  coordinates  (albeit  simplified  to  flat
earth),  their  output  in  latitude,  longitude,  and  altitude
directly  exports  to  tools  like  Google  Earth,  which  can
depict  tracks  overlaid  onto  actual  terrain,  as  in  Figure
5.12.

Figure 5.11: 3D Visualizer Augmentation

Figure 5.9: Gnuplot 2D Representations

Figure 5.12: Google Earth Visualization

Figure 5.10: 3D Visualizer

Figure 5.8: Excel Graph Representations

Figure 5.7: Annotated Events
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5.4  Analysis

Analysis  involves  making  sense  of  the  results  of
experiments. For subject-matter experts, simulation tools
provide  insight  into  domain-specific  problems.  For
students  within  the  context  of  an  educational
environment, however, the goal of analysis is primarily to
establish that the software itself works appropriately.

To this  end,  students  have  to  produce  a  professional-
looking test report based on a cross-section of roughly 40
experiments that demonstrate representative aspects of the
system.  For  consistency,  since  not  every  team’s  own
solution was correct or functioned identically, they used
the  author’s.  Each  experiment  addressed  eight
requirements,  where  1–4  relate  to  planning,  5–6  to
execution, and 7–8 to presenting the results:

1. The rationale behind the test; i.e., what it was testing
and why it mattered.

2. A general English description of the initial conditions.

3. The commands for (2).

4. An English narrative of the expected results.

5. The actual results with at least one graph showing the
most representative view of the states.

6. A snippet of the actual results from the log file with a
supporting  explanation,  including  statistics,  metrics,
and graphs, as appropriate.

7. A discussion  on  how well  the  actual  results  agreed
with  the  expected  results,  or  if  they  disagreed,  a
hypothesis on why.

8. A suggestion for  how to extend this  test  to  address
related aspects of potential interest.

The  experiments  varied  wildly  from project  to  project.
The following is a subset from MTR:

• Fly  an  airplane  on  a  constant  course  at  a  constant
altitude and speed.

• Fly  an  airplane  in  a  360-degree  clockwise  turn
approximated by an octagon in a climb where each leg
of the octagon is a separate climb. All legs should have
the same increase in altitude.

• Drop a bomb from a high-speed airplane at 8,000 feet
onto a ship.

• Drop  a  depth  charge  with  an  acoustic  fuze  near  a
submarine, but miss.

• Fire a missile with a radar sensor and depth fuze from a
ship at an airplane, detonating near the airplane.

• Fire a missile with a radar sensor and time fuze from a
ship at an airplane, detonating near the airplane.

• Fire a torpedo with a sonar sensor and sonar fuze from
a submarine at a fast ship.

• Fire a missile with a radar sensor and radar fuze from
an airplane at a ship. Move the ship in such a way that
the  radar  signal  reflectivity  goes  from  maximum  to
minimum and back as a function of aspect angle.

Snippets  of  the  visualizations  are  invaluable  for
supporting the argument that useful tests were conducted
correctly.  For  example,  Figure  5.13 depicts  dropping  a
bomb from a low-speed airplane flying right at 5,000 feet
onto a ship. The bomb missed, but its (simplified) descent
profile was as expected.

Although these simulations are often cartoon-like in their
simplifications,  they  still  reflect  a  relatively  rich  set  of
behaviors  to  tease  out.  A small  set  of  more  complex
experiments always provides this interesting opportunity.

For  example,  Figure  5.14 depicts  firing  two  torpedoes
from a submerged submarine at a ship that is broadside at
launch  and  tries  to  outrun  them.  As  the  torpedoes
converge on the ship, their active sonar sensors begin to
interfere with each other  because they are on the same
frequency.  The  students  needed  to  make  an  earnest
attempt at accounting for this observation. They are not
training to be subject-matter experts and thus are not held

Figure 5.13: Bomb Release, Side View

Figure 5.14: Torpedo Engagement, Top View

74 of 168



to  that  standard,  but  by  this  point  in  the  course,  they
should  be  able  to  articulate  a  reasonable  hypothesis,
whether  correct  or  not.  In  the  DIKW  hierarchy,  this
aspects  demonstrates  knowledge  and  even  hints  of
wisdom.

6. Results

Each project was independent with a different group of
approximately  32  students.  The  papers  cited  for  these
projects  report  on their  particular  results.  However,  the
shared framework for teaching this course generally relies
on  a  common  set  of  measures,  which  generate  a
substantial  amount  of  quantitative  and  qualitative
feedback over 11 weeks:

• Anecdotal observation
• Eight individual assignments
• 10 anonymous weekly self-reflections
• 16 project status reports (both individual and team)
• Three team project deliverables
• Project evaluation
• Team evaluation
• Development reflection
• Course evaluation

In  quantitative  terms,  on  average  88%  of  the  students
stated  that  the  architecture  permitted  them  to  build
interesting and entertaining real-world systems that they
thought they would never have been able to do on their
own.  Furthermore,  90%  indicated  that  the  test  reports
directly contributed to a stronger understanding of what
the  programmatic  solution  was  actually  doing,  whereas
they otherwise would have had much less confidence in it.
Overall,  the  students  rated  the  projects  4.6  out  of  5
(excellent).

7. Future Work

Developing a new project for each of three quarters in an
academic year is taxing for the instructor. Although much
of  this  framework  is  reusable  in  principle,  it  is  not  a
simple  and  straightforward  activity  in  practice.  A
classroom aspect of future work will be to streamline this
process  further.  With  an  ever-growing  set  of  complete
projects, hybrid projects that combine several, such as the
current  aircraft  accident  reenactment  simulator,  are
becoming much more feasible.

A second aspect of future work relates to the breadth and
depth  of  domain  coverage  in  these  projects.  Students
investigate  a  relatively  small  subset  of  the  capabilities.
The author  would not  develop  such large and complex
projects  if  this  limited  perspective  were  the  only  goal.
Rather,  the  dual-purpose  intent  is  also  to  use  them for
research. Although the underlying models tend to be gross

simplifications  and  thus  do  not  adequately  capture  the
fidelity necessary to study the problem domain in intricate
detail,  they do lend themselves nicely to other  research
considerations.  Sensitivity  analysis,  for  example,  is
important  in  determining  appropriate  or  optimal
configurations of components. Monte Carlo methodology
is a powerful means of exercising the models in ways that
reflect  real-world  uncertainty  without  undue  explicit
configuration. Finally, incorporation of machine learning
appears especially promising for countless aspects of the
problem and solution domains.

8. Conclusion

The  eight  projects  showcased  throughout  this  paper
demonstrate  a  rich  breadth  and  depth  of  examples  of
using modeling, simulation, visualization, and analysis in
support  of  teaching  software  systems  engineering.  The
underlying  pedagogical  foundation  successfully  helps
students  to understand how to approach,  carry out,  and
verify  the  many  confusing  and  error-prone  steps  of
analysis, design, implementation, testing, and evaluation
in a way that is educational, practical, and engaging.
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Experiencing Real-World Multidisciplinary Software Systems
Engineering Through Aircraft Carrier Simulation

1  Introduction

Modern technology is a complex combination of mechanical systems controlled by electrical 
systems ultimately controlled by software systems. Mechanical and electrical engineering 
students generally receive multidisciplinary hands-on exposure to such real-world applications, 
but those in computer science rarely see or appreciate this perspective. This work provides an 
engaging virtual environment for investigating an extensive breadth and depth of practical 
aspects related to the analysis, design, implementation, testing, verification, validation, 
refinement, and accreditation of software-based systems of systems. 

The overarching theme is the operational environment of an aircraft carrier containing a wide 
variety of complex static and dynamic components. The primary ones are the carrier, its aircraft, 
and the refueling tankers, all interacting through secondary ones such as catapults, landing 
arresting wires, optical landing systems, refueling booms, tailhooks, etc. By posing and getting 
resolution on who, what, when, where, why, and how (W5H) questions, students thoroughly 
decompose each component into its data, control, and behavior elements, which respectively 
correspond to what it is, what it can do, and what it actually does in all relevant contexts. This 
organization then maps onto well-established creational, structural, and behavioral design 
patterns within an architectural framework for respectively building, connecting, and using the 
components in real time. It also establishes a representation that helps students understand the 
problem domain in terms of requirements and specifications. 

This flexible Java-based environment allows students both to analyze existing solutions (which 
would be impractical to build themselves) and to synthesize their own. At all stages, it fosters 
critical thinking because the subject matter, pedagogical approach, and environment force 
students outside of their comfort zone, where they cannot rely on their generally inexperienced, 
brute-force problem-solving strategies to construct a solution. In particular, it contributes to 
understanding how to develop a mental model of the unfamiliar real-world problem space, which
ultimately maps through many transformations to the virtual-world solution space in 
software.12,18 The final product was a multiagent continuous time-stepped simulation in which 
students in a junior-level software engineering course played the computer science roles of 
analyst, designer, implementer, and tester, as well as multiple user roles. The structure of this 
paper establishes the foundation, describes the project, and connects these concepts to student 
learning and a summary of the outcomes.

2  Software engineering foundation

Software engineering is a vast collection of theory and practice with the goal of producing the 
highest-quality software at the lowest cost. It shares many characteristics with traditional 
engineering design processes, but for the purposes of this work, the following elements are the 
emphasis. In particular, this course promotes the Agile methodology, which is supposed to 
achieve the same results without imposing onerous, administration-heavy overhead.1 Agile is not
a substitute for proper planning and execution, however, so this freedom demands discipline, 
which is generally lacking in students at this stage of their education.
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• analysis: understand the real-world problem space, especially what the customer most likely
truly wants (although rarely realizes it), by eliciting requirements (what to do) and
specifications (constraints on how to do it).

• design: establish the virtual-world pieces that correspond to those in the analysis and create a
conceptual framework in which they reside and interact, as well as a plan to construct it.

• implementation: write software based on the design.
• testing: assess whether the pieces function individually and collectively.
• verification: demonstrate that the software satisfies the requirements and specifications.
• validation: demonstrate that the requirements and specifications appropriately address the

problem space.
• refinement: improve the software until it meets the evaluation criteria in the testing,

verification, and validation stages.
• accreditation: demonstrate that all criteria imposed by certifying organizations (e.g., FDA,

FAA) are satisfied; typically only mission and life-critical software undergo this rigorous and
expensive process.

This process of mapping a problem to a solution is deceptively simple and linear in this form. 
However, despite the similarities between traditional and software engineering, designing 
software is much more difficult and prone to error.21 Its virtual nature promotes trial-and-error 
development, which in itself is a great thing because it unleashes creativity that is not bound by 
physical constraints. Without self-discipline, however, this freedom becomes a crutch to avoid 
critical thinking and truly understanding the problem and solution. It is normal for students to 
start at this level; the danger is that they never grow out of it and continue these poor practices 
into their careers, where the consequences are real and significant. Figure 1 is a long-standing 
cartoon from the public domain that captures the universally acknowledged dysfunctional nature 
of software development in reality. While none of these disconnects are entirely avoidable, many
of the problems that could be resolved early unfortunately propagate to the later stages, where 
the cost to correct them rises exponentially. (The term “disconnect” is appropriate because these 
decisions indeed seem like the proverbial “good idea at the time”; only later do they manifest 
themselves as costly errors.) The course starts with a warning to the students that they will 
experience “The Cartoon”; embracing the philosophy of this course does not avoid this problem, 
but not embracing it guarantees a much bigger one. Many student comments at the end reflected 
the sentiment that they should have taken this warning more seriously from the start. In this 
respect, trial by (harmless) fire was a good experience for the students, who had become 
understandably accustomed in the introductory courses to easy problems with easy solutions. 
With enough brute force, anything could be solved. This case no longer applied, and it never will
again in their careers. The next major step in their curriculum was Senior Project and Senior 
Capstone (also taught by the author), where they were left to their own devices to solve their real
customer’s real-world problems. This paper does not address those results, but they do 
consistently show that students who experienced this approach perform better on average than 
those who had not.
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Figure 1: How software development actually happens

Part of the philosophy to this approach is grounding the virtual model in reality. Too many 
problems in software stem from making something happen that has no common-sense 
counterpart in reality (e.g., dividing by zero in Section 5.2.2). But without the critical ability to 
recognize such disconnects, programmers at all levels successfully manage to build the 
unbuildable, so to speak. Weinberg’s classic quote captures this sentiment perfectly: “If builders 
built houses the way programmers buil[d] programs, the first woodpecker to come along would 
destroy civilization.”3

3  Pedagogical foundation

The pedagogical approach is to push students outside of their comfort zone, where it becomes 
nearly unavoidable to apply research and critical-thinking skills to make holistic sense of a 
problem that is intentionally unfamiliar. They must understand not only the construction and 
operation of the real-world system, but also how these elements map onto the software-
development process and the intended solution. In particular, they had to establish the underlying
building-block primitives and the operations for combining them into more complex structures 
and actions within the architecture.21 When left to their own devices, students tend to gravitate 
toward bloated and brittle ad hoc solutions made up on the fly, whereas this approach required 
solutions that demonstrated at least the following characteristics:

• compositional: larger parts hierarchically consist of smaller parts
• modularized: parts are integrated into well-defined, cleanly organized and justifiable units

with distinct roles and no gaps or overlaps
• integrated: the different parts work together as a system
• unified: the system appears to the user as a single entity, not as discrete parts 
• reusable: parts can be transplanted into other projects without undue effort
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• orthogonal: one solution applies to many related problems
• scalable: the solution can manage a larger number of the same kinds of components
• extensible: the solution can manage different kinds of new components

The pedagogical foundation relies on the familiar (original) Bloom’s Taxonomy of Educational 
Objectives.8 It describes an ordered structure of learning activities from low-level remembering, 
understanding, and applying to high-level analyzing, creating, and evaluating. This 
representation maps closely to the process of real-world software development. The education 
community debates the order of the last two, but for software development, this one is the norm 
because evaluating strongly corresponds to testing.24 While creating (writing programs) is the 
most effective part of active learning and indeed produces the end product, students 
unfortunately tend to consider it the only part; i.e., coding is software engineering. To mitigate 
this problem, this work emphasizes the earlier levels (often maligned as “busy work”) to force 
students to experience and ultimately appreciate them and the positive results that they bring to 
the process. Consistent with the Pareto Principle, software engineering is 80% thinking first so 
that the 20% doing is done right later.15 This approach aligns well with the author’s teaching 
philosophy, the curriculum, and the specific population at an open-enrollment regional 
comprehensive university with overwhelmingly unprepared and underprepared students. In 
particular, it is designed from the ground up to be understandable, accessible, meaningful, and 
relevant. It addresses weaknesses and misleading or incorrect preconceived notions to help 
understand, define, connect, manipulate, and evaluate endless dots among vast complex 
resources in an unfamiliar problem domain.26

3.1  Critical thinking and analysis

Disciplined software development defines and then follows requirements and specifications as a 
road map of what to deliver and how it should operate, respectively. Requirements elicitation is a
very messy process of initially collecting a massive amount of supporting materials in different 
forms and then making sense of them. Bloom’s Taxonomy is helpful as an overview, but the 
classroom environment needs something more tangible. Students do not tend to see how abstract 
concepts apply without concrete examples.17 The data-information-knowledge-wisdom (DIKW) 
hierarchy in Figure 2 plays this role here:25

• data: raw values with no associativity or context
• information: values in one context
• knowledge: values in multiple contexts
• wisdom: generalized principles created by connecting a network of contexts from different

sources for predictive, anticipatory, proactive understanding

Figure 2: DIKW Hierarchy

Data Information Knowledge Wisdom
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Background research and low-level W5H questions about the problem establish data. Repeated 
investigation from different perspectives builds associations and interrelations like cause and 
effect to establish information. A sufficiently interconnected network serves as the basis of 
relevant knowledge and helps form a mental map that can be applied to this problem.15,16 This 
process repeated many times over a long period leads to wisdom, or the ability to apply complex 
problem solving to any problem. The process of becoming an expert is unique for everyone, but 
rarely is it quick and easy for anyone. In fact, the commonly accepted figure is 10,000 hours of 
practice to achieve true mastery of a subject.14  The students at the junior level in this course had 
had perhaps a few dozen hours of truly productive hands-on programming time. Even by 
graduation, their experience hardly reaches into the hundreds. While this work does not give 
students an appreciable number of hours, it does arguably make better use of those hours.

3.2  Scientific method

The basis here of modeling, simulation, visualization, and analysis for software testing and 
evaluation is the scientific method. Students theoretically have a relatively broad background in 
science already because they are required to take several introductory science courses. However, 
far too many fail to grasp the underlying philosophy of science because they fixate on 
memorizing endless esoteric details of rocks, for example.30 They acquire low-level data, not 
higher-level information, knowledge, or wisdom. Consistent, long-term anecdotal evidence by 
the author strongly suggests that almost none realize that this philosophy extends to computer 
science (despite its name), and how to utilize it to their advantage.9 To this end, this system, and 
its use as a pedagogical tool, employs the scientific method at its core. It is an environment for 
posing questions, setting up and running meaningful experiments to collect supporting data, 
combining and putting them into an intuitive form of information, analyzing this form with 
respect to the questions, reporting the results, and acquiring knowledge and experience 
throughout the process. It is an iterative methodology. If the results are not good (e.g., a test 
fails), then it provides a mechanism for assessing where the problems lie, attempting to correct 
them appropriately, and rerunning the same experiments until they are eliminated. If the results 
are good, the same mechanism allows them to be refined and improved.28

This methodology requires two important pieces: (1) critical-thinking ability to pose informed, 
probing questions, conduct revealing experiments, and make sense of the results, and (2) an 
environment for managing these experiments in a reproducible, controlled, and disciplined 
manner. The basis of a controlled experiment is to run an initial simulation to collect baseline 
results for subsequent comparison. Based on the actual results compared to the expected 
(desired) results, perturb one and only one parameter of the simulation, rerun the same 
experiment, and assess any differences in the results, which can be directly attributed to the 
change in the parameter. This process establishes cause-and-effect relationships that force 
students to understand what they are doing and why.27 Too often their testing “strategy” is a 
haphazard ad hoc approach of trying whatever comes to mind — especially if it is easy — and 
believing it would be somehow representative of the overall performance of the entire system. 
The high frequency of incorrect solutions throughout all their programming courses 
demonstrates a deficiency in testing skills, which can be attributed arguably to their lack of a true
testing methodology.
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4  Problem domain

The problem domain defines the real-world counterpart that this system models and then 
simulates. Although the complete, functional solution that the students would ultimately work on
already existed (but was not available to them), they still had to go through the inception-phase 
exercise of developing requirements for what they would want in a solution. Section 6 goes 
further into these details, which reflect an overall lack of critical thinking.13 In their storyboards, 
which described how the user would carry out various actions, there were many gaps that would 
have prevented meaningful use. For example, with no capability to move an airplane off the 
runway after landing, subsequent landings would be impossible.

In an agent-based simulation, the agents are the most important element to model. They are 
defined primarily in terms of three aspects: data (what they are), control (what they can do), and 
behavior (what they actually do or have done to them in an operational context). The students’ 
decomposition was riddled with inconsistencies, such as control operating on incompatible data 
and behavior relying on nonexistent control. It also reflected an overall lack of understanding of 
the problem domain itself because many did not take the background research seriously.17 In 
many cases, students supplied their own (incorrect) knowledge from movies and video games. 
The research component of this project was explicitly meant to prevent such shortcuts, but some 
students nevertheless thought otherwise. Trying to manage the behavior of students who think 
they know better or have found shortcuts is challenging. Even showing them how their 
inappropriate choices would fail was often met with a “whatever, who cares, it doesn’t really 
matter anyway” attitude.

4.1  Primary agents

The primary agents are the ones that move around in the world and interact with each other with 
respect to a goal. They are standalone and usually under direct control of the user through 
behavioral commands (see Section 5.3.4). (User and student are actually the same person here, 
but they play two different roles as the customer and developer, respectively.) Any number of 
primary agents can be managed in a simulation, but for logistical reasons, the students usually 
focused on one of each:

• A carrier contains one or more fighters. It is a highly configurable component that allows the 
user to define how many primary and secondary agents it contains, where they are, and how 
they behave.

• A fighter is a notional aircraft that is based on a carrier, can take off, fly around, refuel, and 
land. It can start on a carrier or in the air. It is unarmed and (much to some students’ 
disappointment) does not engage in any combat actions.

• A tanker is a notional aircraft of unknown origin. It starts in the air and remains there 
throughout the entire simulation. Its role is to refuel fighters. It cannot land on a carrier.

4.2  Secondary agents

The secondary agents facilitate the primary ones in performing their actions. They are always 
compositionally part of a primary agent, never standalone. Some parts of the storyboard are 
automatic, but most require the user to issue multiple commands for configuration and execution.
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The code-level solutions to the parts that the students had to implement needed to recognize and 
enforce the dependencies. Cleanly managing such dynamic coupling where agents connect and 
disconnect under different conditions in different contexts was challenging because the students 
were not allowed to hardcode specific combinations. Their solutions were supposed to employ 
disciplined object-oriented programming (OOP) to accommodate scalability and extensibility by 
working with both current and future implementations of agents, like other kinds of fighters. The 
instanceof operator and getClass() comparisons were strictly prohibited. Casting was 
strongly discouraged and had to be explained and justified. Far too many students force their 
programs to function in a brittle way instead of letting the OOP do its job for them.20 In other 
words, they invest more effort into a larger solution that actually performs worse.

The typical carrier operations for takeoff are as follows. The secondary agents are initially in 
italics. Steps with an asterisk are automatic; otherwise, the user must explicitly enter a command.

1. The fighter starts in its parking spot.*
2. It taxis to the start of the catapult via a taxiway.
3. It connects to the catapult.
4. The blast barrier raises behind it.
5. It throttles up to maximum power.
6. The catapult rapidly drags it to the end of the runway.
7. The barrier lowers.
8. The catapult returns to the start position.*

Once airborne the fighter then automatically veers to the left 30 degrees to avoid being hit by the 
carrier should it crash. After this point, it is under user control.

The typical refueling operations are:

1. The fighter rendezvous with the tanker from behind.
2. The tanker extends the female refueling boom.
3. The fighter extends the male refueling boom.
4. If the booms are reasonably close, fuel transfer starts. The resolution of the viewer and the 

precision of the flight commands are inadequate for fine adjustments, so this part is flexible.
5. The fuel transfer proceeds at the specified rate. If either boom retracts or moves too far from 

the other, the transfer aborts.*
6. The tanker boom retracts.
7. The fighter boom retracts.

The typical landing-approach operations are:

1. The fighter flies into position to follow the carrier.
2. The optical landing system (OLS) transmitter on the carrier projects a landing path.
3. If the OLS receiver on the fighter aligns with the path, it is ready to land.*
4. The tailhook extends.
5. The fighter flies the approach.*
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The typical touchdown operations are:

1. The arresting wire captures the tailhook and brings the fighter to a stop. The fighter will 
occasionally miss the wire at random and automatically retract the tailhook and take off.*

2. After a successful landing, the fighter disconnects from the wire and taxis to its parking spot.
3. The wire returns to its original position.*

Alternatively, this sequence can happen:

1. The arresting wire is disabled.
2. The arresting net raises.
3. The fighter stops at the net.*
4. Further landing operations cease because there is no way to unfoul the net.

5  Solution domain

The solution domain defines the mapping from the problem domain to the code-level 
implementation details that make it happen. Mapping top-down from the abstract to the concrete 
is a multistage process involving many parts. 

5.1  Architecture

The architecture provides the unified framework in which all levels of the implementation details
reside in an organized, disciplined manner. Students are not accustomed to operating within an 
architecture or reading its documentation in the form of a Javadoc HTML application 
programming interface (API) because the toy problems in their earlier courses are too small and 
standalone to justify one.22 This course specifically chooses a large, complex project with a rich 
set of independent and interdependent facets for a strong breadth and depth of exposure to real-
world thinking and doing.

The model-view-controller (MVC) architecture consists of 334 classes in Java 7. All directly 
relevant code is based on what students already know from their earlier courses. The three-
dimensional visualizer (see Section 5.4.4) is a separate plug-in application that uses JOGL (Java 
OpenGL). Graphics programming is neither a prerequisite nor an emphasis in this course, so this 
part remains a magic black box, which is indeed the intent of MVC: it manages the separation of 
concerns to delegate responsibility appropriately and keep the discrete pieces from becoming 
hopelessly coupled and interdependent. It also accommodates dynamic plug-and-play addition, 
removal, or swapping of components. The view is an especially flexible example.

5.2  Model

As Section 4 introduced, agents dynamically model the real-world components that the user 
builds and manipulates by proxy in the virtual world of a simulation. The primary and secondary 
agents consist of the following unified approaches to implementing their many different actions 
with the minimum amount of different solutions. The intent is to discourage students from 
perceiving every problem as unique and then creating a unique solution. Such an undisciplined 
approach results in a large, unmanageable program.15,16,20
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5.2.1  Datatypes

Extensive anecdotal evidence has consistently shown that students do not manage their data well.
From their low-level assignments in earlier courses, they are familiar with using Java primitives 
like int and double and corresponding arithmetic operators. From the higher-level project 
perspective here, however, this approach leads to unsafe code, or at best, unnecessarily complex 
code. Primitives maintain only the numerical component to data. The context and units and 
appropriate operations, etc. must be understood and enforced by the programmer. For example, 
an addition operation on arguments in meters and kilometers or even meters and kilograms still 
produces the correct sum, but the resultant unit is meaningless. Enforcing type safety and usage 
rules is left to the students, who are notorious for assuming everything is always correct and 
doing nothing defensive. To mitigate this problem, this system provides a wealth of predefined 
concrete datatypes in Figure 3 for almost every low-level representation. Each contains its own 
error checking, appropriate operations, conversions, convenience methods, etc.

Acceleration, Altitude, AngleMath, AngleNavigational, Attitude, AttitudePitch, 
AttitudeRoll, AttitudeYaw, Azimuth, Bearing, Callsign, CoordCartesianAbsolute, 
CoordCartesianRelative, CoordPolarMathematical, CoordPolarNavigational, 
CoordPolarNavigational3D, CoordWorld, CoordWorld3D, Course, Distance, Drag, 
Elevation, Flow, Heading, Identifier, Interval, Latitude, Lift, Longitude, Percent, 
Power, Range, Rate, Speed, Time, Thrust, Track, Vector, Velocity, Weight

Figure 3: Datatypes

One odd hurdle that many students consistently encounter is not truly understanding how to 
formulate a mathematical or logical statement to solve a small problem. Although they have all 
taken many math courses, by and large they do not know how to use math; i.e., data without 
information or knowledge. Similarly, even after all the earlier programming courses, they do not 
really know how to use programming to solve problems. The combination of the two — a 
program doing math — clearly demonstrates a lack of ability to make use of existing skills in a 
new context. For example, distance defined as rate times time is an algebraic expression: given 
any two knowns, the unknown can be determined. For some reason, this basic mathematical 
thought eludes many of them and results in unbelievably complex open-form solutions with 
nested conditionals, loops, and static global variables. It seems that the freedom to throw more 
code at a problem interferes with their ability to focus on it.7 These datatypes, while still not 
preventing wasted time from randomly trying potential solutions, at least enforces that 
meaningless ones do not compile or run. Despite this course being at the advanced junior level, 
many students still struggle with the compiler. For some, once the code compiles, they move on 
because this achievement evidently implies correctness. One student summed up his approach as 
“I kept throwing more code at the compiler until it shut up.”

The second advantage to these datatypes is their functional nature: any operation on one 
produces a new copy of it; e.g., time1 plus time2 produces time3.23 Datatypes are immutable, 
which eliminates any possible issues with improper coupling. Students commonly fail to check 
whether their data are within acceptable bounds when passed into a method. Almost without 
exception, they do nothing to prevent the data from being changed as a side effect. Such a case is
a design disconnect where data can be changed without corresponding control. For example, 
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passing an ArrayList into an object that is to maintain it means that the owner could still 
change it without the object’s knowledge or approval later. Likewise, the object could change it 
on the owner. Such unforeseen interactions at a distance are incredibly difficult to diagnose. 
Immutable datatypes are immune.

The use of objects instead of primitives does result in more intensive memory management from 
the Java Virtual Machine, which negatively affects performance. However, safety is 
hierarchically more important than efficiency (correctness being the highest priority). While 
performance is not a major consideration here, the architecture actually does manage the copy-
on-write semantics through the Flyweight, Prototype, and Factory design patterns, which serve 
as a practical example of these concepts from the prerequisite course.10 It also shows how the 
architecture quietly plays a role behind the scenes in managing the system so that the students 
can focus on their own parts. Explicit memory management, as in C and C++, consumes an 
inordinate amount of their time and invariably leads to obscure and frustrating errors.

5.2.2  Effectors

Similar to datatypes, but up a level of abstraction, are effectors, which maintain a dynamic state 
between two static limits. All secondary agents that perform movement use them. They serve as 
yet another example of orthogonal design because one implementation manages any type of 
movement. An effector is defined (through Java generics) in terms of two static datatypes for the 
limits and a dynamic interpolated state between them as a percent. For example, this approach 
captures the linear motion of the catapult from the start to the end position and the rotational 
motion of the blast barrier as it tilts from its stowed horizontal angle to its upright vertical angle. 
Effectors in combination can easily produce complex realistic movement. For example, as the 
heading effector (for direction of flight) of an airplane changes from the current to the desired 
angle and the movement effector changes the position, an airplane follows a smooth curve 
instead of exhibiting an instantaneous sharp turn as would normally occur if the heading were 
changed at once with a setHeading(Angle) method. Students are used to designing classes 
with setter methods that act instantaneously. Most have no concept of continuous change from 
one state to another over time.

Effectors also accommodate acceleration and deceleration for very realistic movement. 
Especially important for fidelity at the physical level is consistent mechanics. For example, 
changing direction requires the movement to decelerate to zero speed before accelerating in the 
opposite direction. A typical student solution would negate the speed and instantaneously change 
direction. In terms of rate = distance / time, this change corresponds to undefined acceleration 
(effectively infinite) from dividing by zero. Neither math nor engineering nor the universe itself 
permits such a solution, but in code students find it trivially easy and do not see the underlying 
problem. Their typical workaround to a divide-by-zero exception is to set the result to some 
magic number and keep going. This action serves merely as a band-aid that masks the symptoms 
of the undesirable behavior, but it does nothing to address the underlying causes, which are likely
more in the thinking than in the doing. Moreover, it instills a belief in students that correcting 
problems can be a quick and even easy process that requires little thought. It is like blindly 
selecting the (correct) suggestion from a spell checker without considering whether the new 
word fits syntactically, grammatically, and stylistically within the larger context of the existing 
sentence. This behavior quickly leads to a vicious circle of brittle, ad hoc corrections that lead to 
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more problems that subsequently lead to more such corrections. A tenet of debugging is that a 
correction should both correct the known problem and not introduce any new ones. Students 
invariably neglect the latter part because it involves significant effort to rerun existing tests to 
verify that nothing previously working is now broken. Without the self-discipline to maintain 
such regression tests and actually execute them, debugging turns into herding cats.

5.2.3  Communication buses

Students are accustomed to explicitly telling their programs what to do. Indeed, the imperative 
programming paradigm by name implies commanding. They tend to take this approach too far, 
however, by throwing excessive code at a problem because this option is readily available. To 
counter this undisciplined behavior, agents and the components that compose them communicate
over virtual networks of communication buses based on the Observer, Command, and Interpreter
design patterns.10 The protocols are well defined and not subject to indiscriminate hacking. 
Students need to understand how to behave responsibly within a framework because they will 
not have the option of circumventing it in today’s typical client-server architectures or distributed
systems, for example. In fact, they encounter similar problems in their course on operating 
systems, but most fail to see the connection that the architecture here is indeed playing the same 
role for this project as an operating system does for the entire computer. This type of project 
provides a valuable opportunity to make explicit connections (information and knowledge) 
between dots (data) that they already know.

Communication is based on requests and responses. Only components that legitimately belong 
on the network and agree to behave can participate. Requests are not demands, and students need
to realize that they are no longer fully in control. The typical handshaking process involves 
submitting a request, getting an immediate confirmation, and then later getting a notification that 
the request was serviced. The bus protocols support multiple asynchronous message types, which
map onto any action that effectors can perform:

• ACCEPTED_SERVICING_IMMEDIATE: the receiving component serviced the request 
immediately and returned the result (if any) with this response.

• ACCEPTED_SERVICING_CALLBACK: the component is servicing the request and will return 
the result when it is completed.

• ACCEPTED_PENDING: the component is busy and will queue the request for servicing.
• REJECTED_INVALID: the component cannot service the request because it is invalid.
• REJECTED_UNABLE: the component would ordinarily be able to service the request but cannot

for some reason.
• IGNORED: the component silently ignored the request because it is irrelevant.

Requests can be sent to individual agents (by identifier), groups of agents (like all fighters), or all
agents. An added benefit of this unified communication system is that the logging (see Section 
5.4.1) keeps track of all traffic, which makes debugging, testing, evaluation, analysis, and 
reporting much easier.
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5.2.4  Glyphs

Primary agents consist of secondary agents. Fighters and tankers have a fixed set, but the carrier 
is very flexible in its definition. Indeed, this flexibility extends far beyond what the creational 
and structural commands in Sections 5.3.2 and 5.3.3 can reasonably specify. Instead, this process
involves loading and interpreting a file that defines the shape of the carrier and where the 
catapults and arresting wires, etc. are. The students had to build this component. They were not 
accustomed to using persistent external data structures for such a purpose because normally they 
hardcode definitions. This experience, which reflects the way real-world programs typically 
operate, was enlightening. 

This experience was also a good example of using wisdom to achieve a quality result with less 
effort. Specifically, the author showed the example in Figure 4. The top two perspectives are a 
clipart aircraft carrier scaled in such a way that the pixel coordinates correspond to the 
coordinate system in feet in the project. As such, any graphics editor serves as a quasi-“carrier 
editor” that allows students to place and connect reference dots. The process of translating these 
coordinates into the file representation is manual by reading them off the screen and typing them 
in to produce the bottom perspective, so it is not a convenient long-term solution or appropriate 
for the end user. But as a quick-and-dirty development tool, such tricks of the trade go a long 
way. Indeed, in their initial requirements, many students had indicated the need to build their 
own editor.

Figure 4: Carrier Definition11

5.3  Controller

In this model-view-controller architecture, the controller plays two roles: (1) interpret commands
from the user, and (2) manage execution of the simulation. The following subsections summarize
the commands. The management aspect is similar to that in any large software system: the 
architecture is basically a problem-specific operating system. In this case, it plays the especially 
important role of ensuring repeatable execution for controlled experiments. Contrary to 
expectation, Java threading is not a viable option because of its nondeterministic behavior. This 
example was yet another eye-opening experience for the students because in their initial 
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decomposition of the project, every single one of them had chosen threading for the 
simultaneous multiagent aspects. This misconception reflects a general understanding of 
concepts (like concurrency) without a deeper understanding of their implications (like how 
concurrency needs to function with respect to repeatability). This experience serves as the 
opposite example from Section 5.2.4: instead of failing to make connections, students 
overgeneralized to make otherwise correct connections in contexts where they were not 
appropriate. In the DIKW hierarchy, this error falls under wisdom, which people acquire through 
both good and bad experiences. The teaching philosophy coupled with this project provides 
many opportunities that naturally lead to valuable discussions such as this one. Despite some 
students believing that the instructor “sets them up for failure” this way, the consequences of 
their inappropriate decisions and actions are minor — just enough to be memorable without 
actually being detrimental to their grades. To reiterate from the introduction, the overarching 
philosophy is to push students outside of their comfort zone by challenging them to go one or 
more steps further from what (they believe) they already know and can do. Isolating themselves 
within their safe zone may feel comforting, but it is not where true learning actually happens.2

5.3.1  Commands

For simplicity and flexibility, all input (except mouse actions in the views) is through text 
commands at a command line. In the model-view-controller architecture, this component could 
be replaced with something more convenient in the future, but it aligned well with the students’ 
skills here. Each command is a single case-insensitive statement based on a regular grammar. 
The author’s solution used JavaCC for the parser for personal convenience, but the students had 
to build theirs using standard Java to exercise their own skills. It is based on the Interpreter and 
Command design patterns to map user input to the datatypes and the API of the architecture.10 
All commands use the fields in Table 1 for their specifics.

Table 1: Field Definitions
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A command-based approach has significant advantages over the direct approach that students 
know at this point in the curriculum. The first part of the process, parsing, is identical in both 
cases. For example, for the command DO id SET SPEED speed , the parser needs to identify 
the command (see Section 5.3.4) and then extract the contents of the fields for the identifier of 
the agent and the speed to assign. It is the execution part that differs. Instead of calling a method 
like setSpeed(id,speed), the students must instantiate a command object like 
CommandSetSpeed with these values. The final step is to submit the command to the 
architecture to schedule its execution. At this point, the process is out of the student’s hands, 
which many indicated was awkward (even “weird”) because they had no control after this point. 
However, this handoff is precisely the intent of an architecture-based system because it forces 
them to make their choices wisely. They must truly understand what they are asking the system 
to do and how because there is no recourse to hack the effects if they are not what the students 
expected.

Besides this direct pedagogical value, the students had the opportunity to see a much richer use 
of the Command pattern than in the Design Patterns course itself. In particular, with this one 
relatively small design decision, the solution went from addressing a single problem to 
accommodating many of the common features expected in today’s software; e.g., undo and redo 
functionality, and macro and scripting support. It also connected nicely with the required course 
on graphical user interfaces, which could provide a more attractive, user-friendly environment 
for this system via the Facade pattern.10 The intended purpose here, however, was to have a 
convenient mechanism for running tests, which Section 6.4 covers in detail.

5.3.2  Creational commands

Creational commands build the primary and secondary agents, and to some degree connect them.
The process is similar to object-oriented programming, where a class (a template) defines the 
blueprint for an object (an agent). Many students do not have a solid understanding of the 
programmatic difference between declaring something (int i) and defining it (i=1), or when 
these two operations occur together (int i=1). This approach presented the opportunity to 
explain basic compiler theory and object management, which they would otherwise never 
experience in the curriculum.

5.3.2.1  Define

The 15 define commands build the templates, which then serve as the available stock for 
subsequently creating any number of agents. These commands vary widely depending on the 
nature of the component. For example, the following defines template tid for a catapult with its 
origin at origin, azimuth azimuth, length distance, acceleration rate acceleration, 
weight limit weight for any fighter connected to it, terminal launch speed speed, and reset time
time, which specifies how long it takes to become available again for the next launch:

DEFINE CATAPULT tid ORIGIN origin AZIMUTH azimuth LENGTH distance 
ACCELERATION acceleration LIMIT WEIGHT weight SPEED speed RESET time

Similarly, the commands for primary agents specify basically a class of real-world entities, like a
Nimitz-class carrier or a long-range refueling tanker:
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DEFINE CARRIER tid SPEED MAX speed1 DELTA INCREASE speed2 DECREASE speed3 
TURN azimuth LAYOUT string

Defines template tid for a carrier with maximum speed speed1, acceleration rate speed2, 
deceleration rate speed3, turning rate azimuth, and layout filename string.

DEFINE TANKER tid SPEED MIN speed1 MAX speed2 DELTA INCREASE speed3 
DECREASE speed4 TURN azimuth CLIMB altitude1 DESCENT altitude2 TANK weight

Defines template tid for a tanker with minimum speed speed1, maximum speed speed2, 
acceleration rate speed3, deceleration rate speed4, turning rate azimuth, climb rate 
altitude1, descent rate altitude2, and fuel-tank quantity weight.

The fighter adds another level of compiler theory by accommodating formal parameters (the 
prefixes with colons) that the CREATE FIGHTER command can override later:

DEFINE FIGHTER tid SPEED MIN speedmin:speed1 MAX speedmax:speed2 DELTA 
INCREASE dspeedinc:speed3 DECREASE dspeeddec:speed4 TURN dturn:azimuth 
CLIMB dclimb:altitude1 DESCENT ddescent:altitude2 EMPTY WEIGHT 
weight:weight1 FUEL INITIAL fuelinit:weight2 DELTA dfuel:weight3

Defines template tid for a fighter with minimum speed speed1, maximum speed speed2, 
acceleration rate speed3, deceleration rate speed4, turning rate azimuth, climb rate 
altitude1, descent rate altitude2, empty aircraft weight weight1, fuel-tank quantity 
weight2, and fuel burn rate weight3 per knot of speed.

5.3.2.2  Create

The create commands combine the templates and specify further details to build the agents. The 
primary agents are the most complex because they contain secondary agents:

CREATE CARRIER aid1 FROM tid WITH CATAPULT aid2 BARRIER aid3 TRAP aid4 OLS 
aid5 AT COORDINATES coordinates HEADING course SPEED speed

Creates carrier aid1 from carrier template tid with catapult aid2, barrier aid3, trap aid4, 
and optical-landing-system transmitter aid5 at coordinates coordinates with heading 
course and speed speed.

CREATE TANKER aid1 FROM tid WITH BOOM aid2 AT COORDINATES coordinates 
ALTITUDE altitude HEADING course SPEED speed

Creates tanker aid1 from tanker template tid and female boom aid2 in the air at 
coordinates coordinates and altitude altitude with heading course and speed speed.

CREATE FIGHTER aid1 FROM tid WITH OLS aid2 BOOM aid3 TAILHOOK aid4 [TANKS 
aidn+] [OVERRIDING (aidm.argname WITH string)+] [AT COORDINATES coordinates
ALTITUDE altitude HEADING course SPEED speed]

Creates fighter aid1 from fighter template tid, optical-landing-system receiver aid2, male 
boom aid3, tailhook aid4, and optional auxiliary fuel tanks aidn. The optional initial 
airborne state dictates that the fighter must start in the air at coordinates coordinates and 
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altitude altitude with heading course and speed speed. The value of any named 
argument argname in aidm can be overridden with string.

The nine commands for secondary agents are simpler because they have no configuration ar-
guments. For example, the following creates catapult agent aid from catapult template tid.

CREATE CATAPULT aid FROM tid

5.3.3  Structural commands

The define and create commands are hybrid creational and structural commands for building 
agents. The only dedicated structural commands are to add these agents to the world and prepare 
it for usage.

POPULATE CARRIER aid1 WITH FIGHTER[S] aidn+

Populates carrier agent aid1 with fighter agents aidn. Only fighters created without an 
initial airborne state may be added.

POPULATE WORLD WITH aidn+

Populates the world with fighter, tanker, and carrier agents aidn.

COMMIT

Locks the membership in the world. No further creational or structural commands are 
allowed. This step permits late validation checks and optimizations.

5.3.4  Behavioral commands

The 23 behavioral commands operate on the agents to perform meaningful actions, for example:

DO aid BARRIER UP | DOWN

Instructs carrier aid to raise or lower its blast barrier.

DO aid CATAPULT LAUNCH WITH SPEED speed

Instructs carrier aid to launch its catapult at speed speed with the fighter attached earlier.

DO aid SET SPEED speed

Instructs fighter, tanker, or carrier aid to assume speed knots.

DO aid SET ALTITUDE altitude

Instructs fighter or tanker aid to assume altitude feet.

DO aid SET HEADING course [LEFT | RIGHT]

Instructs fighter, tanker, or carrier aid to assume heading course degrees in the direction 
indicated. If no direction is indicated, choose the shortest turning distance.
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The world is itself considered an agent and accepts commands for wind conditions (direction and
speed) that add some interesting aspects to the simulation for more complex analysis.

Seven behavioral commands interact with agents in ways that are not acceptable in the real 
world. Their role is to set up the initial conditions in an experiment before it starts generating real
data. For example, instead of taking off and flying to a location for a particular test, this 
command allows a fighter to start there exactly as specified:

@DO aid FORCE COORDINATES coordinates [ALTITUDE altitude] HEADING course 
SPEED speed

Forces fighter, tanker, or carrier aid to instantaneously assume coordinates coordinates, 
heading course, speed speed, and optionally altitude altitude.

5.3.5  Metacommands

The 10 metacommands interact with the architecture and the views to manage their execution, 
for example:

@CLOCK rate

Sets the system clock speed to rate ticks per second.

@CLOCK PAUSE | RESUME | UPDATE

Instructs the simulation to pause or resume the system clock, respectively, or to force it to 
advance a tick when the clock is paused.

@RUN string

Loads a text file with commands, one per line, and executes them in order.

@WAIT rate

Waits rate ticks before executing the next behavioral command.

@CREATE VIEW wid ASPECT FRONT | SIDE | TOP AT COORDINATES coordinates

Creates a new window wid with a front, side, or top perspective centered on coordinates 
coordinates.

@SYNC VIEW wid ON aid

Locks window wid onto agent aid and keeps the agent centered at all times.

5.4  View

In this model-view-controller architecture, the view plays the output role in many ways beyond 
just graphics. It presents results in terms of data and information, which in combination with 
students’ understanding of their experiments leads to knowledge.
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5.4.1  Log views

As the architecture manages all activities on communication buses, it maintains a rich record of 
what happened in a simulation. The lowest level provides the most details by exporting directly 
to an Excel spreadsheet, as in Figure 5.

Figure 5: Excel Bus Log View

Likewise, all components export their copious state data in a uniform format, as in Figure 6.

Figure 6: Excel State Log View

5.4.2  Graph view

The text form is highly informative, but not remotely intuitive. However, with strategic selection 
of its fields, much of its data easily transforms into information through basic Excel graphs. 
Figure 7 shows an example of evaluating the performance characteristics of a fighter through a 
variety of maneuvers.
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Figure 7: Excel Graph View

5.4.3  Two-dimensional view

The Excel views are static because they present the results after a simulation is complete. The 
dynamic view is built into the architecture with basic Java Swing two-dimensional graphics. It 
provides a real-time resizable view with pan and zoom capabilities, among other useful features 
like metadata on the glyphs for call sign and speed. Figure 8 shows an example of top, side, and 
front perspectives.

Figure 8: Two-Dimensional Views

5.4.4  Three-dimensional view

The three-dimensional view is also a dynamic, real-time perspective. It is an external tool that 
has been used in various forms in many of the author’s other pedagogical applications, research 
projects, and industry work.29 It is not specifically designed for this work, so it does not 
represent many of the nuances like tailhooks and refueling booms. However, for interactive 
three-dimensional visualization of the big picture of a simulation, it provides a wealth of intuitive
information, as in Figure 9. Gnuplot is also supported as an export format for three-dimensional 
static mathematical analysis.
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Figure 9: Three-Dimensional Views

6  Methodology

The discussion so far has included numerous anecdotal examples of the methodology in 
particular contexts. This section threads the entire process into a single, coherent summary. 
Although each task had an associated point value, quantitative analysis would be less meaningful
than qualitative observations because this systems-thinking approach to software engineering is 
very holistic. The following organization mirrors the software development process in general, 
not necessarily the chronological order of the tasks. Some had overlapping parts and followups 
depending on the circumstances, for example.

6.1  Analysis

The intent of the analysis tasks was to establish a basis for decisions in the later tasks. The 
students did them individually because in the typical team environment, stronger students tend to
do the majority of the work and consequently learn more, while weaker students hide and get 
even weaker, but all generally earn the same grade. While these tasks did not prevent this 
distribution, they at least exposed the performance differences.
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• Background Survey: 27 questions about themselves, their career interests, perceived strengths 
and weaknesses, familiarity with the problem domain, etc. (One student had served on an 
aircraft carrier and clearly had a huge advantage in understanding how one operates. Others 
had seen Top Gun, which was arguably a liability.)

• Notion of Systems: 10 questions about the general features of systems of wildly diverse kinds 
(e.g., computer, weather, geological) to establish a basis for discussing systems thinking.

• Project Grounding and Conceptualization: 66 project-related terms with an example of their 
data, control, and behavior elements to make sure everyone had a common understanding.

• Project SRS Elicitation: a hypothetical software requirements specification (SRS) based on 
representative examples of what the students would like to see in the project if they were the 
customer. It organized user stories, use cases, W5H questions, requirements, and specifications
into a cross-referenced document resembling an outline.

The outcomes were overwhelmingly positive, with the most deductions coming from incomplete 
or nonsubmitted work. Negative commentary revolved around the perception of analysis being 
“busy work” unrelated to the project. (It would be interesting to assess why students think the 
instructor would feel a need to assign something of no value just to waste time.) Unsurprisingly, 
some teams with these students later commented to the effect that “they didn’t seem to know 
what was going on with even the most basics parts of the project.”

6.2  Design

The design tasks could arguably qualify as analysis because the students did not actually make 
anything themselves; instead, they considered the instructor’s solution as the foundation. In other
words, this process involved making sense of an existing design with the understanding that they 
would have been tasked to produce something similar themselves if time and workload had 
permitted it. This backwards approach accommodated exposing students to a problem larger than
they could had accomplished themselves. For the same reason as in the analysis tasks, they were 
an individual effort. All three were related to a critical subset of the architecture that the students 
would be extending themselves or working with next.

• Project Static Architectural Analysis: from the provided Javadoc documentation, draw the 
class diagrams, including inheritance and intercommunication.

• Project Dynamic Architectural Analysis: from the provided source code, one-step through a 
single representative operation to understand how the architecture does its job, and how good 
object-oriented programming functions.

• Project Behavioral Architectural Analysis: propose how to add new functionality to the code, 
but do not actually do it. This thought exercise forced the students to think about problem 
solving without having their familiar trial-and-error coding environment.

6.3  Implementation

The implementation tasks involved two facets. The first was an individual task as a proof of 
concept early in the development process. After the Project Grounding and Conceptualization 
task, the students were getting antsy to write code. The Project Proof-of-Concept Support 
Library provided the opportunity to write a prototype solution for a simple top-perspective map 
viewer that displayed a grid for latitude and longitude and a circle (representing any agent) at a 
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particular position. The programmatic details were for the most part a basic Hello World graphics
program available anywhere online. The true challenge was in reading, understanding, and 
properly acting on the simple requirements and specifications in English. The pretask gave them 
the opportunity to pose any questions and have them answered or clarified. Most questions 
turned out to be procedural, like how many points was it worth. A significant number of 
responses indicated that “everything was clear, this should be easy.” The results were very 
telling: every solution had longitude going in the wrong direction on the horizontal axis because 
x normally increases to the right in the familiar math world. In the western hemisphere of the real
world, however, the opposite is true. The first Google Images hit on “latitude and longitude in 
the US” would have prevented this huge error, but nobody took the initiative because they did 
not even think that their perception of reality could differ from actual reality. Despite this eye-
opening experience, a majority considered the exercise “unfair” because the instructor “should 
have told them how to do it correctly.” Somehow the point of the exercise — that they are 
responsible for their own decisions, and never assume anything — was lost. Nevertheless, most 
did pay more attention from that point onward.

The second facet was team-based. First, the students had to build the glyph loader in Section 
5.2.4. The solution entailed a single class that used basic file input and output from the 
introductory programming courses, so again, the technical details were not the challenge. This 
time, however, they generally used the opportunity to pose questions wisely and consequently 
produced good solutions.

Finally, they had to build the parser for a subset of the commands in Section 5.3.1. Again, the 
solution entailed basic string processing from the earlier courses. The intent of this course is not 
to introduce anything substantially new, but to make better use of what the students already 
know. Unlike the loader, however, there was significantly more code involved, which required 
better planning on how to distribute the effort among the three team members and integrate their 
contributions. The use of GitHub to manage this process is outside the scope of this paper, but it 
is worth mentioning as part of the overall software development process that the students 
experienced. As with almost everything else here, each new aspect introduced its own learning 
curve, which forced students to learn to cope. Some managed fine on their own, some required 
assistance, and some simply complained. This distribution is typical throughout all courses. No 
approach satisfies everyone, but this one tries to strike a practical balance.

6.4  Testing and evaluation

Determining  correctness  (testing)  and  evaluating  performance  (optimization)  require  three
critical components: (1) the expected results, (2) the actual results, and (3) a meaningful way to
compare them. Students often lack one, two, or even all three, but still think that they are testing.
While the act of acquiring such data is necessary, alone it is not sufficient to make sense of the
data. Students must have a firm understanding of the subject matter and its context within the
problem domain. The pedagogical approach here provides endless opportunities to ground the
programmatic exercises to reality in order to help students develop and improve their critical-
thinking skills in multidisciplinary computer science.

To this end, the students had to conduct 42 experiments to demonstrate representative aspects of
the system; e.g., taking off, refueling, and landing. For consistency, since not every team’s own
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solution was correct or functioned identically, they used the author’s. Each experiment addressed
eight requirements, where 1–4 related to planning, 5–6 to execution, and 7–8 to presenting the
results:

1. The rationale behind the test; i.e., what it was testing and why it mattered.
2. A general English description of the initial conditions.
3. The commands for (2).
4. An English narrative of the expected results.
5. The actual results with at least one graph showing the most representative view of the states.
6. A snippet of the actual results from the log file with a supporting explanation, including 

statistics, metrics, and graphs, as appropriate.
7. A discussion on how the actual results agreed with the expected results, or if they disagreed, a 

hypothesis on why.
8. A suggestion for how to extend this test to address related aspects of potential interest.

The text-based input mode was very convenient because students could store each test in a 
separate script file, as in Figure 10, and paste it into the report for requirement (3). Furthermore, 
strategic use of the @RUN command allowed scripts to call other scripts, which drastically 
reduced the amount of repeated code to set up the parts in common. Cross-references were 
permitted in the report to reduce duplication. This exercise demonstrated that extensive, 
meaningful testing and reporting need not be onerous. In fact, a few found it to be a lot of fun.

// @run '/home/dtappan/carrier/script6.txt'

// CARRIER
define carrier tcarrier1 speed max 10 delta increase 20 decrease 30 turn 40 layout
  '/home/dtappan/carrier/coordinates.csv'
define catapult tcatapult1 origin +4.4:-141 azimuth 0 length 400 acceleration 20 
  limit weight 50 speed 45 reset 20
define barrier tbarrier1 origin +2.4:-119.5 azimuth 0 width 60 time 50
define trap ttrap1 origin -14.9:+256.3 azimuth -8.5 width 400 limit weight 50 
  speed 35 miss 30
define ols_xmt tolsxmt1 origin -14.9:+261.3 azimuth 172 elevation 5 range 10000 
diameter 500 

create catapult acatapult1 from tcatapult1
create barrier abarrier1 from tbarrier1
create trap atrap1 from ttrap1
create ols_xmt aols_xmt1 from tolsxmt1
create carrier acarrier1 from tcarrier1 with catapult acatapult1 barrier 
  abarrier1 trap atrap1 ols aols_xmt1 at coordinates 49*39'00"/117*26'00" 
  heading 235 speed 0

populate world with acarrier1

do acarrier1 barrier up
do acarrier1 barrier down

Figure 10: Test script

The majority of the tests evaluated correctness — that individual parts of the solution functioned 
as specified — which corresponds to software verification and validation. This process appeared 
to be straightforward, but the author intentionally injected several obscure bugs into the solution. 
Many students, accustomed to expecting the solution to be correct, failed to notice when it was 
not. Such complacency is dangerous in testing.4 The following is a team’s complete example:
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Test: Heading Change Left

1. This test is to verify the fighter’s ability to gradually adjust its heading, to see how
quickly the fighter changes heading and its ability to carry out certain directions of
change (i.e., counterclockwise).

2. The fighter begins at the state described in the shared initial conditions with an initial
heading of 180.

3. (after commands from test A.1 up to, but not including, “create fighter”)
create fighter AFIGHTER from TFIGHTER with ols AOLS boom ABOOM
tailhook ATAILHOOK tanks ATANK at coordinates 49*39'50"/117*25'00"
altitude 2000 heading 180 speed 25
populate world with AFIGHTER
commit
do AFIGHTER set heading 045 LEFT

4. The expected result is that the fighter will begin turning counterclockwise at a turn rate
of 15 and speed of 25 until it reaches a heading of 45 degrees, after which it will
continue moving at a speed of 25 with a heading of 45 degrees.

5.

6. The results were as expected.
7. Other tests could include changing heading at different speeds and altitudes, different

start and end headings, testing both counterclockwise and clockwise motion, as well as
testing no turn direction given to see the program calculate the shortest turn direction.

A downside to this reporting process is that several teams clearly wrote test descriptions for 
requirement (4) after running the tests. While this approach is definitely easier, it defeats the 
purpose of testing by moving the goalposts to wherever the ball ended up. Despite forcing the 
students through a disciplined development process, many still found creative ways to reduce 
their effort. Lectures on ethics and professional responsibility generally fell on deaf ears because 
students know there are no real consequences to such behavior. In other offerings of this class, 
the author required test descriptions to be submitted before the tests were actually run, but due to 
the timing, it was not practical here. 

All 23 tests of this type required a context of a single agent — fighter, tanker, or carrier — in 
increasingly complex scenarios. This approach taught the students about partitioning tests into 
representative combinations and permutations for appropriate breadth and depth of coverage. For
example, the following tests apply to a fighter and assume the same initial conditions:
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• Acceleration: Accelerate to speed 100.
• Climb: Climb to altitude 5000.
• Heading: From an initial heading of 180, change heading to 45 left.
• Climb and heading: Climb to altitude 5000 while changing heading 135 degrees left.
• Acceleration and climb: Accelerate to speed 50 while climbing to altitude 10000.
• Acceleration and heading: Accelerate to speed 50 while changing heading 135 degrees left.
• Acceleration, climb, and heading: Accelerate to speed 50 while climbing to altitude 6000 and 

changing heading 180 degrees right.

A set of 21 tests evaluated performance — that the solution modeled the real world 
appropriately — which corresponds to model verification and loosely to software certification 
and accreditation. These tests all required a context of two paired agents: fighter–tanker, fighter–
fighter, fighter–carrier, tanker–tanker, tanker–carrier, and carrier–carrier. For example:

• Refueling 1: Refuel a fighter from a tanker. The fighter needs to couple with the tanker and 
maintain altitude, speed, and heading.

• Refueling 2: Refuel as in (1), but have the tanker pull ahead slowly until the coupling breaks.
• Refueling 3: Refuel as in (1), but have the tanker turn away until the coupling breaks.
• Refueling 4: Refuel as in (1), but have the fighter fall back slowly until the coupling breaks.
• Refueling 5: Refuel as in (1), but have the fighter turn away until the coupling breaks.
• Launch stationary: Create a carrier (with speed 0) with a fighter on it. Launch the fighter.
• Launch moving: Create a carrier (with speed 10) with a fighter on it. Launch the fighter.
• Recovery stationary trap: Create a carrier and an airborne fighter. Land the fighter.
• Recovery stationary miss: Create a carrier and an airborne fighter. Land the fighter but have it 

fail to trap.

The final and smallest set of just two tests nominally evaluated higher-level thinking skills. Here 
the system was used as intended as a training tool to investigate the problem domain. Students 
(within reason, given their limited background) had to use it as a subject-matter expert would to 
develop appropriate strategic and tactical actions for certain goals; e.g., the fastest way to refuel. 
They found this part very entertaining:

• Once around the pattern: Launch a fighter from a carrier, have it briefly refuel with a tanker, 
land back on the carrier, and launch again.

• Kamikaze: Add two carriers (one named Godzilla), two fighters (one initially aboard the other 
carrier, the other airborne), and two tankers. Cause all airplanes to crash into Godzilla at the 
same time.

7  Results and discussion

Ironically, this extensive framework for testing and evaluating the problem domain does not lend
itself to straightforward evaluation. As is typical for pedagogical studies in the classroom, it was 
very difficult to control for the environment. Grades alone also do not necessarily correlate with 
learning, and for practical reasons, there is also no comparison with a baseline measurement 
from a control group who solved the same problem differently. As a result, a major component of
the one-quarter course (over 11 weeks and 50 contact hours) with 34 students (on 12 teams) 
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involved collecting continual feedback and insightful metainformation. This process itself 
mirrors Agile software engineering in action because at the end of each step (or “sprint”) every 
four calendar days, the development team repeated the same iterative evaluation:1

1. Review the objectives that the team expected to have completed at this point.
2. Determine whether they were met. If so, then make note of the conditions and actions that

achieved this positive outcome so as to apply this knowledge and experience analogously to
similar situations in the future. If not, then evaluate what happened and why, propose and
evaluate corrective action, and schedule it for completion.

3. Establish the objectives for the next sprint.

This process closes the loop of the assessment of progress. In particular, it reduces the prevalence
of endless disconnects between the stages of software development back in Figure 1. It helps to 
reduce gaps, overlaps, and inconsistencies between the plan, its execution, and the results. For 
example, every requirement must have a corresponding solution, and every solution must have a 
corresponding requirement. There should be no mystery about the origin or purpose of any part 
of the solution that was under the students’ control. (Subsequent offerings on this course 
introduced a web-based tracking tool that automated much of the review and evaluation process 
for the instructor.)

Continual assessment resulted in a significant breadth and depth of objective and subjective 
measures including anecdotal observation, individual contributions from a background 
knowledge survey, 12 assignments, and 10 weekly assessments with self-reflections, as well as 
individual and team contributions from 18 project status reports, a project reflection and self-
evaluation (a final combined assessment, self-reflection, and status report), a team-member 
evaluation, and a course evaluation. While these items were required and contributed to the final 
grade, they were not graded on content per se because there were no right or wrong answers. 
Rather, they supplied a vast amount of insight into the beliefs, motivations, actions, etc. of 
students, which would otherwise have remained inaccessible to both the instructor and the 
students themselves. Many of these observations and conclusions have already been mentioned 
in context throughout this paper. Most telling in quantitative terms is that 86% of the students 
stated that the architecture permitted them to do something they would never have been able to 
do on their own. (It would be very interesting to discover how the other 14% thought they could 
do it their own way, but there was no relevant assessment measure to make even a guess.) 
Furthermore, 90% indicated that the test report directly contributed to a better understanding of 
what the code was actually doing, whereas they otherwise would have had far less confidence in 
it. Overall, the students rated the project 4.6 out of 5 (excellent).

The weekly assessments required each student to respond to the following questions in a web 
form. The anonymized aggregated results were available to everyone as a resource for reflecting 
on how perceptions agree or disagree.

• Enter a brief description (roughly eight lines) of your interpretation of what you learned this
week. Consider why it is likely to be important in our field and how you might use it
throughout your other courses and career. If appropriate, connect it with things you already
know. Do not just repeat the lecture contents.

• For the lecture topics, what was the easiest to understand and why?
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• What was the hardest to understand and why?
• For the current task, what is the easiest to understand and why?
• What is the hardest to understand and why?

These questions required selecting one option from very weak, weak, ok, strong, and very strong 
to indicate the perception of the following:

• Overall comprehension of the lecture material from this week.
• Overall level of difficulty with the lecture material from this week.
• Overall level of difficulty with the task material from this week.
• Pace of the course (lecture and tasks) this week.

The individual reports required students to indicate the status of their activities in terms of Agile 
criteria 1–3 above. Sprints were short, so there should not be much activity. 

The team reports required them collectively to articulate the following:

• Consider the following four pairs of questions hierarchically. They are not the same question. 
If you think they are, then you are likely not using an appropriate breadth and depth of 
software engineering thought. This course is a practical application of the aspects of product, 
process, and people. We are trying to account for everything: not just to create a good product, 
but also to learn from the process to improve the people. Reflect on the experience of the 
entire team collectively over this sprint. You do not need to account for all work, just two 
examples that are most representative of easiest and hardest. For reference, understand relates 
to the comprehension of what needs to be done; approach to how you think it should be 
solved; solve to implementing the actual solution; and evaluate to demonstrating to yourself 
and your team (if applicable) that the performance of your solution is consistent with 
everything else in the project. Remember The Cartoon. Which aspects of the current work are 
the {easiest, hardest} to {understand, approach, solve, evaluate}? (The eight combinations are 
collapsed here to save space.) 

• How far along (as a percent) do you feel you are toward the final goal? Does this pace seem 
likely to succeed?

• Are there any issues, concerns, or comments about the project?

Teaching software engineering involves managing expectations. Many students come to this 
course believing that they already know software engineering because they believe they already 
know programming. A basic skills test up front demonstrated that their self-perception and self-
confidence are not remotely in line with their actual abilities. Nevertheless, brutal reality does 
not phase many of them, and they continue to resist the notion that they have anything further to 
learn, especially about the learning process itself; e.g., “We’re juniors in computer science. We 
know how to code. Just tell us what to do.” Overcoming this oppositional nature is difficult. 
Experience has shown that many rationalize away their poor performance by blaming the 
instructor or anyone or anything else but themselves. For example, one stated that “[the 
instructor] made us use a weird coordinate system and advanced calculus” for a standard high 
school algebra problem. There is an attitude prevalent among today’s students that expecting 
them to connect the dots themselves in the learning process is unreasonable and unfair.19 They 
want the instructor to provide the dots and to connect them. Likewise, forcing them to learn 
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about something that they personally think is unrelated and unimportant sometimes evokes 
vitriol: “I thought I was taking a software engineering class. Why am I wasting my money on 
airplanes?” The hugely complex and amorphous multidisciplinary nature of modern software 
engineering and the software industry does not accommodate this attitude. Surprisingly, despite 
the sometimes confrontational nature of the experience, the numbers show that most students 
ultimately realized the value in accepting the unfamiliar approach presented here. This pattern is 
so consistent across offerings of this course that the author uses various quotes and data from 
past classes to manage expectations in the current one.

There are also two loosely longitudinal aspects to this study. First, as the many examples 
peppering this paper show, the author internally coordinates with instructors in at least seven 
other courses (including himself) to connect the material back and forth. For example, many 
concepts in operating systems, like scheduling, process, and memory management, directly play 
a role in the multiagent aspects here. Likewise, the many design patterns throughout the 
architecture are practical applications in action. Part of the weekly assessments and self-
reflections asks the students to connect the material to their own lives and other courses. In this 
way, it forces them to find dots and associate them themselves. The second aspect is external and
relates to the difficult-to-measure ABET program outcome (h): “Recognition of the need for, and 
an ability to engage in, continuing professional development.”5 The author keeps track of 
comments from graduates who appreciated the experience that this course and its approach had 
given them. While admittedly anecdotal and self-selecting, the supply of laudatory quotes is 
impressive. Many former students have made comments to the effect that “you know a project is 
awesome when interviewers want you to tell them all about it.” Others have stated to the effect 
that “my new coworkers were amazed I had no work experience because your class prepared me 
so well.” One quote used early in the course to set the tone is: “The next time your students 
whine about having to do something unfamiliar and challenging, tell them this is exactly what I 
do now every day.”

8  Future work

As a vehicle for undergraduates to experience real-world software systems engineering, the 
emphasis of this work is on building the system and using it to test and evaluate itself. A second 
facet — using the system as intended to learn about the environment that it models — would be a
great perspective in a graduate class or ones specifically dedicated to software quality assurance 
and modeling and simulation. To this end, incorporating a mechanism to manage sensitivity 
analysis would be very helpful. For example, if students wanted to determine the best speed for 
turning a fighter under specific conditions, they currently would need to write a script and run it 
many times by hand with different values to achieve an appropriate breadth and depth of 
coverage for statistical significance. Adding loops and conventional parameter passing to the 
scripts could automate this tedious process. The critical-thinking aspects of the scientific method 
would still be the students’ responsibility, but the execution could be automated. Similarly, 
incorporating probability to account for real-would variation and unpredictability could lead to a 
powerful stochastic simulation environment with a Monte Carlo methodology. This line of 
investigation could lead naturally into machine learning with tie-ins to big data by having a 
model simulate and optimize itself.6
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9  Conclusion

The primary goal of this work was to provide students with multidisciplinary hands-on 
experience to real-world applications of software-based systems of systems. It exposed them to a
much larger problem than they would otherwise have been able to investigate, and it did so in a 
way that was manageable for both the students and the instructor. In particular, it walked the 
students through the process of analysis, design, implementation, testing, evaluation, and 
refinement. The pedagogical foundation emphasized critical thinking and the scientific method 
as a formal, disciplined approach to problem solving. In combination with an extensive, student-
friendly integrated framework for modeling, simulation, visualization, and analysis, it provided 
all the tools that students needed to translate a complex, unfamiliar problem domain to a solution
domain, to show that this translation worked correctly, and how well. The overwhelmingly 
positive results demonstrate that this approach is effective in managing a relatively large class 
with varied skills, attitudes, and maturity levels.
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ABSTRACT:  This  pedagogy-oriented  system complements  modeling,  simulation,  visualization,  and  analysis  with  
software engineering and software quality assurance, as well as scientific method, to provide students a hands-on,  
holistic experience of real-world software development and evaluation. It provides a highly extensible virtual test range  
for designing, building, and evaluating a variety of military platforms  — airplane, ships, and submarines — with rich  
combinations of munitions, sensors, and fuzes.

1  Introduction

The  testing  strategy  of  typical  undergraduate  software 
engineering students is a shotgun approach of unfocused, 
nonrepeatable  tests  of  questionable  rigor  and  value. 
Testing is an ad hoc afterthought because they have no 
experience  with  developing  a  disciplined  test  plan,  a 
formal  methodology  to  carry  it  out,  and  a  persuasive 
means to demonstrate the results. This pedagogy-oriented 
system  mitigates  these  problems  through  a  richly 
extensible, student-friendly Java integrated modeling-and-
test  environment  for  discrete-event  simulation  of 
component-based  agents  within  a  virtual  test  range.  It 
allows students to define, build, manipulate, and evaluate 
simplified  real-world  platforms  (airplanes,  ships,  and 
submarines)  with  a  wide  variety  of  smart  and  dumb 
munitions, tracking sensors, and triggering fuzes.

Computational  modeling,  simulation,  visualization,  and 
analysis  (MSVA)  rely  heavily  on  object-oriented 
programming, design patterns, and software engineering, 
but  the  converse  is  rarely  the  case.  Software 
engineering — at  least  at  the  undergraduate  level — is 
traditionally  taught  as  practical  top-down  problem-
solving. For logistical reasons, the process is often linear 
as mostly analysis, design, and especially implementation, 
with some testing, but without much regard to the holistic 
role the system is intended to play and how to establish 
how well it does so. The advanced concepts of software 
quality assurance are often relegated to the graduate level. 
Many  undergraduates  thus  have  little  exposure  to  the 
critical  end  stages  of  verification,  validation, 
accreditation,  and  certification.  Insight  into  them could 
contribute  to  better  understanding  and  more  targeted 
decisions in the earlier stages.

To this end, the primary goal of this system, as well as its 
overarching  pedagogical  approach,  is  to  integrate  the 
perspectives of both MSVA and software engineering in 

such  a  way  that  students  can  learn  to  understand  and 
apply them to their own problems. It capitalizes on yet a 
third perspective,  which is  required of  students  in  their 
studies  but  often  considered  irrelevant:  the  study  and 
application of science. Scientific method is the foundation 
of modeling and simulation to determine the behavior of 
virtual systems that correspond to counterparts in the real 
world  [1].  It  should  be  equally  useful  for  assessing 
software  quality  and  performance,  if  done  strategically 
[2].  Therefore,  design  and  execution  of  controlled 
experiments,  sensitivity  analysis,  performance  metrics, 
and other  formal techniques can be applied to software 
development as a persuasive,  defensible way to present 
results and establish confidence in them.

2  Pedagogical Foundation

This work indirectly derives from the author’s decade of 
experience  as  lead  systems  engineer  and  software 
architect for accredited modeling and simulation projects 
at the U.S. Army Materiel Systems Analysis Activity on 
the Future Combat Systems program at Aberdeen Proving 
Ground, Materiel Test Directorate and Systems Test and 
Assessment  Directorate  at  White  Sands  Missile  Range, 
Electronic  Proving  Ground  at  Fort  Huachuca,  and 
elsewhere.  These  teams  had  predominantly  young, 
inexperienced members who found the guidance offered 
by the precursors to this work to be very helpful.

The academic product here, based on almost two decades 
of  teaching  computer  science  and  engineering  at  the 
university  level,  is  targeted  toward  helping  students 
transition from the bottom-up “nuts and bolts” study of 
computer science in lower-division coursework to the top-
down contextual  problem-solving process  of real-world, 
practical  software engineering at  the upper-division and 
graduate  levels,  as  well  as  in  professional  work 
environments.
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2.1  Critical Thinking

Students often want to hit the keyboard running and start 
coding  a  task  upon  first  sight.  Many  think  computer 
science is coding, and software engineering is just coding 
more. They generally resist with great effort the academic 
notion of thinking before doing, or formal analysis and 
design  leading  to  implementation  and  evaluation. 
Background  research  into  the  subject  matter  is  often 
regarded as “busy work,” when in fact this grounding is 
critical to proper understanding and execution in software 
engineering [3].  To this end,  this system plays an ideal 
role because students are expected to have no background 
in the  subject  matter,  or  what  they think  they know is 
likely  wrong  or  misleading.  Pushing  them out  of  their 
comfort  zone  forces  them  to  embrace  this  formalized 
approach instead of their own familiar, but limited, ad hoc 
ones of dubious rigor and value. These skills will prepare 
them to approach any new problem.

Problem-solving  for  any  domain  has  been  studied  in 
endless detail. The approach of multidisciplinary critical 
systems  thinking  has  long  been  effective  in  traditional 
engineering, and has more recently become an emphasis 
in  software  engineering  [4,5].  This  work  considers  a 
multidimensional  approach  of  forcing  students  to 
decompose  the pieces  of  a  problem into what  they are 
(data), what they can do (control), and what they actually 
do or have done to them (behavior) by critical  analysis 
with the W5H question words of who, what, when, where, 
why, and  how. This low-level analysis then combines to 
form  associative  structures  that  connect  the  dots  in  a 
DIKW network, as in Figure 1.1 [6]:

• D ata: raw values with no associativity or context
• I nformation: values in one context
• K nowledge: values in multiple contexts
• W isdom: creation of generalized principles by connect-

ing  a  network  of  contexts  from different  sources  for
predictive, anticipatory, proactive understanding

Aspects  of  this  approach  overlap  and  complement  the 
classic  Bloom’s  Taxonomy  of  Educational  Objectives, 
which rank  cognitive activities  from low to high  level: 
remember,  understand,  apply,  analyze,  create,  and 
evaluate [7].  Building and testing a software system of 
any complexity requires skillful manipulation of all these 
levels. The education community debates the order of the 
last two, but for the modeling-and-simulation community, 
this one is the norm [1].

2.2  Software as Surrogate

The basis of using modeling and simulation for software 
engineering is to build practical software components that 
demonstrably correspond to their real-world counterparts. 
There are two aspects:  testing that  the underlying code 
works  as  specified,  and  evaluating  how  well  it  works 
under various conditions of interest to learn from it. Both 
are  closely  related  in  reality,  but  in  the  software 
development  process,  they  often  radically  diverge  with 
little warning.

The process of mapping from specifications  — at least in 
the form of coursework assignments — to programmatic 
solutions  is  familiar  to  students  even  in  beginning 
courses. By and large they do a decent job, too. However, 
the  opposite  direction  is  almost  never  a  consideration, 
even  for  experienced  professionals:  if  someone 
unaffiliated with the problem were asked to hypothesize 
from its solution alone what the original problem space 
looked like, the two would likely bear little resemblance. 
In  both directions,  valuable details are lost or mangled, 
and  extraneous  ones  are  picked  up.  In  a  simulation 
environment where the program is a surrogate for the real 
world under virtual study, any misalignment in mapping 
may undermine the conclusions drawn from it [8]. It  is 
therefore  critical  to  build  and  maintain  strong 
correspondences  and  be  able  to  demonstrate  them 
convincingly. The argument here is that this premise also 
holds true for software engineering in general.

To  this  end,  software  quality  assurance  should  be  a 
consideration from the very start, not an afterthought as 
testing at the end, as it is often practiced: design to build 
and  test  simultaneously.  This  approach  entails 
determining  what  components  can  and  cannot  do,  and 
then building an architecture to enforce these constraints. 
In fact, the mantra of the author’s teaching philosophy is: 
does what it is supposed to do; does not do what it is not  
supposed  to  do.  The  amount  of  code  dedicated  to 
preventing, detecting, and handling errors often eclipses 
what actually does the intended work [3].

2.3.1  Code Considerations

The low-level goal of testing that students’ code works as 
specified  is  the  realm  of  traditional  object-oriented 
programming and software engineering. This architecture 
provides  two complementary opportunities:  analysis  for 
investigating  how  existing  components  function  and 
interact, and synthesis for adding new ones. The emphasis 
in both cases is on clean, orthogonal solutions with well-
designed, inherently defensive structure. In other words, 
with minimal  effort,  the architecture permits acceptable 
actions  and  prohibits  unacceptable  ones.  This  goal  is 
critical  in  such a  large,  highly compositional,  dynamic, 
plug-and-play system like this one, with its 320 classes. If 

Figure 1.1: DIKW Learning Associativity

Data Information Knowledge Wisdom
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done well,  students do not have to expend time coding 
and testing for illegal combinations if they can show that 
these cases cannot happen. Unfortunately,  most students 
work quite differently and love to hardcode uniquely for 
every little  perceived special  case,  which leads to code 
that  is  bloated,  brittle,  and  difficult  to  maintain.  For 
example,  one  student  practically  bragged  that  in  his 
development process, he “kept throwing more code at the 
compiler until  it  shut up.” Section 4 discusses  how the 
pedagogical approach here helps instill better discipline.

2.3.2  Simulation Considerations

The high-level goal of evaluating and learning from how 
well  components  work  under  various  conditions  is  the 
realm  of  traditional  modeling  and  simulation.  This 
architecture  explicitly  supports  scientific  method as  the 
primary means of investigation. In  particular,  it  expects 
students to understand the nature of their problem space 
well  enough to state  what  the expected results  of  their 
experiments  should  be  before  conducting them.  It  then 
provides  the  opportunity  afterwards  to  reflect  on  any 
differences before proceeding to the next experiment. If 
the results were wrong, then the next attempt should be in 
a  different  direction;  if  they  were  correct,  next  should 
come  incremental  refinement  in  the  same  general 
direction.

Controlled experiments are the foundation. Students run a 
baseline  experiment  and  record  the  results.  They  then 
intentionally perturb one — and only one — parameter and 
rerun  the  experiment  under  the  same  conditions.  Any 
differences can then be directly attributed to this single 
change,  which  helps  elicit  sound  cause-and-effect 
relationships.  This  strategy  avoids  the  typical  undisci-
plined  student  approach  of  indiscriminately  changing  a 
whole bunch of things at once and then having no idea 
what actually played a role, nor when, where, why, and 
how. 

3  Architecture

The  software  architecture  combines  traditional  model-
view-controller  modules  that  clearly  separate  the  main 
concerns  of  the  system  [9].  While  they  are  still 
interconnected, the dependencies are kept to a minimum 
such  that  different  versions  of  the  modules  may  be 
swapped  in  and  out  without  undue  burden.  Such 
flexibility  allows  the  system to  be  extended  into  other 
related domains, such as air traffic control, aircraft-carrier 
operations,  and  aircraft  fly-by-wire  control  systems, 
which are recent adaptations investigated by students in 
other  offerings  of  the  author’s  software  engineering 
courses.

3.1  Model

The model defines what agents are in terms of their data 
and  control—what  they  are  and  are  capable  of  doing, 
respectively.  In  object-oriented  programming,  this 
breakout  maps  directly  to  class  member  data  and 
methods.

3.1.1  Agents

Agents are any component of the simulation that may be 
created,  manipulated,  and  deleted  dynamically.  They 
include  the  three  types  interacting  within  the 
battlespace — actors,  munitions,  and  sensors/fuzes — as 
well  as  graphical  views  of  it.  Section  4  addresses  the 
acceptable combinations.

3.1.1.1  Actors

Actors populate the world. Their physical state is defined 
by  three-dimensional  world  coordinates  (latitude, 
longitude, and altitude or depth), course, and speed. They 
are primary agents because the behavioral commands in 
3.3.1.2 can directly control these properties. Actors also 
contain  an  infinite  supply of  any appropriately defined 
combination of munitions:

• Airplane:  may carry bombs, depth charges,  torpedoes, 
and missiles.

• Ship:  may  carry  main-gun  shells,  depth  charges, 
torpedoes, and missiles.

• Submarine: may carry only torpedoes.

Each  actor  also  has  performance  characteristics  for  its 
minimum  and  maximum  speed,  acceleration  and 
deceleration rates, rate of turn, crush depth, and so on.

3.1.1.2  Munitions

Munitions  populate  actors.  Their  physical  state  is  also 
defined by world coordinates, course, and speed, but they 
are secondary agents because the behavioral  commands 
cannot directly control them.

The  unguided  munitions  are  dumb.  After  deployment, 
their  lifespan  is  dictated  by  ballistic  trajectories  that 
cannot change.

• Shell: follows a parabolic arc based on the azimuth and 
elevation  specified  in  the  firing  command  in  3.3.1.1 
and terminates at  sea level  or  upon hitting a ship or 
surfaced submarine.

• Bomb:  falls  from  the  release  altitude  and  also 
terminates  at  sea  level  or  upon  hitting  a  ship  or 
surfaced  submarine.  The  horizontal  velocity  of  the 
airplane is imparted on the trajectory.
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• Depth charge: if dropped from an airplane, falls from
the  release  altitude  with  the  imparted  horizontal
velocity until reaching sea level, where it then behaves
as if it had been released from a ship. The depth charge
then  sinks  straight  down  at  a  slower  rate  until
detonating based on its fuze or reaching the sea floor. It
cannot  detonate at  sea level,  even if  dropped onto a
ship or surfaced submarine.

The guided munitions are smart fire-and-forget weapons. 
Their  trajectories  depend  on  the  performance  of  their 
sensor and fuze and on the actions of the target.

• Missile: uses its sensor to track targets and its fuze to
detonate  only  after  exceeding  a  specified  travel
distance.

• Torpedo: uses its sensor to track targets and its fuze to
detonate only after exceeding a specified arming time.
If dropped from an airplane, it falls like a depth charge.

Each  munition  has  performance  characteristics  for  its 
minimum and maximum speed, acceleration rate, rate of 
turn, blast radius and yield, and so on.

3.1.1.3  Sensors and Fuzes

Sensors  and  fuzes  populate  munitions.  They  are 
functionally  identical,  except  in  their  role:  the  former 
tracks  a  target,  whereas  the  latter  decides  when  to 
detonate its host munition. 

Passive  sensors  receive  energy  only.  They  have  a 
sensitivity  property  that  allows  them  to  determine  a 
distance  or  bearing to  a  target  and  whether  the  energy 
exceeds a threshold.

• Acoustic: operates based on sound energy, which is a
function of the speed of a primary agent.

• Sonar: operates based on reflected sound energy from
an active sonar source provided separately.

• Thermal: operates based on thermal energy, which is a
function of the speed of a primary agent.

• Depth: operates based on depth below sea level.

• Distance: operates based on elapsed distance traveled.

• Time: operates based on elapsed time traveled.

Active sensors are passive sensors that also emit energy. 
All  emitters  of  the  same  type  use  the  same  notional 
frequency,  so  receivers  can  detect  reflections  from 
multiple emitters, for better or worse.

• Radar:  operates  by  emitting  a  radio  signal  and
receiving its reflection.

• Sonar: operates like radar, but with a sound signal.

Radar and thermal sensors have a conical field of view 
(FOV) that limits where they can see. The FOV may be 
fixed  along  the  forward-facing  longitudinal  axis  of  a 
munition,  or  it  may sweep horizontally over  a  field  of 
regard  (FOR)  at  a  set  rate.  The  latter  requires  the 
configuration of a movable mount.

For simplicity and consistency, power and sensitivity are 
based  on  percentages,  not  on  real-world  units  like 
decibels.  Attenuation  in  air  and  water  is  a  function  of 
distance.  Radar  reflectivity  is  also  based  on  the  rough 
characteristic dimension of the target: a target in profile 
(broadside) produces a stronger signal than head on.

3.1.2  Datatypes

Anecdotal  evidence  shows  that  students  have  a  huge 
problem with abstracting, maintaining, and manipulating 
data  properly.  Java  primitives  are  appropriate  in  earlier 
low-level courses, but at the project level, they lead to a 
proliferation  of  problems.  For  example,  units  and 
magnitudes are not applied consistently, error handling is 
almost  nonexistent,  and  code  bloats  from  haphazard 
attempts at reimplementing similar solutions in multiple 
places.

To mitigate this situation, the architecture provides a rich 
set of self-contained concrete datatypes for every kind of 
relevant  data;  e.g.,  Airspeed,  Altitude,  Attenuation, 
Azimuth,  WorldCoordinate,  Course,  Depth,  Distance, 
FieldOfRegard,  FieldOfView,  Groundspeed,  Heading, 
Identifier,  Latitude,  Longitude,  Percent,  Pitch, 
Power,  Sensitivity,  Time,  Yaw, and many dozens more 
not directly in play in this paper. Each maintains its own 
error checking and helper methods for manipulating and 
converting it appropriately. This approach lends itself to 
convenient  unit  testing  in  isolation.  It  also  reduces  the 
burden of documentation; e.g.,  avoiding having to state 
everywhere  that  horizontal  angles  are  in  navigational 
degrees because Azimuth always use this form.

Another  incessant  problem  students  have  is  with 
indiscriminate  coupling  and  undisciplined,  unprotected 
sharing  of  objects.  Changing  a  mutable  object  in  one 
place  may  have  countless  unexpected  consequences 
throughout  an  entire  system.  To  mitigate  this  problem, 
datatypes  employ a  functional  paradigm,  which  makes 
them immutable. Any mutable action on them produces a 
new object via copy-on-write semantics [10].

3.2  View

The view module  of  the  architecture  manages  how the 
user sees the output. While not considered agents in the 
traditional  simulation sense,  view windows are actually 
treated as such because they can be created, manipulated, 
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and  deleted  dynamically  through  six  commands.  They 
play an integral role in testing and evaluation, so they are 
part of the world. For simplicity, it is a flat-earth model. 
The  plug-and-play  nature  of  the  view  allows  any 
visualizer to connect to the architecture, provided that it 
follows the specified protocols.

3.2.1  Two-Dimensional Visualization

The three-dimensional world is presented as any number 
and combination of two-dimensional views from different 
top,  front,  and  side  perspectives,  as  in  Figure  3.1.  The 
position, size, scale, and grid-line configuration of each is 
independent.  Agents  are  represented  by various  glyphs, 
which  include  explicit  state  information  like  identifier, 
speed, heading, and altitude, as well as metadata like track 
and predicted impact point. The display can be zoomed, 
dragged, resized, and locked onto an agent, among other 
useful features for evaluation.

The user may also insert himself or herself into the world 
as a nonparticipating agent any number of times as fixed 
reference points for meta-analysis. This feature allows the 
user to narrate the execution of a test plan from a specific 
vantage; e.g., looking northeast from the southwest corner 
of  the  world  10  kilometers  from  the  ship,  the  missile 
passed from right to left at low altitude.

3.2.2  Three-Dimensional Visualization

Three-dimensional  visualization,  both  for  dynamic 
runtime analysis and static postanalysis, is also available 
through a Java 3D plug-in.  Figure 3.2 shows visualiza-
tions  for  a  variety  of  views  on  a  test  world.  It  also 
includes depictions of otherwise unseen aspects like fields 
of view and regard. This visualizer has seen extensive use 
in the author’s artificial intelligence courses, related peda-
gogical research, and industry work as a general-purpose 

world viewer [11,12,13]. Gnuplot is also supported as an 
export format, but for postanalysis only.

3.2.3  Logging

Visualization  is  informative  for  observing  qualitative 
behavior in real time at runtime, or playing it back later, 
but  more  detailed  quantitative  postanalysis  requires  the 
underlying  data.  The  logging  system records  over  two 
dozen parameters for every event, which export directly 
to Excel.

3.3  Controller

The controller module of the architecture manages how 
the user defines and controls the model and simulation, 
and as well  as  how the simulation itself  executes.  This 
paper addresses only the first part.

3.3.1  Input

All user input (except view manipulation via the mouse) 
is entirely from the command line. This text form is very 
convenient  for  adding  or  modifying  commands  as 
programming exercises. The plug-and-play nature, based 
on  the  Command  and  Interpreter  design  patterns  and 
implemented  as  a  context-free  grammar  with  JavaCC, 
also accommodates any input form that could produce the 
communication protocols that the controller processes [9]. 
This approach decouples the input from the processing in 
the same way that the output is decoupled from it, thereby 
reducing the temptation to hack solutions.

Figure 3.2: Three-Dimensional Perspectives

Figure 3.1: Two-Dimensional Top Perspective
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3.3.1.1  Creational and Structural Commands

Creational  commands  specify  the  agents  in  the  model. 
They partition the process into the separate stages of first 
defining  agent  families,  then  declaring  agent  instances 
from  them.  In  the  object-oriented  sense,  the 
corresponding  process  is  defining  classes  and  then 
instantiating objects,  which  students  often  conflate  into 
the same actions. By keeping these concerns separate, it 
becomes  clear  that  definitions address  data  and  control 
(potential  for  work),  whereas  declarations  address 
behavior (actual work). As definitions may contain, or be 
contained by, other definitions, these commands are also 
considered structural [9].

In  order  of  dependency,  sensor  and  fuze  families  are 
defined  first  because  they  contain  no  agents.  In  the 
structural sense, they are leaves in a compositional tree. 
The typical form of these 14 commands is:

define sensor radar id with field of view fov
 power power sensitivity sensitivity

where  the  italicized  fields  translate  directly  into  the 
datatypes in 3.1.2. 

Munition  families  are  defined  next  because  they  may 
contain sensor and fuze agents. The typical form of these 
11 commands is:

define munition missile id1 with sensor id2

 fuze id3 arming distance distance

 Finally, the actors are defined with munitions:

define ship id1 with munition[s] idn+

The  declaration  process  is  limited  to  two  actions  that 
either create an actor:

create actor id1 from id2 at coordinates with
 course course speed speed

where id1 is the actor instance and id2 is the actor family, 
or create a munition:

load munition id1 from id2

At  this  point,  the  munition  instance  is  listed  on  the 
activity  scoreboard  as  ready  to  fire.  If  it  is  a  smart 
munition, its entry continuously updates its sensor state to 
determine whether a target is within its launch acceptance 
region for tracking.

The second action deploys the munition accordingly:

deploy munition id
deploy munition id at azimuth azimuth 
 elevation elevation

where the latter variant is for shells fired from main guns.

3.3.1.2  Behavioral Commands

Behavioral  commands  instruct  actors  to  assume a  new 
state  gradually  according  to  their  performance 
characteristics (e.g., acceleration, rate of turn or climb):

set id course course
set id speed speed
set id altitude altitude
set id depth depth

3.3.1.3  Miscellaneous Commands

Miscellaneous commands allow specialized control over 
the  controller  and  model  to  facilitate  repeatable 
experiments.  They pause,  resume,  wait,  and change the 
clock speed.  They also load scripted commands of any 
type  from text  files  and define  maneuvers  that  may be 
executed on a parameterized agent; e.g., 

execute maneuver climb_left on my_fighter

where  maneuver  climb_left would  have  been  defined 
earlier as  a sequence of behavioral  commands to climb 
and change course by 90 degrees counterclockwise.

Finally,  it  is  possible  to  force  any  agent  to  assume 
coordinates, course, or speed instantaneously to establish 
test conditions outside the normal legal channels:

set id state at coordinates with course course 
 speed speed

4  Preliminary Results

Ironically,  this  test-and-evaluation  framework  does  not 
lend  itself  to  convenient  test  and  evaluation  with  its 
student subjects. It was not feasible to set up a controlled 
experiment that compared a test group to a control group 
because the entire class of 33 students had to do the same 
project  the  same  way.  As  a  result,  these  preliminary 
results  are  informal.  They  are  based  on  anecdotal 
observation, eight individual assignments, 10 anonymous 
weekly assessments of course content, 16 project  status 
reports (individual and team), a final project evaluation, 
and a course evaluation.

Although the  project  was already complete in  advance, 
the students  had to  go  through the analysis  and  design 
stages without access to it, as if they themselves were in 
charge of its outcome. Background research got everyone 
up  to  speed  on  the  subject  matter.  It  also  provided 
valuable  insight  into  their  generally  limited  critical-
thinking  skills.  For  example,  the  entire  class 
misinterpreted  which  horizontal  direction  on  a  map 
increasing  longitude  corresponds  to  in  North  America, 
despite several obvious opportunities to crosscheck their 
understanding.  Many  students  expressed  that  it  was  a 
shocking reality check demonstrating the importance of 

112 of 168



connecting the dots and actually understanding what the 
connections  mean.  Such  cases  are  so  common  that  a 
related exercise with potential “gotchas” has become part 
of every project.

Students next had to apply the multidimensional slicing 
and dicing of the problem space from Section 2 to tease 
out  relationships  among  the  agents  in  a  bottom-up 
manner. The first step entailed building the compatibility 
matrix  in  Table  4.1 to  show which  munitions  may use 
which sensors and fuzes. A significant number of students 
misunderstood  these  constraints  and  acknowledged  that 
they would have implemented an incorrect solution.

Sensor

Munition

A
coustic

D
epth

D
istance

R
adar

S
onar, passive

S
onar, active

T
herm

al

T
im

e

Bomb

Depth Charge      

Missile    

Shell 

Torpedo       

Table 4.1: Compatibility Matrix

Similarly,  the  next  level  up  entailed  the  applicability 
matrix  in Table 4.2 to show which actors  could deploy 
which  munitions  against  other  actors  under  which 
conditions (where A and B for submarines designate above 
and  below  water,  respectively,  and  the  other  letters 
correspond to the munitions in Table 4.1).

Target

Source

A
irplane

S
hip

S
ubm

arine (A
)

S
ubm

arine (B
)

Airplane M B,M,T B,T D,T

Ship M,S,T S,T D,T

Submarine (A) M,T T T

Submarine (B) T T T

Table 4.2: Applicability Matrix

From  this  point,  students  transitioned  to  the  solution 
domain  through  traditional  object-oriented  analysis  on 
composition,  inheritance,  and  communication 
relationships  expressed  in  UML.  Their  subsequent 
programmatic solutions were plug-in components to the 
architecture,  which  required  them  to  learn  how  to 
understand and use it from an earlier analysis assignment. 

Their  components  replaced  the  existing  ones  in  the 
provided solution.

Section 2.2 discussed the goals of testing that  students’ 
code  works  and  then  evaluating  how  well.  The 
architecture  itself  facilitated  the  former  because  it  kept 
their  component  solutions  independent.  Even  this 
relatively small set of agents and properties would have 
led to a combinatorial explosion of testing requirements if 
students  had  been  permitted  to  hack  their  solutions 
together  with  molecular-level  coupling  as  usual.  Most 
recognized the value of this partitioning in their low-level 
unit  and functional  (white  and black-box) testing,  mid-
level  compositional  testing,  and  high-level  integration 
testing [14].

Evaluating model performance was the final aspect of the 
project.  It  was  a  predominantly  superficial  exercise  in 
design and execution because the purpose was to expose 
students to the process. They used the author’s solution 
instead  of  their  own  for  consistency.  The  task  was  to 
execute 18 required experiments, and then to select from 
several sets of options, with a rationale for the choices. 
Each  of  the  32  total  experiments  addressed  a 
representative  set  of  metrics  of  interest,  such  as  which 
munition was most effective against which target type, or 
what the maximum effective range of a missile was. One 
set of options addressed sensitivity analysis to establish 
reasonably optimal low-level performance characteristics 
like sweep rate of the field of view over the field of regard 
on a missile radar sensor.

The  project  supported  no  explicit  countermeasures,  but 
certain  tactical  maneuvers  were  tested  to  try  to  outwit 
smart  munitions  by  causing  them  to  exceed  their 
performance  limitations.  One  test  even  had  a  torpedo 
acquire  and  destroy its  own firing submarine.  Students 
said they had a lot of fun.

4.1  Test Report

The final deliverable was a formal report describing the 
test plan and its results. Each experiment addressed eight 
points, where  1–4 related to planning, 5–6 to execution, 
and 7–8 to presenting the results:

1. The rationale behind the test; i.e., what it was testing 
and why it mattered.

2. A general English description of the initial conditions 
of the test.

3. The commands for (2).
4. An  English  narrative  of  the  expected  results  of 

executing the test.
5. The actual  results with at  least  one screenshot of the 

most representative view.
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6. A snippet of the actual results from the log file with a
supporting  explanation,  including  statistics,  metrics,
and charts.

7. A brief discussion on how the actual results agreed with
the expected results, or if they disagreed, a hypothesis
of why.

8. A suggestion  for  how  to  extend  this  test  to  address
related aspects of potential interest.

4.2  Examples

Point  5  was  the  most  informative  aspect  of  each 
discussion. The flexibility of the world viewer allowed the 
students to select the most representative perspectives to 
support the rest of their discussion. For example, Figure 
4.1 illustrates the side view of dropping a bomb from an 
airplane flying to the right. Note the horizontal velocity 
imparted on the bomb.

Figure 4.2 presents a top view of two torpedoes fired from 
a submarine that then track a ship trying to outrun them.

5  Future Work

This virtual  test  range accommodates  a wide variety of 
plug-and-play  components.  At  the  low  level,  there  are 
endless options for extending it to other actor platforms 
and weapon systems with different technologies.  At the 
high level, more advanced strategic and tactical scenarios 
like  acquisition,  lethality,  survivability,  and engagement 
could be investigated.

Although  designed  for  a  stochastic  methodology  to 
determine  ranges  of  performance  experimentally,  the 
current  system  does  not  take  advantage  of  it.  This 
technique could support rich sensitivity analysis to tease 
out  countless  aspects  of  component  behaviors.  It  could 
also allow students to apply their knowledge of discrete 
mathematics,  statistics,  and  probability,  which  all  are 
required  to  study,  but  most  mistakenly  consider  to  be 
irrelevant  to  their  degree.  Practical  application of  these 
otherwise abstract concepts could enlighten their views on 
quantitatively  demonstrating  performance  and  showing 
confidence in the results.

6  Conclusion

Modeling,  simulation,  visualization,  and  analysis  are 
inherently  at  the  heart  of  most  processes  in  software 
engineering  and  software  quality  assurance,  yet  these 
subjects  are  not  traditionally  taught  together  from  a 
unified perspective. Not only did this work consolidate so 
many of their essential elements into a digestible package 
delivered over a fast-paced 10-week academic quarter, but 
the students overwhelmingly loved it. The average course 
evaluation was 4.7 out of 5 (outstanding).  Furthermore, 
the many laudatory comments have since contributed to 
refining both this system and how the course is delivered.
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Abstract—Undisciplined cohesion and coupling undermine 
countless aspects of quality software. Students, however, 
unfortunately tend to gravitate toward such approaches. This 
system mitigates this problem by forcing them to communicate 
with their components through a well-constrained hierarchical 
virtual network of networks. The application is a dynamic, plug-
and-play aircraft fly-by-wire system that processes a wide variety 
of commands to design, construct, and manipulate sensors, 
actuators, controllers, and communication buses concurrently in 
a flexible model-view-controller architecture. It successfully 
employs many systems-engineering concepts of modeling, 
simulation, visualization, and analysis toward the goal of 
instilling disciplined design, implementation, testing, and 
evaluation practices in students. In particular, it provides the 
pedagogical and programmatic frameworks for creating, 
executing, presenting, and analyzing meaningful test cases as 
part of formal test plans carried out in controlled experiments 
via scientific method. The system can be adapted relatively easily 
to countless other real-world multidisciplinary domains for reuse 
in other projects. Extensive results from classroom deployments 
show that students overwhelmingly benefit from this approach. 

Keywords—software engineering; control system; simulation 

I. INTRODUCTION

Software, by its flexible virtual nature, allows programmers 
to make quick and easy changes, at least compared to related 
physical disciplines like engineering. Unfortunately, without 
appropriate self-discipline, it is all too easy to produce messy 
spaghetti code with endless nasty interconnections. The 
equivalent rat’s nest of wires in an electrical system would be 
immediately apparent to anyone, but in a software system, no 
such obvious red flags exist without first learning to recognize 
them. The goal of this system is to instill disciplined design, 
implementation, and testing practices in software-engineering 
students by forcing them to work within a Java model-view-
controller architecture that behaves like a well-defined and 
protected physical plug-and-play network. 

The overarching philosophy is to use a systems-engineering 
approach of modeling, simulation, visualization, and analysis 
respectively to build a solution, execute it in a controlled way, 
present the results visually, and analyze what they mean as part 
of testing and evaluation. The model, in particular, is a 
simplified aircraft fly-by-wire system that controls a variety of 
flight components in complex real-time ways. This context, 

supported by background research, provided students in an 
undergraduate software-engineering course with a holistic 
understanding of the problem space such that they could create 
a corresponding clean implementation in the solution space. 
The objectives are typical of any software system: to separate 
the concerns, maximize cohesion, minimize coupling, and 
delegate responsibility appropriately. These considerations are 
further complicated by the need for uniform, safe, and 
repeatable concurrency among the components. Building and 
testing single-threaded code is difficult enough for most 
students; multithreaded (or the appearance of such here) 
absolutely requires a disciplined approach. 

II. BACKGROUND

All control systems take inputs of some sort and produce 
corresponding outputs of some sort. In traditional (non-
electronic) systems, the connections from the former to the 
latter are mechanical linkages like cables, pushrods, and shafts. 
For example, a car steering wheel directly drives the gearbox to 
deflect the front wheels. There is little possible dynamic 
variation in the operation, like changing the steering sensitivity 
based on vehicle speed, because the configuration of the static 
system is fixed. A “by-wire” system, on the other hand, 
translates the input from a sensor into an electronic signal that 
travels via a network to an actuator, which acts upon it as 
output. In this form, any amount of computer processing is 
now possible for dynamic real-time reconfiguration. 

In a fly-by-wire system, the primary control sensors are 
located in the cockpit in the form of a stick or yoke, as well as 
pedals, switches, and levers. The actuators are located around 
the airplane. Fig. 1 shows a basic configuration, which also 
includes the engines and landing gear. 

Fig. 1. Basic airplane actuators [1] 
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This work focuses on the behavior of the control system 
only, not on its effect on the airplane in flight. In other words, 
the airplane is basically stationary on a test stand. As a result, 
its degrees of freedom of motion and aerodynamics are 
ignored. For background, however, the elevators affect pitch 
(nose up or down) to change altitude; the ailerons affect wing 
roll to turn; and the rudder affects yaw to coordinate turns, 
much like the front wheel of bicycle does. 

III. MODEL 
This work uses a model-view-controller architecture. The 

model is the module that defines the machine being 
manipulated. The plug-and-play nature of the architecture 
allows it to accommodate other by-wire systems with relatively 
little difficulty. Further supporting this goal is the extensive use 
of well-established, reusable software design patterns [2]. For 
example, a subsequent offering of the same course used it as 
the basis of a toolkit for building and controlling heavy 
construction equipment. Follow-on work is planned for 
modeling railroads and railway equipment. 

A. Datatypes 
Significant, consistent anecdotal classroom evidence shows 

that students have a major problem with abstracting, 
maintaining, and manipulating data properly. Java primitives 
are appropriate in earlier low-level courses, but at higher 
project-based levels like software engineering, they lead to a 
proliferation of problems. For example, units, magnitudes, and 
limits are not applied consistently, error handling is 
inconsistent or almost nonexistent, and code bloats from 
haphazard attempts at reimplementing similar solutions in 
multiple places. 

To mitigate this situation, the architecture provides a rich 
set of self-contained concrete datatypes for every kind of 
relevant data; e.g., Acceleration, AngleHorizontal, 
AngleVertical, FlapPosition, Identifier, Percent, Power, Rate, 
Speed, and many dozens more not directly in play in this paper. 
Each maintains its own error checking and helper methods for 
manipulating and converting it appropriately. This approach 
lends itself to convenient unit testing in isolation. It also 
reduces the burden of documentation; e.g., avoiding having to 
state and enforce everywhere that horizontal angles are in 
mathematical degrees (as opposed to navigational degrees or 
radians) because AngleHorizontal always uses this form. 

Another consistent problem students have is with 
indiscriminate coupling and undisciplined, unprotected sharing 
of objects. Changing a mutable object in one place may have 
countless unexpected consequences throughout an entire 
system. To mitigate this problem, datatypes employ a 
functional paradigm, which makes them immutable. Any 
mutable action on them produces a new object via copy-on-
write semantics [3]. It is therefore exceedingly difficult for 
students to interact with the system outside the prescribed 
network infrastructure, intentionally or not. 

Finally, datatypes extensively use Java generics to 
constrain their application to appropriate contexts. Students are 
prone to hard-coding dangerous runtime casts and making 
decisions based on querying objects for their type with the 

instanceof operator instead of properly utilizing the object-
oriented principles of inheritance and polymorphism. Explicit 
casting should be avoided as much as possible in a dynamic, 
plug-and-play system. 

B. Intervals 
An interval is the data-structure equivalent of the presumed 

motive force that moves an actuator from one state to another. 
The basis is kinematics, or geometry in motion without regard 
to its causes [4]. Actuators play different roles and therefore 
have different state types, which the datatypes define, and 
intervals directly map onto and control. 

An interval has implicit or explicit limits; e.g., a Percent 
interval always ranges inclusively from 0 to 100, whereas a 
Speed interval ranges inclusively from its specified minimum 
to maximum values. In all cases, the current state must always 
reside on the interval. It is impossible for a student to cause an 
inconsistent state without detection and notification. 

Change in state as a delta is also configurable to account for 
slower or faster movement. In the linear variant, the delta never 
changes. In the nonlinear, it does so to account for acceleration 
or deceleration. Again, it is impossible to cause an inconsistent 
state. The interval always reflects a continuous function; e.g., it 
cannot achieve maximum delta without accelerating to that 
value by the rules. Likewise, it cannot change direction without 
decelerating to zero first. This behavior reflects the reality of 
the mechanical system that the interval represents. 

An interval is like an operating-system process in several 
ways. A nonpreempting request submitted to it is queued for 
execution. For example, requesting it to go to maximum value 
and then immediately to minimum value would entail 
increasing to completion (with initial acceleration and final 
deceleration) and then similarly decreasing to completion. A 
preempting request, on the other hand, would cause the 
currently executing request to complete gracefully with 
deceleration to zero as soon as possible, followed by servicing 
the new request. A terminate request functions in the same 
way, except that it schedules no subsequent action. A cancel 
request kills the currently executing request immediately with 
no graceful shutdown. It is not an option for normal interaction 
because it violates the kinematics; i.e., infinitely fast 
deceleration from the equivalent of dividing by zero in 

 rate = distance / time (1) 

Fig. 2 notionally depicts the state and delta (top and bottom 
lines of each graph, respectively) for a variety of combinations 
of linear and nonlinear movement in increasing and decreasing 
directions with intervening terminate and cancel actions. To 
demonstrate the value of using the architecture-supported 
intervals over their own ad hoc implementations, the students 
had to solve the basic elements of this problem as a standalone 
proof-of-concept Java program. The results were telling: their 
solutions were overwhelmingly large, unmanageable hacks, not 
one worked completely, and the average grade was 11%. They 
said it was an extremely eye-opening experience and 
acknowledged the value of the orthogonal approach in this 
work: one solution applicable to many problems [5]. 

117 of 168



Fig. 2. Sample kinematics intervals 

C. Buses
Every interval (as part of an actuator) resides on a

communication bus that transfers requests. Three types of 
interval servicing are possible: 

• Oneshot: service a request once, then expire
automatically; e.g., instantaneous on/off actions.

• Definite: service a request until a specified end
condition, then expire automatically; e.g., movement.

• Indefinite: service a request continuously, ending only
upon a terminate or cancel request; e.g., engine rotation.

In addition, requests may specify in detail the timing of the 
interval servicing: 

• Lead time: the amount of time that an interval should
initially perform no action. This models initialization.

• Duration: the total amount of time that the request will
be serviced. This applies to definite intervals only.

• Frequency: the rate at which actions are performed
while being serviced. This allows them to operate at a
fraction of the clock speed.

Requests are exactly that: requests. They are not imperative 
commands that must be honored (even though “command” is 
the conventional term used in flight control) [6]. In fact, the 
servicer decides how to process the request and responds to the 
submitter as follows: 

• IGNORED: ignored and discarded the request because it
was not considered applicable.

• REJECTED_INVALID: rejected the request, which
normally would be serviced, but cannot be now because
it is somehow invalid or inappropriate.

• REJECTED_UNABLE: rejected the request, which
normally would be serviced, but cannot be now for
some reason on the servicer’s side. The servicer may
inform the requester when it is available again.

• ACCEPTED_BLOCKED: accepted the request, but it
will be queued for later servicing because the servicer is
busy.

• ACCEPTED_SERVICING: accepted the request, and it
will be serviced immediately.

This handshaking approach was difficult for the students to 
embrace because they are used to shouting at their code 
imperatively to do what they want, and if it does not, then 
shouting louder. For example, one student admitted that his 
development process was to “[keep] throwing more code at the 
compiler until it shut up.” 

D. Actuators
Actuators are the interval-based virtual mechanisms that

cause the aircraft components in Fig. 1, as well as others, to 
change state appropriately. The presumed underlying motive 
force (electrical, hydraulic, pneumatic, thermodynamic, etc.) 
plays no role, only the resulting action. Section III.F addresses 
specific actuator behaviors in detail, especially in combination. 
In general, however, their data (what they are) and control 
(what they can do) adhere to the following constraints: 

• Rudder: deflects left or right to an angle.

• Elevator: deflects up or down to an angle.

• Engine: changes speed as a percentage of maximum
revolutions per minute.

• Aileron: deflects up or down to an angle; in roll mode,
they are always paired antisymmetrically on the wings,
so when one deflects, its counterpart deflects by the
same amount in the opposite direction.

• Speed brake: deflects upward to an angle; on a real
aircraft, separate dedicated actuators typically play this
role, but for pedagogical reasons, ailerons do so here in
speed-brake mode. There is no antisymmetry: all
ailerons deflect upward to cause increased drag.

• Main gear: extends or retracts as a percentage of
downward deployment.

• Nose gear: extends or retracts as a percentage of
downward deployment, but also simultaneously rotates
90 degrees to stow sideways in the fuselage.

• Flap: deflects downward to an angle. As Fig. 3 shows,
plain flaps rotate about a fixed point; for double-slotted
flaps, this point moves backward, and the flap
separates, requiring two coordinated intervals that are
both simultaneous and sequential.

Fig. 3. Plain and double-slotted flap deployment [7] 

E. Sensors
Whereas an actuator is an output device that changes state

on command, a sensor is its complement as an input device to 
indicate this state by querying the actuator on command. 
Sensors do not play a significant role in the current 
manifestation of this work because the logger discussed in the 
next section already captures state data for analysis. 
Nevertheless, they do introduce interesting advanced safety 
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considerations into the flight-control system for future work on 
model reliability, for example. 

For any number of reasons beyond the scope of this paper, 
a real-world mechanical system may erroneously exceed its 
specified design limits. An active preventative solution, in the 
form of a watchdog device, would immediately report any 
deviation as a fault [8]. A passive solution is also commonly 
present as mechanical stops that would physically prevent an 
actuator from exceeding its hard limits. However, it would still 
be possible to hit a stop and continue to try to move, likely 
resulting in wear or damage in the drive mechanism. A 
common hybrid approach is to monitor the actuator itself to see 
how hard it is working with respect to how much work it is 
performing: working hard with no effect likely means that it is 
at the limit, jammed, or otherwise interrupted. A garage-door 
opener is a good example. 

F. Controllers 
A fly-by-wire system is actually a hierarchical system of 

systems [9]. In this model, there is one master bus that runs 
from the cockpit throughout the entire aircraft, but no actuators 
are connected directly to it. Rather, it consists of controllers, 
which themselves have slave subbuses containing relevant 
actuators. This extra level of indirection allows for arbitrarily 
complex coordination at the receiving end (the actuators), 
where otherwise it would be the transmitting end (the cockpit) 
that would have to assume this responsibility. It also reduces 
bus traffic by sending consolidated requests to be interpreted, 
decomposed, and redistributed by the controllers as 
appropriate. The controllers are: 

• Rudder controller: always contains a single rudder 
actuator on its subbus. A request to it (i.e., change 
deflection angle) passes untouched to the actuator. 

• Elevator controller: always contains two elevator 
actuators. A request to it passes untouched to each. 

• Gear controller: always contains two main-gear 
actuators and a nose-gear actuator. A request to it 
(extend or retract) passes untouched to each. 

• Flap controller: contains an even number of 
symmetrically configured flap actuators, evenly 
distributed across the wings from left to right from the 
cockpit perspective. A request to it (downward 
deflection angle) passes untouched to each. 

• Engine controller: contains any number of 
symmetrically configured engine actuators, distributed 
the same as flaps. A request to it (power percentage) 
has two interpretations. In gang mode, it passes 
untouched to each actuator; in isolation mode, it passes 
untouched to only the specified one. 

• Aileron controller: contains an even number of 
symmetrically configured aileron actuators, also 
distributed the same as flaps. In standard roll mode, a 
request to it (upward or downward deflection angle) 
passes untouched to all actuators on the left wing, but 
the direction is inverted for the right wing. In mixed roll 
mode, the request addresses only the specified left 

actuator, and the other actuators on the left wing deflect 
as a ratio of it, and likewise those on the right. (Section 
VII discusses this process in more detail.) Finally, in 
speed-brake mode, the request (deploy or retract) passes 
to all actuators to deflect upward to their maximum 
angle or downward to neutral, respectively. 

Fig. 4 is an architecture for a typical two-engine passenger 
airplane, where L, R, and N respectively indicate left, right, 
and nose. Section V addresses the command generator. 

 
Fig. 4. Typical bus architecture 

Additional levels of indirection (i.e., controllers containing 
controllers) could also be added for complicated decision-
making. For example, in flight the appropriate amount of yaw 
from the rudder depends on the amount of roll from the 
ailerons with respect to airspeed. An aileron request could 
issue a secondary rudder request [10]. Similarly, roll reduces 
lift, which may be compensated for by the pilot or the control 
system. In general, Boeing’s approach, for example, requires 
the pilot to introduce more pitch as a separate intentional 
action, whereas Airbus’s does so automatically [11]. 

Although not part of this work, controllers in conjunction 
with sensors could monitor the behavior of actuators in 
concert. Symmetric configurations must be in identical (or 
identically inverted) states at all times; otherwise, the 
aerodynamic effects could be catastrophic. Similarly, advanced 
coordination of an autothrottle is possible [12]. 

Other complex monitoring relationships are also possible, 
but are deferred to future work. For example, in combination 
with flight data, the flight-control system could determine the 
operating limits that the pilot is permitted to reach [4]. Under 
normal circumstances, operating in so-called Normal Law, the 
system does not allow the aircraft to enter a region of unusual 
or diminished flight control. For rare cases, Alternate Law 
relaxes these restrictions, but it still would not allow the 
aircraft to exceed its maximum operating limitations. Direct 
Law basically disables automated oversight altogether for 
exceptional cases and allows the actuators to be driven as if the 
control system were purely mechanical. 

IV. VIEW 
The view module of the model-view-controller architecture 

depicts the state of the system in multiple forms. Its plug-and-
play nature allows other implementations to be added or 
substituted relatively easily. 
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A. Log 
The most basic — but also most informative — view is text 

output to a log file. This view supports arbitrary logging of any 
aspects of interest, but the built-in output is generally sufficient 
for most analysis. The relevant details of each state at each 
clock tick go to a text file that directly exports to Excel. Fig. 5 
shows an abridged form, which actually contains many more 
columns, as well as typically thousands of rows of events. 

 
Fig. 5. Abridged bus log 

Not only does this log represent the states of the controllers 
and actuators, but it also shows the bus traffic. The 
communication process involves submitting a request and 
getting one or more immediate responses from its servicer. If 
the request is subsequently serviced, notifications are sent back 
to the requester for specified conditions like decelerating for 
arrival at the final state, arrival at the final state, preemption, 
and so on. This information could be exported to other 
applications to generate timing and UML sequence diagrams. 

B. Graph Visualization 
The textual form of the log file is richly informative, but it 

is not intuitively understandable. However, its structure not 
only exports natively to Excel for a tabular representation; its 
fields are also strategically organized to allow event chains to 
be plotted as line graphs. Fig. 6, for example, depicts the 
actions of a rudder actuator at the following key time points: 

1. at initial position 0º neutral; command to 45º left 
2. arrives; command to 45º right 
3. arrives; command to 0º 
4. arrives; command to 30º left 
5. at 15º left preemptively command to 45º right 
6. arrives 

 

Fig. 6. Preemption test 

Despite multiple requests, it is clear that at no time does the 
actuator find itself in an inconsistent state. i.e., above or below 

the dashed lines depicting the physical limits. Moreover, the 
line represents a smooth, continuous function with no jerks or 
breaks through various acceleration, deceleration, and 
preemption actions. Such intuitive visual inspection is 
invaluable for testing and evaluation. Furthermore, 
mathematical analysis on the slope of the function would 
demonstrate that the performance remained within the 
specifications at all times. 

C. Three-Dimensional Visualization 
Visual representation in graph form is useful with respect to 

a localized part of the system like a single actuator or a group 
of related actuators. However, for a global systems-level view, 
three-dimensional visualization, as in Fig. 7, is far better. 

 
Fig. 7. Actuator visualization [1] 

As the next section discusses, actuator configuration is 
highly dynamic and need not correspond to any particular 
aircraft. As a result, the visualizer is stylized with oversize 
control surfaces that represent the appropriate actions, not 
necessarily the appropriate appearance. The visualizer can also 
depict metadata like physical limits and breadcrumb tracks 
showing a history of state changes. 

This OpenGL-based Java tool has seen extensive use in the 
author’s artificial-intelligence and software-engineering 
courses, related pedagogical research, and industry work as a 
general-purpose world viewer [13,14]. It is freely available at 
shelby.ewu.edu. 

V. CONTROLLER 
The controller is the user interface for building the model 

and running the simulation. It is based on a regular grammar 
that employs the Interpreter and Command design patterns [2]. 
The instructor's solution defines the parser with JavaCC, but 
the students had to design and implement their own with 
standard Java. This effort entailed thoroughly understanding 
the problem domain of the commands and their proper usage, 
as well as the solution domain of the API for the provided 
architecture. It strongly discourages head-first, brute-force 
coding by making such an undisciplined approach obvious and 
unpleasantly difficult. 

A. Creational Commands 
Creational commands define and build the actuators via the 

Builder and Factory design patterns [2]. Each contains a unique 
identifier, the interval limits, a delta value for changing state on 
the interval, and an acceleration for changing the delta value. 
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All eight of these commands (for aileron, elevator, and rudder 
actuators, etc.) have the following form: 

CREATE RUDDER id WITH LIMIT angle 
  SPEED speed ACCELERATION acceleration 

B. Structural Commands
Structural commands define and build the controllers from

the actuators created above. Each contains a unique identifier 
and the actuators. The controllers with a fixed number of 
actuators are: 

DECLARE RUDDER CONTROLLER id1 
 WITH RUDDER id2 

DECLARE ELEVATOR CONTROLLER id1 
 WITH ELEVATORS id2 id3 

DECLARE GEAR CONTROLLER id1 
 WITH GEAR NOSE id2 MAIN id3 id4 

The controllers with a variable number of actuators are: 
DECLARE FLAP CONTROLLER id WITH FLAPS idn+ 

DECLARE ENGINE CONTROLLER id 
 WITH ENGINE[S] idn+ 

DECLARE AILERON CONTROLLER id 
 WITH AILERONS idn+ PRIMARY idx 
 (SLAVE idslave TO idmaster BY  
 percent PERCENT)* 

All controllers must be added to the master bus: 
DECLARE BUS id WITH CONTROLLER[S] idn+ 

And finally the configuration is locked to prohibit further 
creational or structural commands and to authorize most 
behavior commands: 

COMMIT 

It is at this point that students perform any late consistency 
checks to verify that the system is configured properly before 
any manipulation of it can occur. For example, the number of 
engines and their properties must mirror each other on the 
wings. From a practical design standpoint, such a check cannot 
be done earlier while the engines are still being added because 
the process is sequential. Determining what can be done 
immediately versus deferred for later, as well as how, is an 
important part of software design thinking [15]. 

C. Behavioral Commands
The behavioral commands send requests across the master

bus to be interpreted by the appropriate controller(s): 
DO id DEFLECT RUDDER angle LEFT | RIGHT 

DO id DEFLECT ELEVATOR angle UP | DOWN 

DO id DEFLECT AILERONS angle UP | DOWN 

DO id SPEED BRAKE ON | OFF 

DO id DEFLECT FLAP position 

DO id SET POWER power 

DO id SET POWER power ENGINE id 

DO id GEAR UP | DOWN 

HALT id 

D. Miscellaneous Commands
The miscellaneous commands manipulate the execution of

the simulation. The first set affects the system clock: 
@CLOCK rate 

@CLOCK PAUSE | RESUME | UPDATE 

Especially important for testing is the capability to wait a 
fixed amount of time. The preemption tests, in particular, need 
to be timed exactly. Manually issuing a command would result 
in inconsistent results over multiple runs. The command is: 

@WAIT time 

Finally, commands may be supplied in text files for 
execution as scripts, which greatly simplifies repeatable 
testing: 

@RUN "filename" 

VI. CONTROLLED EXPERIMENTS

The primary goal of this work is to instill disciplined 
software-development behavior in students. However, it also 
naturally serves as an effective platform for systematically 
evaluating the performance of a model by using scientific 
method in controlled experiments as follows: 

1. Design and carry out an experiment (a test) to
investigate something of interest.

2. Visualize and analyze the results.

3. If the results are unsatisfactory, perturb one and only
one parameter in the experiment and rerun it.

4. If the new results are more promising, continue down
this line of investigation; otherwise, either perturb the
parameter in a different way or reset it and perturb a
different parameter.

5. Continue to refine the model until the results are
satisfactory.

Consistent with the primary goal, students gain valuable 
experience with discovering patterns and building mental 
models that connect causes to effects [16]. This approach 
reduces the amount of random, uninformed generate-and-test 
cycles, which generally allows students to be more productive 
by getting better results with less effort. 

VII. RESULTS

The students’ project consisted of three parts: implement 
the parser, implement the controllers, and execute a detailed 
test plan. The results of the first two parts were straightforward 
because this system does not allow them to deviate much from 
proper coding principles. The third part — testing and 
evaluation of the entire system — is the emphasis here. The 
deliverable required a formal report describing the test plan and 
its results. Each of 27 experiments addressed eight points, 
where 1–4 related to planning, 5–6 to execution, and 7–8 to 
presenting the results: 

1. The rationale behind the test; i.e., what it was testing
and why it mattered.
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2. A general English description of the initial conditions.

3. The commands for (2).

4. An English narrative of the expected results.

5. The actual results with at least one graph showing the
most representative view of the states.

6. A snippet of the actual results from the log file with a
supporting explanation, including statistics, metrics,
and graphs, as appropriate.

7. A discussion on how the actual results agreed with the
expected results, or if they disagreed, a hypothesis on
why.

8. A suggestion for how to extend this test to address
related aspects of potential interest.

The results themselves are not as relevant here as what the 
students learned from them, but the following examples help 
convey how they learned it. Fig. 8 depicts the behavior of a 
three-engine configuration (where the dashed lines overlap). At 
time point (1), all three engines were commanded to increase 
power from 0 to 70%. Upon reaching this target at (2), the 
center engine was commanded to reduce power back to 0%. At 
(3), while the center engine was still decreasing, all three were 
commanded to go to 100%, which took until (4) to achieve. 

Fig. 8. Engine manipulation 

Determining correctness (testing) and evaluating 
performance (optimization) require three critical components: 
the expected results, the actual results, and a meaningful way 
to compare the two. All too often students lack one, two, or 
even all three of these. While the technical act of acquiring 
such data is necessary, it alone is not sufficient to make sense 
of the data. Students must have a firm understanding of the 
subject matter and its context within the problem domain. The 
pedagogical approach in this work provides endless 
opportunities to ground the programmatic exercises to reality 
in order to help students develop and improve their critical-
thinking skills in computer science. 

For example, experiments in engine manipulation could be 
better understood by knowing that it is normal procedure for 
pilots of many commercial airliners to spool the engines 
initially to 50% power on takeoff and then wait until they all 
reach this point before going to full power. The natural 
variability in engine performance does not guarantee exactly 
the same behavior simultaneously, which could have adverse 
effects on controllability during the takeoff roll. With this 
knowledge, students may realize that they are not just 
generating graphs; they are generating graphs that mean 

something, and if that something is not what it should be, then 
they have considerable insight into what may need fixing. 

Another example in Fig. 9 shows a complex example of 
mixing eight ailerons with different performance properties in 
roll mode. At (1), with all ailerons at their neutral position of 0 
degrees, the master aileron (M) is commanded to deflect 
upward to 45 degrees. The slave ailerons on the same wing 
move upward as a ratio of its movement, while those on the 
opposite wing correspondingly do so downward. Upon 
reaching 45 degrees at (2), the master is commanded 
downward to –40 degrees, which is achieved at (3). The graph 
convincingly shows that all ailerons remain antisymmetrically 
synchronized at all times. 

Fig. 9. Aileron manipulation 

Fig. 10 shows the same ailerons acting in speed-brake 
mode. Starting again from neutral 0 degrees at (1), the eight 
ailerons deflect upward to their maximum limit of 90 degrees, 
which is achieved by all by (2). The master is then commanded 
to –20 degrees in roll mode, which results in behavior 
analogous to that in Fig. 9. The details of the action are beyond 
the scope of this paper, but again, the graph clearly 
demonstrates them to the students, who have the theoretical 
and practical foundation to know how to interpret it. 

Fig. 10. Speed-brake manipulation 

Finally, Fig. 11 shows a four-flap configuration, where two 
types of flaps differ in performance slightly. At all times 
through a variety of actions, the flaps of the same type remain 
synchronized, and the two types act appropriately with respect 
to one another. Such insight into the behavior of a complex 
system is invaluable in testing and evaluation. 
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Fig. 11. Flap manipulation 

Reporting and evaluating the results of human subjects in 
work of this scope must be summarized due to limited space. 
However, it is based on a significant breadth and depth of 
objective and subjective measures including anecdotal 
observation, individual contributions from a background 
survey, 11 assignments, and 10 anonymous weekly 
assessments, as well as individual and team contributions from 
18 project status reports, a project reflection, a team evaluation, 
a self-evaluation, and a course evaluation. 

Most telling, 90% (28 of 31) of the participating students 
indicated that the graphical form of the test report directly 
contributed to a better understanding of what their code was 
actually doing, where they otherwise would have had less 
confidence in their results. Overall, the students rated the 
project 4.6 out of 5 (excellent). 

VIII. FUTURE WORK 
Almost any complex physical system is characterized by 

input, processing, and output that could map to this 
architecture. For reuse in future projects, it should 
accommodate more complex interval behaviors, as well as 
other sensors, actuators, and controllers. Of particular interest 
within this application are detecting and handling faults and 
managing operating laws. For a graduate-level course, 
especially for software quality assurance, the evaluation 
framework based on controlled experiments could be 
significantly expanded for richer analysis. In particular, the 
introduction of probability would contribute to a powerful 
stochastic Monte Carlo methodology. 

IX. CONCLUSION 
This work mitigates the common problem-solving strategy 

of many students who undermine the design of a system by 
indiscriminately throwing more code at every issue they 

encounter. The hierarchical quasi-network-based architecture 
effectively prevents them from communicating with their 
components by any means except the prescribed ones. Its 
datatype-oriented interval framework safely and elegantly 
manages complex physical behaviors concurrently. This 
unified approach, combined with an overarching framework of 
modeling, simulation, visualization, and analysis, further 
provides a disciplined strategy for creating, executing, 
presenting, and analyzing meaningful test cases as part of 
formal test plans based on a sound methodology of controlled 
experiments via scientific method. Extensive results from a 
classroom deployment support the conclusion that students 
overwhelmingly benefit from this approach. 
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ABSTRACT 
 Software engineering is a highly multidisciplinary effort that plays a core role in 
today’s complex systems of systems. Students need breadth and depth exposure to 
classroom projects based on substantial real-world problems, but in a way that is 
manageable for them and the instructor. This work showcases a holistic approach to an 
extensive, student-friendly Java simulation architecture for an air-traffic-control system. 
It addresses weaknesses and preconceived notions among students to help them 
understand, define, connect, manipulate, and evaluate the endless dots among vast, 
complex resources in an intentionally unfamiliar problem domain. 
 
1. INTRODUCTION 
 Contemporary software engineering is a multidisciplinary fusion of many 
domains far beyond just the core programming that students often believe it to be. 
Learning to develop software for complex real-world systems of systems is essential 
preparation for the field [4]. However, adequately exposing students to the breadth and 
depth of a representative project within the classroom environment is logistically difficult. 
This paper discusses an approach applied to the vast domain of air traffic control. The 
objectives were conventional: to understand and translate a complex problem domain into 
an appropriate solution domain, then to evaluate its performance from end to end. The 
novel aspect is the 372-class Java model-view-controller simulation architecture made 
available to the students in support of their tasks. Unlike most software that addresses 
non-toy problems, this architecture was designed from the ground up to be 
understandable and accessible to students. Furthermore, its modularized approach 
intentionally aligns with the teaching philosophy for the third-year software-engineering 
course that used it, as well as to specifics of the curriculum and the student population. 
 A pedagogical emphasis is to push students outside of their comfort zone, where it 
becomes unavoidable to apply research and critical-thinking skills to make holistic sense 
of an overwhelmingly unfamiliar problem. They must understand not only how the real-
world system is constructed and operates, but also how those elements map onto the 
software-development process and the subsequent solution. In particular, they had to 
establish the underlying building-block primitives and the operations for combining them 
into more complex structures and actions within the architecture. When left to their own 
devices, students tend to gravitate toward bloated and brittle ad hoc solutions made up as 
they go, whereas this approach required demonstrably unified, orthogonal, reusable, 
scalable, and extensible solutions. The final product was a multiagent, continuous time-
stepped simulation in which students played the computer-science roles of analyst, 
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designer, implementer, and tester, as well as multiple end-user roles as air traffic 
controllers. 
 
2. BACKGROUND 
 The National Airspace System is a vast subject with complex technology and 
endless rules and regulations [2, 6]. For practicality, the problem space for this work is 
reduced as much as possible, while still retaining its essential elements. 
 Aircraft are generalizations of airplanes, helicopters, and unmanned aerial 
vehicles. The only requirement is that they can be controlled in the air and on the ground 
in terms of which direction to travel in, where to go, how fast, and how high. All aircraft 
are automated; there is no user role. 
 Navigational aids (navaids) help aircraft fly between fixed points in the world. 
The operational aspects are generalized into two categories. Global navaids define points 
between airports with nondirectional beacons (NDB) and very-high-frequency 
omnidirectional range (VOR) stations. Local navaids define points within airport 
environments. Their components (i.e., marker beacons for distance, and localizer and 
glideslope for horizontal and vertical guidance, respectively) comprise an instrument 
landing system (ILS) to guide an aircraft to a runway. All navaids are automated. 
 Airports consist of interconnecting runways and taxiways, as well as ramp areas 
between them and the terminals, which contain gates. Runways have an ILS at each end. 
 Airspace consists of various three-dimensional geometric partitions that delineate 
different control regions and procedures. The students were using this system to learn 
about applied real-world software engineering, not about how to manage air traffic 
realistically, safely, and efficiently, so there was considerable freedom here. 
 Air traffic controllers are the roles the user plays with different radar displays. 
While multiple users could play different roles simultaneously, the intent was for a single 
user to transition a single aircraft through all the gate-to-gate stages of a flight by 
changing roles at appropriate times. The ground controller’s role is to manage aircraft at 
all points on the airport grounds except on the runways. The normal flow is to instruct a 
departing aircraft to move from its gate onto the ramp, and then via any number of 
taxiways up to a runway for takeoff. The process is reversed for arrival. The tower 
controller’s role is to manage aircraft on the runways and in the air immediately 
departing or approaching them. For departure, the ground controller hands the aircraft off 
to the tower controller, who instructs it to take off. The process is reversed for arrival. 
The departure controller’s role is to manage airborne aircraft from beyond the immediate 
runway environment out to roughly 30 nautical miles. For departure, the tower controller 
hands the aircraft off to the departure controller, who guides it outbound. The process is 
reversed for arrival with the approach controller. Finally, the enroute controller’s role is 
to manage airborne aircraft between the departure and approach regions of airports. The 
departure controller hands the aircraft off to the enroute controller, whose control zone 
extends hundreds of miles. The process is reversed for arrival with the approach 
controller. An aircraft can take off and land within the same zone, or it may be handed off 
to adjacent zones and enroute controllers. 
 
3. ARCHITECTURE 
 The architecture combines traditional model-view-controller modules that clearly 
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separate the main concerns of the system [5]. While they are still interconnected, the 
dependencies are kept to a minimum such that different versions of the modules may be 
implemented and tested independently and then substituted seamlessly. 
 
3.1 Model 
 The model defines the components in the world from various software-
engineering perspectives. All maintain a state with their identifier, position, orientation, 
etc. Static components like navaids and airports do not change state, whereas dynamic 
ones like aircraft do.  
 Component data and control—what they are and are capable of doing, 
respectively—map directly to class member data and methods in object-oriented 
programming. Extensive classroom evidence shows that students have a major problem 
with abstracting, maintaining, and manipulating real-world data properly. Java primitives 
are appropriate in earlier low-level courses, but at higher project-based levels, they lead 
to a proliferation of problems. For example, units, magnitudes, and limits are not applied 
consistently, error handling is almost nonexistent, and code bloats from haphazard 
reimplementation of similar solutions in multiple places. To mitigate this situation, the 
architecture provides a rich set of self-contained concrete datatypes for every kind of 
relevant data; e.g., airspeed, altitude, coordinates, course, distance, heading, latitude, 
longitude, and dozens more. Each maintains its own error checking and helper methods 
for manipulating and converting it appropriately. This approach lends itself to convenient 
unit testing in isolation. It also reduces the burden of documentation. 
 Component behavior is what is done with dynamic components, or what they do 
on their own. In particular, it provides the context for making aircraft act appropriately 
with respect to their real-world counterparts they represent. There are two categories. 
Primitive instructions turn an aircraft to a course, fly to a navaid, fly for a certain time, 
assume an altitude, or change speed, all within its defined performance limitations. They 
are independent, and the controller must issue them individually, which takes significant 
time and communication bandwidth. Composite instructions, on the other hand, are 
predefined maneuvers that the controller issues once and then delegates their 
interpretation and autonomous execution to the aircraft. They are the emphasis here 
because they required students to represent the behavior of maneuvers in terms of 
contextually dependent primitive instructions mapped onto the data and control. The 
logic must operate solely by issuing the primitives to the architecture through the API. 
Customary control statements like conditionals and loops are not an option. This 
approach forces students to understand how to communicate with the architecture. 
 One significant task was to implement variations on a holding pattern, which is 
any orientation of the racetrack shape in Figure 1 that keeps an aircraft continuously 
flying within a protected region until it can be handled further. The controller would 
simply instruct the aircraft to hold at navaid r. Depending on where it is initially with 
respect to r, it must reorient itself to fly clockwise around the pattern. The sequence of 
corresponding primitives is below each. The last step of Parallel and Teardrop 
corresponds to the last five in Direct. 
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Direct Parallel Teardrop 

 
 

 
a fly to fix r 
w turn right to reciprocal course 
x fly for one minute 
y turn right to pattern course 
z fly to fix r 
r repeat from w 

a fly to fix r 
b turn left to reciprocal course 
c fly for one minute 
d turn left 180 degrees 
e fly to fix r 
w continue around x, y, z, w, ... 

a fly to fix r 
b fly for 45 seconds 
c turn right to pattern course 
d fly to fix r 
w continue around x, y, z, w, ... 

Figure 1: Holding Patterns [1] 
 
 Another representative task was similar. To land (generally after holding), an 
aircraft must be aligned with the assigned runway. However, it does not fly directly there. 
Rather, the controller instructs it to intercept a navaid twice before following the 
instrument landing system down to the runway. As with holds, the initial location and 
direction of the aircraft with respect to the navaid and runway dictate what it must do to 
align itself autonomously. Figure 2 shows three variants of an aircraft executing this 
maneuver, called a procedure turn, along with their underlying primitives. A fourth 
variant, where the aircraft is already aligned, would fly directly to r then s. 
 

Racetrack Modified Racetrack S-Turn 

   
a fly to initial approach fix r 
b turn right to runway reciprocal  
c fly for one minute 
d turn right to landing course 
e fly to final approach fix r  
f fly to ILS s  

a fly to initial approach fix r 
b fly for 45 seconds 
c turn right to runway reciprocal 
d fly for 45 seconds 
e turn right to landing course 
f fly to final approach fix r 
g fly to ILS s  

a fly to initial approach fix r 
b turn left to 135 degrees from  
 landing course 
c fly for 60 seconds 
d turn right to landing course 
e fly to final approach fix r 
f fly to ILS s  

Figure 2: Procedure Turns 
3.2 View 
 The role of the view module is to depict what is happening in the world. The 
user’s view consists of any number of radar displays, as in Figure 3. The only technical 
difference between them is their scale and the details they render. The primary 
architectural aspect of interest for the students was the layered compositionality that turns 
details on or off. Any number of layers, like weather or background clutter, can be 
superimposed for unlimited scalability and extensibility. 
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 Ground Departure/Approach  Enroute 
   

Figure 3: Radar Displays 
 
 For testing and evaluation, the state of the model also exports to external 
visualization tools. Figure 4 respectively shows two and three-dimensional views from 
Gnuplot and from a Java 3D visualizer used in many of the author’s projects [7]. 
 

   

Figure 4: External Visualization 
 
3.3 Controller 
 The role of the controller module is threefold: to accept instructions from the user 
to build the world; to control the aircraft in the world; and to operate the metalevel 
aspects of the simulation. The basis of these text commands is well-established software 
design patterns that partition them into four categories [3]. The students had to build the 
parser for them. The 16 creational commands define the available components; e.g., 
CREATE VOR MyVOR AT LAT 47*33’53.805” LON 117*37’36.789” ALT 2756.3 ON 

FREQ 115.50. The 11 structural commands connect composite components, such as 
airports with taxiways and runways, as well as add all components in use to the world. 
The 25 behavioral commands allow the user to communicate with the aircraft. Finally, 
the 10 miscellaneous commands allow for control over the simulation, such as setting up 
and running tests, and logging their results. 
 
4. RESULTS AND DISCUSSION 
 The objectives were to understand and translate a large, complex problem domain 
into an appropriate solution domain, then to evaluate the performance of the final product. 
Reporting and evaluating results in work of this scope is limited by space, so this part is 
heavily generalized. However, it is based on a significant breadth and depth of objective 
and subjective measures including anecdotal observation, individual contributions from a 
background survey, 11 assignments, and 10 anonymous weekly assessments, as well as 
individual and team contributions from 18 project status reports, a project reflection, a 
team evaluation, and a course evaluation. 
 The development process could be characterized through a narrative as mildly 
oppositional. Students entered the course with limited skills but an overabundance of 
confidence. They wanted to code, which is what they considered software engineering to 
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be solely about. Given the early opportunity to demonstrate their perceived coding skills 
on a proof-of-concept task, the results were disastrous because they did not recognize the 
value of critical thinking in decomposing, analyzing, and understanding the problem 
domain. In fact, they objected to these activities as “busy work.” They considered 
themselves already conversant in the subject matter from media portrayals of aviation and 
air traffic control, as well as from “common sense.” Most of this background was 
irrelevant, misleading, or completely wrong. They did not appreciate the value of 
designing a solution that demonstrably corresponded to the problem it addressed because 
they lacked an understanding of both the problem and how to use code appropriately for 
real-world solutions. They did not make effective use of the documentation for the API 
and many other extensive resources provided for the architecture, and instead opted to try 
to do it their own way by brute force, with little success. Gradually, however, they did 
come to appreciate the tenets of software engineering that they were being forced to 
apply. In the project reflection, 84% said that they recognized the purpose of each step, 
and 86% admitted that they would have been unlikely to achieve a solution of similar 
quality if they had done it their own way. 
 Evaluating performance of a system is a critical part of testing, but often in the 
classroom environment, it does not get adequate coverage for logistical reasons. Here it 
was integrated throughout as a major part of the project. The final deliverable was a 
formal report describing the test plan and its results. Each of 47 experiments addressed 
eight points related to the planning, execution, and presentation of results. The students 
had only a general description of each test to satisfy, from which they had to determine 
and execute the appropriate instructions, collect the data, compare and contrast the actual 
with the expected results, present the findings, and draw conclusions. It was here that 
they definitely appreciated the holistic activities that led them to this point: 89% said they 
understood how everything connected and why. 
 
5. CONCLUSION 
 This paper showcased part of an approach to helping students establish and 
connect the dots among numerous complex, unfamiliar resources within a large but 
manageable real-world project. It walked them through a development process of 
accepting what software engineering is really about, and then helping them make the best 
use of their existing technical skills to perform it. The final product was an extensive and 
highly flexible multiagent simulator that allowed the students to play many roles in its 
development and usage. A rich set of measurements showed how the students matured 
from start to end. 
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Abstract

This paper presents the preliminary results of an extensible 
Java architecture for modeling, simulating, visualizing, and 
analyzing  modularized,  plug-and-play  machine-learning 
strategies  applied  to  instrument-based  airplane  flight 
control.  A set  of  basic  flight  maneuvers  challenged  the 
machine to learn how to fly unsupervised by trial and error,  
from  which  the  learning  module  attempted  to 
introspectively  determine  interdependencies  among  the 
many  inputs  and  outputs.  For  baseline  comparison,  this 
work also included a pilot  study on human subjects who 
conducted the same experiments. The overarching goal was 
to  determine  how,  and how well,  both groups  learned to 
solve the same flight-related problems on their own, which 
could be useful to refine and expand the learning strategies.

Introduction

Flying an airplane by reference to its cockpit instruments 
alone — no  external  visual  cues — is  a  complex,  multi-
dimensional, real-time task that maps a small set of inputs 
to  a  large  set  of  dynamically  changing  outputs  in  a 
continuous feedback loop. Formally learning to understand 
and  manipulate  such  a  system  is  mostly  a  top-down 
directed process, whereby a teacher explains problems and 
how  to  solve  them,  and  then  the  learner  repeatedly 
practices variations on the solution process under different 
conditions  until  achieving  consistent,  satisfactory 
performance (Guralnick and Levy 2009). A problem with 
this  approach  for  machine  learning  is  that  the  teacher’s 
investment  and  oversight  may become so  extensive  that 
they are almost explicitly programming the solution (Poli, 
Langdon, and McPhee 2004).

Although impractical  in  real  life,  learning to  fly in  a 
predominantly unsupervised bottom-up manner by trial and 
error  may also be effective.  In  a  simulated  environment 
with  no  real  consequences  for  failure,  the  unsupervised 
learner may be able to develop their own model of how the 
system operates with far less hands-on involvement from 
the  teacher.  Not  only  may  it  be  possible  for  this 
reinforcement approach to achieve the same goals, but if 
done strategically, it could also introspectively show how it 

learned to do so for insight into the process of both flying 
and learning to fly (Haykin 1994; Harrington 2012).

This work focuses on an extensible architecture for the 
modeling,  simulation,  visualization,  and  analysis  of 
instrument-based airplane flight control, with a plug-and-
play  module  for  the  learning  strategy.  The  long-term 
application is to investigate and compare various machine-
learning strategies. This paper describes the architecture, a 
straightforward  proof-of-concept  learning  strategy,  and  a 
pilot study of human subjects for comparison. The primary 
goal is to determine how, and how well, both groups learn 
to solve the same flight-related problems on their own.

Pedagogical Foundation

Any  nontrivial  system  has  complex  interrelationships 
among its components. The continuous mapping of inputs 
to processing to outputs is based on countless direct and 
indirect  dependencies,  correlations,  causes  and  effects, 
stimuli and actions, and so on (Haykin 1994; Jones 2008). 
The framework for learning here is based on first decom-
posing the problem space of flight data into its constituent 
W5H question words (i.e.,  who,  what,  when,  where,  why, 
and  how),  and then trying to establish a richly intercon-
nected  associative  DIKW  structure  for  it  hierarchically 
from superficial to deep understanding as follows (Bloom 
1956; Dorn 1989; Irish 1999; Rowley 2007):

• D ata: raw values with no associativity or context;  what 
questions.

• I nformation: values in one context; how questions.
• K nowledge:  values  in  multiple  contexts;  when,  where, 

and why relationships.
• W isdom:  creation  of  generalized  principles  by 

connecting a network of contexts from different sources 
for predictive, anticipatory, proactive understanding.

Figure 1: Learning Associativity

Data Information Knowledge Wisdom
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An accomplished learner (the  who) can generally indicate 
what happens  when and  where,  and  how it  happened or 
how to  make  it  happen,  but  they  do  not  necessarily 
understand  why.  The  introspective  aspect  of  this  work 
allows for postanalysis by a subject-matter expert to glean 
insight  into  the  rationale  behind  decisions.  Such  insight 
could be used to refine teaching and learning processes.

System Architecture

The system consists of 327 Java classes, with Swing and 
Java 3D for  the graphics.  The human test  subjects were 
using this code base primarily for developing an unmanned 
aerial  vehicle  simulator  as  the  project  in  their 
undergraduate  software-engineering  course,  so  much  of 
this code is not directly related to this work yet. The main 
components of interest here are the flight-dynamics model, 
machine-learning engine, instrumentation, and data logger.

Flight Dynamics

The  flight  dynamics  reflect  a  Cessna  172,  which  is  the 
world’s most popular airplane thanks to its docile handling 
characteristics  and  forgiving  nature  (Cessna  2014).  The 
underlying  flight-dynamics  model,  while  a  necessary 
abstraction and simplification of reality,  still  captures the 
main elements of any traditional fixed-wing aircraft (FAA 
2011). Its six degrees of freedom represent where the air-
plane is positioned in three-dimensional space, and where 
it  is  facing.  Specifically,  it  uses  a  right-hand  coordinate 
system for  x,  y,  and  z,  as  indicated  in  Figure  2,  where 
rotation about each axis is respectively roll, pitch, and yaw. 

In  addition,  two  axes  correspond  to  the  main  forces  of 
flight. Thrust moves the airplane forward along the x axis, 
which drag opposes. Lift is always perpendicular to the xy 
plane, while weight (gravity) is always straight down. The 
x,  y,  z and weight components are in the global (world) 
frame  of  reference  and  are  independent  of  the  airplane, 
whereas  roll,  pitch,  yaw, thrust,  drag,  and lift  are in the 
local frame of reference.

Input

The flight control surfaces in Figure 3 redirect airflow over 
the airplane to change the roll, pitch, and yaw, which in 
turn contribute to changes in the (x, y, z) position. The ele-

vator on both sides of the horizontal stabilizer deflects up 
or down in unison to change pitch. The ailerons outboard 
on each main wing deflect  up or  down in opposition to 
induce roll.  The rudder on the vertical stabilizer deflects 
left  or  right  to  coordinate  changes  in  yaw.  The  flaps 
inboard on the wings deflect down in unison to increase the 
wing lift and drag, generally only for landing. Finally, the 
propeller  generates  thrust.  The  Flight  Dynamics  
Processing section describes these relationships in detail.

The primary real-world control interface usually involves a 
wheel,  yoke,  or  stick,  as  well  as  pedals.  For  logistical 
reasons, the human interface was limited to the keyboard. 
There  were  three  modes  of  operation  connecting  a  key 
press to an action:

• Instantaneous changes  go  to  the  maximum  limit 
immediately and return to neutral upon release.

• Incremental auto changes occur stepwise until reaching 
the maximum limit  or  the  key is  released,  then  return 
stepwise to neutral.

• Incremental  manual changes  occur  stepwise  until 
reaching the maximum limit or the key is released, then 
remain there. Opposite action is necessary to neutralize 
the effect.

The  throttle  was  always  in  incremental  manual  mode. 
Otherwise,  this  paper  consider  only  instantaneous  and 
incremental  auto.  The  modes  remained  separate  in  the 
experiments for independent analysis. The rationale is that 
instantaneous  inputs  are  likely  tied  to  determining  only 
what the  appropriate  action  is  and  when,  whereas 
incremental  inputs  also  factor  in  how much to  apply in 
terms of time, as well as how to cancel the action. 

Output

To fly — and  especially  to  learn  to  fly — the  pilot  needs 
constant awareness of the state of the airplane with respect 
to the world, known as situational awareness (FAA 2011). 
The underlying mathematical model, with its 32 variables, 
is  a  major  simplification of  the real  world with perhaps 
several  times  this  number  (Napolitano  2011).  However, 
most of these data are not directly accessible to the pilot, 
who is limited to observing only what is depicted by the 
instruments. (Visual and kinesthetic [motion] senses play a 
role in visual flight, but not in instrument flight; in fact, 

Figure 2: Coordinate System (Sketchup 2014)
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ignoring  kinesthetic  inputs,  which  are  dangerously 
deceiving, is a major challenge.)

Excel
Instruments  depict  data or  information either  by directly 
presenting it (e.g., altitude determined by air pressure) or 
indirectly computing it from multiple fused sources (e.g., 
vertical speed as a change in altitude over time). While the 
focus  on  learning  here  by  both  human  and  machine  is 
limited to the instrument depiction, it is valuable (from a 
DIKW standpoint) to see the underlying raw source.  An 
extensive log file conveniently exports directly to Excel, as 
in Figure 4.

While  these  values  represent  the  discrete  states  of  the 
simulation  in  every pertinent  detail,  no  human  — even  a 
subject-matter expert — could make intuitive sense of them 
in this form, which continues for thousands of entries for 
most maneuvers. Basic visualization as line plots, however, 
as  in  Figure  5,  can  be  very  revealing.  While  this 
representation  is  beyond  the  scope  of  this  paper,  it  is 
relevant and worthwhile to mention because the key aspect 
in their value is in deciding which data to plot: meaningful 
relationships  are  only  apparent  when  presented  as 
appropriate  combinations  of  independent  and  dependent 
variables. 

Humans, lacking any insight into the raw data at all, would 
not be able to decide wisely which plots to generate. Most 
combinations  would  be  meaningless,  although  a  human 
would likely find many baseless correlations. Indeed, in an 
earlier  assignment,  students  were  seriously  confused  by 

extraneous data and drew wildly incorrect conclusions. A 
similar situation commonly occurs with machine learning 
by  overfitting  the  data,  among  other  causes  (Conway 
2012). Although a machine can easily consider countless 
combinations,  very  few  of  them  would  truly  reflect 
meaningful  correlative  and  causative  behaviors  of  the 
unknown system. Therefore, any brute-force approach on 
the  raw data  would  need  to  be  selective.  This  foresight 
played  an  important  role  in  deciding how to  set  up  the 
machine learning to operate on the instrumentation data, as 
discussed in the Machine Learning section.

Instrumentation
The nine instruments in Figure 6 depict the refined state of 
the airplane derived from the raw data. Students in another 
earlier assignment had already researched their basic form 
and function, but until this assignment had never seen them 
in operation. The only difference between the student and 
machine perspectives was that the students saw this visual 
representation,  whereas  the  machine  saw  the  equivalent 
variable representation (e.g., needle position).

A. Airspeed Indicator (ASI): shows airspeed in knots.
B. Attitude  Indicator  (AI):  shows  pitch  and  roll  via  an 

artificial horizon.
C. Altimeter: shows altitude in feet above sea level (which 

is  the  ground  here);  the  caret,  thick  needle  and  thin 
needle are 10,000, 1,000, and 100 feet, respectively.

D. Turn Coordinator  (TC): shows rate of turn in degrees 
per second via the bar, as well as nose-to-tail alignment 
in  a  turn  via  the  ball;  the Preliminary  Results  and  
Discussion section elaborates on this relationship

E. Directional Gyro (DG): serves as a compass, where the 
numbers rotate around the stationary airplane.

F. Vertical-Speed  Indicator  (VSI):  shows  change  in 
altitude in positive or negative feet per minute.

G. Clock: serves as an ordinary clock; the caret and reset 
button were not in play.

H. Tachometer: shows propeller revolutions per minute.
I. Stall  Warning:  shows when the wings have ceased to 

provide lift, resulting in imminent loss of control.

This set of primary instruments, minus G, H, and I, is often 
called  the  “six  pack”  because  together  they  minimally 
depict the state of the airplane. Loss of one or more, known 
as a partial panel, may be accommodated with significantly 
more difficulty by interpreting the others in combination, 
but  such  a  condition  was  not  part  of  this  work. 
Nevertheless,  the  general  approach  should  still  apply, 
although likely with degraded results.

Figure 4: Excel Log Data

Figure 5: Excel Log Plots
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The architecture also supports six navigational instruments, 
but the panel omitted them for these experiments. None of 
the  tests  addressed  a  global  frame  of  reference  that 
required  the  pilot  to  know where  the  airplane  was  with 
respect to the world (except in altitude).

3D Viewer
Although the scope of this work was limited to the internal 
cockpit view of the instruments, for reference after tests, an 
external view was available. Not only was it entertaining to 
review  both  the  successful  and  spectacularly  disastrous 
results, but the discussion proved to be very informative to 
both students and instructor  on why students made their 
decisions. Such rich reflective and introspective interaction 
with the machine-learning aspect would be an ideal goal 
for future work beyond this limited approach .

Figure 7 shows three-dimensional visualizations for two 
attempts  at  a  counterclockwise  turn.  This  visualizer  has 
seen extensive use in the first author’s artificial intelligence 
courses, related pedagogical research, and industry work as 
a  general-purpose  world  viewer  (Tappan  2008,  2009, 
2012).

Flight Dynamics Processing

The flight-dynamics model is a Java port of the C++ code 
by Bourg (2002).  The main  differences  are  in  the  input 
mechanism  to  account  for  the  instantaneous  and 
incremental  modes,  the extensive logging capability,  and 
changes to the flight characteristics to model a Cessna 172. 
Higher-fidelity models  are available,  but  the internals of 
this  one  are  especially  accessible  for  inspection  and 
logging (Allerton 2009; Napolitano 2011).

While  the  complex  differential  equations  of  flight 
involve countless intricate interactions, the main objectives 
of this study were to elicit an understanding of at least the 
following  representative  cause-and-effect  relationships, 
which  are  generalized  here  for  aerodynamic  reasons 
beyond the scope of discussion (FAA 2011):

• An increase in elevator deflection (up) causes an increase 
in pitch (depicted in the AI), which causes an increase in 
lift (in the VSI and altimeter) and a decrease in speed (in 
the ASI)  until  a  stall  occurs (in the stall  warning);  the 
opposite  holds  for  a  decrease  in  elevator  deflection, 
except for the stall, and the propeller speed increases (in 
the tachometer).

• An increase in left aileron deflection (up), and therefore 
down on the right, causes a roll to the left (in the AI), 
which causes a turn to the left (in the DG and TC bar and 
ball), as well as a loss of lift (in the VSI and altimeter); 
the opposite holds for a decrease in left aileron.

• An increase in rudder (right) causes a yaw to the right (in 
the TC ball), which causes a roll to the right (in the AI), 
which causes a turn to the right (in the DG and TC bar), 
as well as a loss of lift  (in the VSI and altimeter); the 
opposite holds for a decrease in rudder. The Preliminary 
Results and Discussion section discusses this relationship 
further.

• An increase in flap deflection (down) causes a decrease 
in  pitch  (in  the  AI)  and  speed  (in  the  ASI),  but  an 
increase in lift (in the VSI and altimeter); the opposite is 
dependent on the initial state.

• An increase  in  throttle  causes  an  increase  in  propeller 
speed  (in  the  tachometer),  which  increases  thrust  (not 
depicted on any instrument), which results in an increase 
in speed (in the ASI) and therefore an increase in lift (in 
the VSI and altimeter); the opposite holds for a decrease 
in throttle.

Machine Learning

The long-term purpose of this plug-and-play architecture is 
to investigate various machine-learning strategies applied 
to  this  problem space.  At  this  preliminary stage,  only a 
proof-of-concept module is in play. 

Evaluation of  learning (machine  and  human)  was  not 
through the traditional crossvalidation approach of learning 
on a training set, then performing on a withheld test set. 

Figure 6: Instrument Panel

Figure 7: Turn Visualizations
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Rather,  the  goal  was  simply  to  reach  the  objectives 
however possible reactively, and then for a subject-matter 
expert to analyze these steps qualitatively to gain insight 
into how the subjects presumably learned. For now, there is 
no  way  to  repeat  the  actions  proactively  based  on  this 
experience, but this capability will be added eventually for 
rigorous quantitative analysis. Specifically, the steps are:

1. Acquisition: receive data from sensors
2. Transformation: convert data into usable form
3. Fusion: combine data into coherent, unified views
4. Inference: derive unstated data
5. Reasoning: make sense of data
6. Prediction: anticipate trajectory of data

It is fair to characterize the provisional approach here as 
pure brute force and very restrictive, but it does reasonably 
reflect  the  students’ approach  of  developing  their  own 
generalized  principles  through  trial  and  error  without 
understanding the underlying aerodynamic principles. It is 
an  enumerative  approach  of  trying  an  input,  seeing  its 
effects,  and  continuing  if  the  trajectory  toward  the 
objective  appears  promising,  or  discontinuing  otherwise 
and trying something else.

The objectives  are  declarative  statements  defining the 
form of an acceptable solution (with some freedom). For 
humans, English sufficed (e.g., climb at 80 knots); for the 
machine,  it  was  equivalent  hardcoded  conditional 
statements. A priori knowledge was necessary to constrain 
the solutions to reasonable flight characteristics and avoid 
undesirable states like flying upside down (Mitchell 1997). 
Students  had  acquired  this  background  from  earlier 
research; the machine required additional logic.

The reinforcement signal  for evaluating trajectory was 
crude:  converging,  diverging,  or  no  effect.  It  functioned 
somewhat like a myopic feed-forward neural network with 
no or few hidden layers and a three-state linear activation 
function (Haykin 1999;  Bourg and Seemann 2004). Each 
of the four inputs (elevator,  aileron, rudder,  and throttle) 
mapped to the 11 accessible values in the instruments (roll, 
pitch, yaw, speed, etc.). Flaps were initially considered but 
quickly discarded due to their overwhelmingly destructive 
effect on the other inputs. The direct mapping considered 
44 combinations (411); the indirect mapping had a second 
layer  with  440 (41110),  and  a  third  layer  with  3,960 
(411109), for a grand total of 4,444 combinations. This 
network  captures  relationships  of  inputoutput, 
input(output1output2),  and  input(output1output2 
output3),  respectively.  The  decreasing  count  reflects  no 
need  to  map  to  the  same  instrument  output  twice.  This 
approach addresses steps 1 through 3 above. 

Experiments

A suite of rudimentary experiments provided a rich basis 
for discovering relationships. Each experiment consisted of 

a task to perform, which could be attempted any number of 
times. The logger kept track of the performance data.

Tasks

The 14  tasks  considered  are  basic  flight  maneuvers  that 
demonstrate  a  recognition  of  the  current  state  of  the 
airplane and some understanding of what needs to be done 
to achieve the desired next state repeatedly toward the final 
objective  (FAA 2012).  Each  attempt  at  satisfying  a task 
started in the air with the same initial conditions and was 
independent  of  any  others.  The  attempt  ended  upon 
reaching  the  objective  or  significantly  exceeding  the 
specifications. The tasks could be performed in any order.

• Straight and level: fly in a straight line with no change in 
course  (0  degrees),  altitude  (3,000  feet),  or  speed  (80 
knots), which are the initial conditions.

• Indefinite  climb:  increase  altitude  indefinitely  at  any 
sustainable vertical rate, where sustainable means stall or 
loss of control is not imminent.

• Definite  climb:  increase  altitude  to  4,000  feet  at  any 
sustainable vertical rate, then level off.

• Indefinite  constant-rate  climb:  increase  altitude 
indefinitely at 500 feet per minute (FPM).

• Indefinite  constant-speed  climb:  increase  altitude 
indefinitely while holding speed at 80 knots.

• Indefinite  descent:  decrease  altitude  indefinitely at  any 
sustainable vertical rate.

• Definite  descent:  decrease altitude to 2,000 feet  at  any 
sustainable vertical rate, then level off.

• Indefinite  constant-rate  descent:  decrease  altitude 
indefinitely at 500 feet per minute.

• Indefinite  constant-speed  descent:  decrease  altitude 
indefinitely while holding speed at 80 knots.

• Left turn: perform a 360-degree left turn while holding 
altitude at 3,000 feet.

• Climbing constant-rate left  turn:  perform a 360-degree 
left turn while climbing at 500 FPM.

• Descending constant-rate left turn: perform a 360-degree 
left turn while descending at 500 FPM.

• Descending  constant-speed  left  turn:  perform  a  360-
degree left turn while descending at 80 knots.

• Landing:  synchronize  a  descent  with  flaps  with  no 
change in course (0 degrees) such that altitude is 0 feet 
when rate of descent is 0 FPM and airspeed is 40 knots 
(stall). There was no actual runway to target.

Right turns were not considered because in this simplified 
flight model, they would be mirror images of the left turns. 
In  real  airplanes,  the  characteristics  would  often  be 
different for reasons beyond the scope of this discussion 
(Phillips 2009).

All  attempts  started  from straight  and  level.  The first 
maneuver therefore was to transition to the intended flight 
maneuver, then to hold it. Tasks with definite targets then 
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transitioned back to straight and level, whereas indefinite 
ones  simply  terminated.  For  the  machine,  there  is  no 
planning of any sort to carry out tasks. Students were not 
asked about how they carried them out.

Data Acquisition

The protocol for performing each task was the same for 
human and machine. The task was indicated, and the state 
data through each attempt were recorded from start to end. 
Any number of attempts was possible; only the best was 
considered here.

The human subjects consisted of three groups. Two were 
students in different offerings of fundamentally the same 
upper-division undergraduate software-engineering course, 
41 subjects in total. According to a preassignment survey, 
none had any background in aviation, although some had 
relevant gaming experience. It was not a goal of this work 
to  compare  these  groups  to  each  other,  so  they  were 
considered together as the student subjects.

The  third  group  consisted  of  a  single  person,  the 
instructor and principal investigator, with over 20 years of 
relevant real-world flight experience in both airplanes and 
helicopters. These results served as a control to verify that 
the tasks could be performed to the specifications.  They 
also provided some indication of the maximum variation to 
expect on each task. Even a subject-matter expert exhibits 
some  learning  curve  and  performance  inconsistencies, 
especially  due  to  the  unorthodox  keyboard  input 
mechanism. The results of the control group were not part 
of  the  analysis  due  to  obvious  biases.  A better  control 
group  would  consist  of  real  pilots  with  no  role  in  the 
development of the project, but for this pilot study, such 
objective baseline performance was not critical.

Humans subjects had the option of discarding the data 
from an attempt if they deemed it too unrepresentative of a 
valid  attempt.  For  example,  mistakes  in  keyboard 
commands  were  common.  Without  this  option,  the  data 
would  subsequently  record  the  process  of  regaining 
control, which was not under study. 

Data acquisition from the machine-learning process was 
identical, except that it could not opt to discard its results 
itself.  For  both  groups,  there  was  selective  manual 
postprocessing  for  consistency.  A common example  was 
removing data from a protracted initial straight-and-level 
configuration  to  the  start  of  the  attempt,  and  then  after 
achieving the objective, if the attempt did not terminate on 
its own.

Preliminary Results and Discussion

Despite  working  on  a  graded  assignment  requiring 
substantial  effort,  students  by  and  large  enjoyed  the 
exercise,  even  going  so  far  as  to  write  in  the 
postassignment analysis that they had “serious fun” with it. 

Moreover,  their  results  were  quite  consistent  with  the 
relationships expected in the  Flight Dynamics Processing 
section.

A typical subset of students did not take all or parts of 
the assignment  seriously and  submitted  unusable results, 
but  these  were  easily culled  by inspection  of  the  three-
dimensional  visualizations.  The  remaining  results  of 
primary interest  are characterized here,  but  due to space 
limitations,  this discussion addresses only the highlights. 
Unless  otherwise  indicated,  the  student  and  machine 
actions  were  fundamentally  the  same,  although  the 
performance of the former group was collectively always 
much better.

Instantaneous input mode (i.e., neutral and full control-
surface deflection only) was surprisingly much better than 
incremental auto mode (i.e., smooth stepwise actions) for 
both  groups  for  all  tasks.  While  instantaneous  mode 
produced choppy (vomit-inducing) results, on average they 
were  more  consistent  with  the  expected  trajectory. 
Unfortunately,  there  was  no  postassignment  survey 
question that addressed this aspect, so the reason cannot be 
substantiated. Anecdotally, it appears related to uncertainty 
in  how  much  force  was  being  applied  to  the  controls, 
which a real pilot is usually aware of by feel (Napolitano 
2011). No instrument depicts this feedback.

Elevator operation was partially intuitive: push forward 
to go down, and pull back to go up. However, it was not 
immediately clear that the pitch remains set even when the 
elevators  return  to  neutral  (i.e.,  input  changes  elevator, 
which changes pitch),  so the climb and descent continue 
for some time until aerodynamic effects level the pitch. As 
a  result,  the  definite  tasks  often  overshot  their  altitude 
targets. The machine approach never began this transition 
early because it is purely a reactive process.

Maintaining a constant speed or rate in climb or descent 
requires coordination between the elevator and the throttle. 
The climb and descent, once established, were acceptable, 
but the transitions usually deviated and required substantial 
corrections  to  converge  on  the  appropriate  trajectory. 
Landing  was  an  outright  disaster  because  the  flaps  and 
minimal  airspeed  radically  changed  the  flight 
characteristics,  reducing the  margin  for  error.  The target 
conditions  were  also  the  most  complex.  Flaps  were  not 
under machine control  as an input, so they were already 
deflected as part of the initial conditions.

Turning  via  ailerons  was  not  intuitive.  In  a  car,  the 
driver  turns  the  steering wheel  to  the  desired  angle  and 
holds it, returning to neutral to cancel the turn at the end. 
This relationship is therefore direct between the input and 
output. In an airplane, it is indirect: the ailerons change the 
bank, which causes the turn. If the wheel is held as in a car, 
the bank continues  to  increase  and rolls  the  plane  over. 
Having to neutralize the ailerons after establishing the bank 
surprised the students.  The machine never figured it  out 
consistently,  usually  due  to  an  inadequate  or  excessive 
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bank angle. Thirty degrees is typical in a Cessna 172, with 
45 degrees considered steep.

The bank diverts some of the lift perpendicularly away 
from gravity in order to force the turn, which results in a 
loss of altitude. Students realized that they required some 
additional elevator up for pitch to account for this loss. The 
machine tried, but it could not coordinate the amount well 
and  generally  increased  in  altitude  or  entered  an 
unrecoverable  spiral  descent  (known  as  a  “graveyard 
spiral”  when done by human pilots) (FAA 2011).  A few 
students  attempted  to  increase  speed  (which  is 
aerodynamically valid  because  it  also increases  lift),  but 
the  lag  in  acceleration  is  too  difficult  to  manage.  The 
machine never came close to figuring out this relationship, 
although it tried.

Rudder usage was an utter failure. Initially both groups 
tried to turn the airplane with it, which appears deceptively 
intuitive  because  it  indeed  affects  the  vertical  axis  and 
initially appears to have the expected result. However, this 
approach  is  completely  wrong.  Its  true  purpose  is  to 
coordinate  the  nose-to-tail  angle  through  a  turn,  in  the 
same  way  the  front  wheel  on  a  bicycle  maintains  the 
appropriate  arc  of  travel  for  the  amount  of  lean  (bank), 
where critically the lean/bank  comes first.  Attempting to 
steer with the handle bars first would result in an upset at  
any appreciable speed. The only difference in mechanics 
between these two systems in where the vertical  axis  is 
located. On a bike, it is over the rear wheel, whereas on an 
airplane, it is usually over the main wings, as in Figure 8 
(Phillips 2009).

The  ball  in  the  turn  coordinator  is  the  only  instrument 
reflecting this coordination. It is based on centrifugal force, 
which is actually not even in the flight-dynamics model. 
Rather, the virtual instrument uses an ad hoc approach to 
derive a good approximation by calculating the turning arc 
based  on  the  bank  angle  and  appropriate  subarc  that 
corresponds  to  the  nose-to-tail  yaw  angle  based  on  the 
rudder deflection. This information was not accessible to 
the machine.

Worse  is  that  neither  group  was  even  aware  that  the 
rudder played a role once they discarded it as an option for 
directly turning the airplane. The airplane appears to turn 
with  or  without  rudder  input,  leaving  both  groups  to 
disregard its value. Even real pilots are often sloppy with 

the rudder for the same reasons (Langewiesche 1990). Its 
aerodynamic  effects,  while  subtle,  are  still  substantial. 
Figure  9  demonstrates  the  difference  between  a 
coordinated  turn  with  appropriate  rudder  (A)  and  ones 
where there is respectively not enough (B), called slipping, 
and  too  much  (C),  called  skidding.  On  a  bicycle,  the 
awkward sideways force would be immediately noticeable 
and corrected, but in this type of airplane, it mostly affects 
the passengers in the back, not the pilot in the front, due to 
the position of the vertical axis, and can easily be ignored 
with  no  apparent  consequence.  This  discovery  was 
unexpected and warrants separate investigation.

Finally, the bar in the turn coordinator registers rate of turn 
(normally not to exceed three degrees per second), which is 
the  amount  of  arc  covered  in  a  fixed  amount  of  time. 
Neither group associated the change in heading with the 
change in time. Rather, both groups treated the bar as a roll 
indicator apparently providing the same information as the 
attitude indicator, despite the depictions rarely agreeing.

Future Work

This  plug-and-play  architecture  was  designed  for 
investigating  machine-learning  strategies,  so  immediate 
follow-on work  will  integrate  others  beyond  the  current 
simplistic one. Moreover, so far the system has considered 
only  the  lowest  three  AI  processing  levels  (acquisition, 
transformation,  and  some  fusion).  Inference,  reasoning, 
and prediction are  where  higher-level  understanding and 
action occur (Russell and Norvig 2009). Experiments with 
navigation  (both  wide-area  and  local  airport 
approach/departure  operations),  which  the  architecture 
already supports in great detail, offer ample opportunities 
(FAA 2007). Finally, at all levels, the expressiveness and 
objectivity of the introspection needs improvement.

Rudder coordination can stand as its own independent 
investigation.  The  fact  that  neither  human  nor  machine 
could even recognize the situation adequately suggests that 
it involves many or all of these AI processing levels.

The flight-dynamics model needs to be more flexible in 
accommodating  other  test  configurations.  The  current 
implementation involves significant trial and error to tune. 
Baseline  performance  is  also  difficult  to  establish,  so  it 
could benefit from calibration with real-world airplanes. It 

Figure 8: Bicycle Versus Airplane Yaw Axes (Sketchup 2014)

Figure 9: Normal, Slipping, and Skidding Turns
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also needs to accept input from a proportional joystick and 
pedals instead of the keyboard.

Conclusion

As  a  work  in  progress,  this  system  has  only  begun  to 
demonstrate its usefulness. Nevertheless, the flexibility of 
the plug-and-play modularization of the learning strategy 
clearly  shows  promise.  The  baseline  strategy  successful 
captured  actions  and  learning  processes  of  the  student 
group. The de facto machine strategy, while hardly elegant 
in its application of sheer brute force, showed that it can 
indeed  process  many  aspects  of  flight  simulation  with 
some  semblance  to  reality.  Replacing  it  with  more 
advanced  learning  strategies  should  produce  far  better 
results.  Finally,  the  introspective  nature  of  the  learning 
process demonstrated that it can provide valuable insight 
into how it operates, which was the primary goal of this 
work.
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