
www.maplesoft.com/appsbriefs Page 1 of 30

Optimal Control Design of a Voice Coil 

Head Actuator in a Hard Drive
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Executive Summary

The ability to quickly access information stored in a hard drive is a crucial feature of modern computers. Since 

the early 1980s, all hard drives used a voice coil actuator, rather than a stepper motor, to position the read-

write head over the surface of a disc track. Voice coil actuators in hard drives have two major advantages over

stepper motors: they offer quicker and more accurate positioning and are more tolerant of disc warping and 

track variations that invariably occur over time. 

Accurate positioning of a voice coil actuator head is somewhat complex because of the inability to physically 

measure the position of the head. As a result, a more complex control strategy had to be implemented to 

control the movement of the voice coil actuator head. For this application, an optimal state feedback control 

strategy, linear-quadratic-Gaussian (LQG), was chosen because it can be used to control systems where not 

all the states are measurable. 

The symbolic equations governing the dynamics of the voice coil actuator model (or plant model) were 

determined by developing a physical model representation of the system in MapleSim. The plant model 

parameters, which accurately described the behavior of the real-world system, were determined by applying 

established linearization and system identification techniques. 

The LQG controller was designed using the parametric plant model equations. The gain values for the control 

module, which consisted of a linear-quadratic-regulator (LQR) and a Kalman filter, were determined using 

user-defined Maple routines. The robustness of the controller was determined by conducting sensitivity 

analysis and Monte-Carlo simulations on the plant model parameters. The closed-loop system was found to 

be unaffected by parameter fluctuations. 

The step response of the closed-loop system was determined using MapleSim. The symbolic equations 

governing the controller were incorporated into the physical model representation of the plant model through 

MapleSim's Custom Component Template. The simulation results showed that many of the oscillations that 

were present in the operating bandwidth of the open-loop system had been removed. As a result, the closed-

loop system offered a speedup gain of 70% over the open-loop response.

Introduction

The use of a stepper motor for positioning in a hard drive was discontinued with the advent of high density 

hard drives. With densities as great as 30,000 tracks per inch, stepper motors were found to be sluggish and 

to lack the stability to maneuver accurately between tightly spaced tracks. 

The main components of a hard drive as seen in the following figure are: 1) Steel Poled Magnet Assembly, 2) 

Trapezoidal Voice Coil, 3) Actuator Axis, 4) Arm, 5) Disk Head, 6) Drive Motor, and 7) Discs or Platters. 

A voice coil actuator controls the movement of the read-write head following the principle of electromagnetic 

attraction and repulsion. The coil wrapped around the trapezoidal voice coil is attracted to the magnets within 

the steel poled magnet assembly. When a current is fed to the coil, an electromagnetic field is generated. This 

causes the arm to move in a particular direction based on the relative attractive and repulsive forces of the 

permanent magnet. By controlling the flow of current to the coil, both magnitude and direction, the position of 

the arm can be adjusted very finely.

This type of fine positioning is not possible in a stepper motor because the steppersize of the pulse signal is 

fixed.
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Problem Statement

This document examines the steps involved in quickly and accurately controlling the position of the voice coil 

actuator head. The design of the closed-loop system, including the approach used to investigate the dynamics

of the plant model and design the mathematical model of the controller, will be explained in detail in the 

following sections.
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Equation Linearization

These equations were linearized using user-defined algorithms developed in Maple. The equations were 

linearized to employ standard linear control design methods. The equations were linearized by setting the 

equilibrium point of the state variables and input variables to 0. 

stateequpointd `I2.i` t = 0, `DFPSubsys1inst.theta_R3` t = 0,
`DFPSubsys1inst.vf_FB2_1` t = 0, `DFPSubsys1inst.theta_R3_dot` t = 0,
`DFPSubsys1inst.vf_FB2_1_dot` t = 0 :

inputequpointd RealInput4 t = 0 :

The results of the linearization LinearizedSystem_DE, were left in symbolic form to facilitate system 

identification and parameter sensitivity analysis (see the System Identification and Open-Loop Parameter 

Sensitivity Analysis sections).

LinearizedSystem_DEd
d

dt
 I2.i t =K

R4.R I2.i t

I2.L

K
EMF2.k DFPSubsys1inst.theta_R3_dot t

I2.L
C

RealInput4 t

I2.L
,

d

dt
 DFPSubsys1inst.theta_R3 t =DFPSubsys1inst.theta_R3_dot t ,

d

dt
 DFPSubsys1inst.vf_FB2_1 t =DFPSubsys1inst.vf_FB2_1_dot t ,

d

dt
 DFPSubsys1inst.theta_R3_dot t =

20054000000000

181404729
 EMF2.k I2.i t

C
80360000000000

60468243
 DFPSubsys1inst.vf_FB2_1 t ,

d

dt
 DFPSubsys1inst.vf_FB2_1_dot t

=K
251125000000000

181404729
 EMF2.k I2.i t

K
4024000000000000

181404729
 DFPSubsys1inst.vf_FB2_1 t , RO3 t

=
3

25
 DFPSubsys1inst.vf_FB2_1 t , RO5 t = 'AS3::CB'.k DFPSubsys1inst.theta_R3 t ,

RO6 t =DFPSubsys1inst.theta_R3 t C
3

25
 DFPSubsys1inst.vf_FB2_1 t :

The differential equations defined in LinearizedSystem_DE were converted into symbolic state-space 
form. 

LinearizedSystem_SSdDynamicSystems StateSpace LinearizedSystem_DE, outputvariable
= RO3 t , RO5 t , RO6 t , inputvariable = RealInput4 t , statevariable = I2.i t ,
DFPSubsys1inst.theta_R3 t , DFPSubsys1inst.vf_FB2_1 t ,
DFPSubsys1inst.theta_R3_dot t , DFPSubsys1inst.vf_FB2_1_dot t
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(2)(2)

(1)(1)

State Space

continuous

3 output(s); 1 input(s); 5 state(s)

inputvariable = RealInput4 t

outputvariable = RO3 t , RO5 t , RO6 t

statevariable = I2.i t , DFPSubsys1inst.theta_R3 t , DFPSubsys1inst.vf_FB2_1 t ,
DFPSubsys1inst.theta_R3_dot t , DFPSubsys1inst.vf_FB2_1_dot t

System Identification 

As mentioned previously, in the real world the force driving the voice coil head is derived from a steel poled

magnet assembly. As a result, the parameter values of the DC motor -- namely the inductor and the EMF 

component, which yield similar dynamics to that of the magnet assembly -- need to be identified. The 

parameter value for the resistor is known. 

The impulse response of the real-world system to an impulse at t=0.01s is shown in the plots below. The 

data was collected using a standard data acquisition card. 

ExperimentalDatadMapleSim Attachments Get "Simulation0", "ExperimentalData.csv"  

 5001 x 3 Matrix

Data Type: anything

Storage: rectangular

Order: Fortran_order

Timed ExperimentalData 1 ..K1, 1 :
Inputd ExperimentalData 1 ..K1, 2 :
Outputd ExperimentalData 1 ..K1, 3 :

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

Input: Impulse

0 0.01 0.02 0.03 0.04 0.05
0

0.002

0.004

0.006

0.008

0.010

Output: Impulse Response

Using user-defined algorithms, the experimental data was manipulated into a form, which exposed the 

input-output dynamics of the magnet assembly:
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(3)(3)

(4)(4)

ExperimentalTFd 1.217205337 10
-7
 z
5
K5.179951654 10

-7
 z
4
C0.000001018896866 z

3

K0.000001059722784 z
2
C5.262918062 10

-7
 zK8.913276245 10

-8
z
5
K4.901214632 z

4

C9.608344083 z
3
K9.417531446 z

2
C4.614889753 zK0.9044877580 :

To determine the DC motor parameters that would yield the same dynamics as those of the magnet 

assembly described by ExperimentalTF, the transfer function relating the motor voltage to the motor 

angle was extracted from linearized state-space system derived by LinearizedSystem_SS. 

ModelBasedTFdDynamicSystems TransferFunction LinearizedSystem_SS :-tf 2, 1

180486000000000 EMF2.k 'AS3::CB'.k s
2

C1000000000000000000000 EMF2.k 'AS3::CB'.k 1632642561 I2.L s
5

C1632642561 R4.R s
4
C 180486000000000 EMF2.k

2

C36216000000000000 I2.L  s
3
C36216000000000000 R4.R s

2

C1000000000000000000000 EMF2.k
2
 s

The transfer function ModelBasedTF was then discretized using the DynamicSystems ToDiscrete  

command to match the experimental data that was sampled at 0.00001s. 

DiscretizedModelBasedTF

dDynamicSystems ToDiscrete DynamicSystems TransferFunction ModelBasedTF,

 inputvariable = RealInput4 , outputvariable = RO5 , 0.00001 :-tf

0.02000000000 zC1.
3
 EMF2.k 'AS3::CB'.k 1.80511 10

5
 z
2
K3.60922 10

5
 z

C1.80511 10
5

zK1.  2.613676738 10
14
 I2.L z

4
K1.044891239 10

15
 I2.L z

3

C1.567047130 10
15
 I2.L z

2
K1.044891239 10

15
 I2.L zC2.613676738 10

14
 I2.L

C1.306838369 10
9
 R4.R z

4
K2.610779458 10

9
 R4.R z

3
C2.610779458 10

9
 R4.R z

K1.306838369 10
9
 R4.RC7.22044000 10

8
 EMF2.k

2
 z
4

K1.443288000 10
9
 EMF2.k

2
 z
2
C7.22044000 10

8
 EMF2.k

2
C4.00000 10

5
 EMF2.k

2
 z
3

C4.00000 10
5
 EMF2.k

2
 z

The unknown parameter values for the inductor and EMF components in the DC Motor submodel were 

identified by minimizing the least-squares coefficients of the experimental and model-based transfer 

functions. 

KnownDCMotorParametersd `'AS3::CB'.k` = 1.0, `R4.R` = 1 :

DiscritizedModelBasedTFDenom
d denom DynamicSystems TransferFunction subs KnownDCMotorParameters,
DiscretizedModelBasedTF , discrete= true, sampletime = 0.00001 :-tf 1, 1 :

CoeffOfModelBasedTFDenomd PolynomialTools:-
CoefficientList DiscritizedModelBasedTFDenom, z :

ExperimentalTFDenomd denom TransferFunction subs KnownDCMotorParameters,
ExperimentalTF , discrete= true, sampletime = Ts :-tf 1, 1 :
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(6)(6)

(5)(5)

CoeffOfExperimentalTFDenomd PolynomialTools:-CoefficientList ExperimentalTFDenom,
 z :

NewCoeffOfModelBasedTFd PolynomialTools:-

CoefficientList
DiscritizedModelBasedTFDenom

CoeffOfModelBasedTFDenom K1
, z :

resid zip x, y / xKy, NewCoeffOfModelBasedTF, CoeffOfExperimentalTFDenom :

Using Maple's Optimization package, the inductor `I2.L`   and EMF `EMF2.k`  component parameter
values were identified as:

Optimization:-LSSolve resi

1.2939690378186 10
-15
, EMF2.k = 0.100052914992895842, I2.L

= 0.0000996709956079195794

These coefficients were approximated to `EMF2.k`= 0.1  and `I2.L` = 0.0001.

Open-Loop Parameter Sensitivity Analysis 

In this section, the influence of small variations on the DC motor parameters is investigated. The effects of 

parameter variation on the system can be estimated using different techniques, among them are 

computing the Bode sensitivity function and simulating the system with parameters other than the nominal 

values.

Bode sensitivity functions provide much insight into the sensitivity of a parameter. One of the major 

advantages of using the Bode sensitivity function to investigate the effects of parameter variations is that it 

exposes the frequency response of the parameter on the system. 

The nominal parameter values for the DC Motor submodel are shown below. The values for the inductor 
and EMF component were calculated by Optimization:-LSSolve(resi). 

DCMotorParametersd `EMF2.k`= 0.1, `I2.L` = 0.0001, `R4.R` = 1, `'AS3::CB'.k` = 1.0 :

The transfer function exposing the relationship between the motor voltage and the arm angle position can 

be extracted from the linearized state space equation defined in LinearizedSystem_SS. The sensitivity of 

the parameters will be investigated in terms of this transfer function. 

SensitivityTFdDynamicSystems TransferFunction LinearizedSystem_SS :-tf 3, 1

K90729000000000 EMF2.k s
2
C1000000000000000000000 EMF2.k

1632642561 I2.L s
5
C1632642561 R4.R s

4
C 180486000000000 EMF2.k

2

C36216000000000000 I2.L  s
3
C36216000000000000 R4.R s

2

C1000000000000000000000 EMF2.k
2
 s

The following three sections will examine the sensitivity of the EMF parameter EMF2.k , inductance 

parameter I2.L , and the resistance parameter R4 .
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(7)(7)

EMF parameter sensitivity 

The Bode sensitivity function with respect to the EMF parameter is calculated as follows:

v

v `EMF2.k`
 SensitivityTF $

`EMF2.k`

SensitivityTF

1000000000000000000000K90729000000000 s
2

1632642561 I2.L s
5

C1632642561 R4.R s
4
C 180486000000000 EMF2.k

2

C36216000000000000 I2.L  s
3
C36216000000000000 R4.R s

2

C1000000000000000000000 EMF2.k
2
 s K K90729000000000 EMF2.k s

2

C1000000000000000000000 EMF2.k  360972000000000 EMF2.k s
3

C2000000000000000000000 EMF2.k s 1632642561 I2.L s
5

C1632642561 R4.R s
4
C 180486000000000 EMF2.k

2

C36216000000000000 I2.L  s
3
C36216000000000000 R4.R s

2

C1000000000000000000000 EMF2.k
2
 s

2
 EMF2.k 1632642561 I2.L s

5

C1632642561 R4.R s
4
C 180486000000000 EMF2.k

2

C36216000000000000 I2.L  s
3
C36216000000000000 R4.R s

2

C1000000000000000000000 EMF2.k
2
 s K90729000000000 EMF2.k s

2

C1000000000000000000000 EMF2.k

SEMF.K dDynamicSystems TransferFunction (7) :

Freq [rad/s]

1.#101 1.#103 1.#106

M
a
g
n
it
u
d
e
 [
d
B
]

K3

K2

K1

0

1

2

3

Magnitude Plot

Freq [rad/s]
1.#101 1.#103 1.#106

P
h
a
se
 [
d
e
g
.]

K350

K250

K100

0

150

Phase Plot

As shown in the plot, the sensitivity of the system with respect to the EMF parameter value is large for 
all frequencies. 
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(8)(8)

The effects of changing the EMF parameter value from 0.1 to 0.2 can be seen in the magnitude plot 
and step response plots below.

NewDCMotorParametersd `EMF2.k` = 0.2, `I2.L` = 0.0001, `R4.R` = 1, `'AS3::CB'.k`
= 1.0 :

Note: The commands used to define the plots can be found by expanding the code edit region

#Magnitude and Step Response

EMF2.k = 0.1

EMF2.k = 0.2

1.#100 1.#102 1.#104 1.#106

K200

K150

K100

K50

0

Magnitude Plot

EMF2.k = 0.1

EMF2.k = 0.2

0.005 0.010 0.015 0.020
0

0.2

0.4

0.6

0.8

Step Response

As expected, an increase in the EMF parameter resulted in a large change in the system response. 

Inductor parameter sensitivity 

The Bode sensitivity function with respect to the inductor parameter is calculated as follows:

v

v `I2.L`
 SensitivityTF $

`I2.L`

SensitivityTF

K 1632642561 s
5
C36216000000000000 s

3
 I2.L 1632642561 I2.L s

5

C1632642561 R4.R s
4
C 180486000000000 EMF2.k

2

C36216000000000000 I2.L  s
3
C36216000000000000 R4.R s

2

C1000000000000000000000 EMF2.k
2
 s

SI2.L dDynamicSystems TransferFunction (8) :
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Freq [rad/s]
1.#101 1.#103 1.#106

M
a
g
n
it
u
d
e
 [
d
B
]

K120

K100

K80

K60

K40

K20

0

Magnitude Plot

Freq [rad/s]
1.#100 1.#102 1.#104 1.#106

P
h
a
se
 [
d
e
g
.]

K140

K100

K60

K20

Phase Plot

As shown in the plot, the sensitivity of the system with respect to the inductor parameter value is large 
at high frequencies.

The effects of changing the inductor parameter value from 0.0001 to 0.0002 can be seen in the 

magnitude plot and step response plots below.

NewDCMotorParameters1d `EMF2.k` = 0.1, `I2.L` = 0.0002, `R4.R` = 1, `'AS3::CB'.k`
= 1.0 :

#Magnitude and Step Response

I2.L = 0.0001

I2.L = 0.0002

1.#100 1.#102 1.#104 1.#106

K200

K150

K100

K50

0

Magnitude Plot

I2.L = 0.0001

I2.L = 0.0002

0.005 0.010 0.015 0.020
0

0.2

0.4

0.6

0.9

Step Response

Based on the plot above, we can see that variations in the inductance parameter are only affected at 
high frequencies. 
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(9)(9)

Resistor parameter sensitivity 

The Bode sensitivity function with respect to the resistor parameter is calculated as follows:

v

v `R4.R`
 SensitivityTF $

`R4.R`

SensitivityTF

K 1632642561 s
4
C36216000000000000 s

2
 R4.R 1632642561 I2.L s

5

C1632642561 R4.R s
4
C 180486000000000 EMF2.k

2

C36216000000000000 I2.L  s
3
C36216000000000000 R4.R s

2

C1000000000000000000000 EMF2.k
2
 s

SR4.RdDynamicSystems TransferFunction (9) : 

Freq [rad/s]
1.#101 1.#103 1.#106

M
a
g
n
it
u
d
e
 [
d
B
]

K40

K30

K20

K10

0

Magnitude Plot

Freq [rad/s]
1.#100 1.#102 1.#104 1.#106

P
h
a
se
 [
d
e
g
.]

K240

K200

K140

K100

Phase Plot

As shown in the plot, the sensitivity of the system with respect to the resistor parameter value is large 

at the operating bandwidth.

The effects of changing the resistance parameter value from 1 to 2 are shown in the magnitude plot 
and step response plots below.

NewDCMotorParameters2d `EMF2.k` = 0.1, `I2.L` = 0.0001, `R4.R` = 2, `'AS3::CB'.k`
= 1.0 :
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#Magnitude and Step Response

R4.R = 1 R4.R = 2

1.#100 1.#102 1.#104 1.#106

K200

K150

K100

K50

0

Magnitude Plot

R4.R = 1 R4.R = 2

0.005 0.010 0.015 0.020
0

0.2

0.4

0.6

0.9

Step Response

Based on the plot above, we can see that variations in the resistor parameter lead to slower response 
times. 

Open-Loop Response

The system response of the plant model (in isolation from the controller) using DCMotorParameters are 
shown in the plots below. The oscillations that are visible in the plots make accurate positioning very 

difficult to achieve. To achieve quicker and more reliable positioning, a controller is needed to remove 

some of the oscillations from the operating bandwidth of the system. 
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Plant Simulation Results

t

0.005 0.010 0.015 0.020
0

0.2

0.4

0.6

0.8

1

ArmAngle.value t

t

0 0.005 0.010 0.015 0.020
0

0.2

0.4

0.6

0.8

1

MotorAngle.value t

t

0.005 0.010 0.015 0.020

K0.2

K0.1

0

0.1

0.2

Vibration.value t
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3. Linear Quadratic Gaussian (LQG) Control Design

LQG Controller Design

An LQG controller is created by coupling an observer block, such as a Kalman State Estimator (Kalman 

Filter), with a Linear-Quadratic-Regulator (LQR). An observer block was required to estimate the 

unmeasured states of the plant model. In this application, the unmeasured state refers to the angle 

position of the arm because it cannot be physically measured (only the angle position of the motor drive 

can measured). If it were measurable, we could eliminate the observer block and replace the LQG control 

strategy in favor of a more simple controller such as an LQR controller. 

An LQR controller is a standard full-state feedback controller, which requires all of the states of the plant 

model to be known. The Kalman filter is an efficient continuous filter, which estimates the current value of 

the plant states based on the estimated state from the previous time step, the current measurement, and 

the input signal. Once the values of the unmeasured states are estimated, they can be fed into the LQR 

controller. 

The block diagram representation of the model-based control strategy is depicted in Figure 2. The design 

of the LQR controller, which consists of a state feedback gain block and a pre-filtering gain block, and the 

Kalman filter will be described in the upcoming sections. The separation principle guarantees that the 

controller and observer blocks can be designed and computed independently of each other. It is important 

to note that many of the algorithms that were developed to calculate the controller and observer gains 

were created by using user-defined software routines developed in Maple. 

Plant Model

   Observer 
(Kalman Filter)

         Kf

y
ref

t y t
u t

x t

C

K

Pre-Filtering
        Kr

LQR Controller

     State Feedback

          Gain Block

Figure 2: LQG design strategy block diagram

Step 1: LQR Controller Design

The design of the LQR controller is based on the equations governing the plant model. The linearized 

plant model equations as derived in LinearizedSystem_SS are:

PrintSystem LinearizedSystem_SS
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(10)(10)

State Space

continuous

3 output(s); 1 input(s); 5 state(s)

inputvariable = RealInput4 t

outputvariable = RO3 t , RO5 t , RO6 t

statevariable = I2.i t , DFPSubsys1inst.theta_R3 t ,
DFPSubsys1inst.vf_FB2_1 t , DFPSubsys1inst.theta_R3_dot t ,
DFPSubsys1inst.vf_FB2_1_dot t

a = 

0 1 0 0 0

0 0
80360000000000

60468243
0

20054000000000 EMF2.k

181404729

0 0 0 1 0

0 0 K
4024000000000000

181404729
0 K

251125000000000 EMF2.k

181404729

0 K
EMF2.k

I2.L
0 0 K

R4.R

I2.L

b = 

0

0

0

0

1

I2.L

c = 

0 0
3

25
0 0

'AS3::CB'.k 0 0 0 0

1 0
3

25
0 0

d = 

0

0

0

As mentioned previously, the first step in implementing a LQG control strategy is to design an LQR 

controller. The LQR algorithm is, at its core, just an automated way of finding an appropriate state-

feedback controller.
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(11)(11)

Using user-defined algorithms, the gain values for the pre-filtering block, Kr, and the state feedback 

gain block, Kc, were found to be the following: 

Krd 688.932330743120132 :

Kcd 688.93233074312006573859860437762214622832242627265, 
0.80550499997135537655787848078577937523862968172366, 
22.160712974762312223886404357194444118089378945251, 
0.044416647205194564666682746386651570386716496548781, 
0.2454696917613271877958156823410048270007793496841 :

The state space representation for the closed-loop system with the LQR controller was found to be: 

LQRClosedLoopDefinitiondDynamicSystems StateSpace a_lqr, b_lqr, c_lqr, d_lqr,
outputvariable = RO3 t , RO5 t , RO6 t , inputvariable = RealInput4 t ,
statevariable = I2.i t , DFPSubsys1inst.theta_R3 t , DFPSubsys1inst.vf_FB2_1 t ,
DFPSubsys1inst.theta_R3_dot t , DFPSubsys1inst.vf_FB2_1_dot t

State Space

continuous

3 output(s); 1 input(s); 5 state(s)

inputvariable = RealInput4 t

outputvariable = RO3 t , RO5 t , RO6 t

statevariable = I2.i t , DFPSubsys1inst.theta_R3 t ,
DFPSubsys1inst.vf_FB2_1 t , DFPSubsys1inst.theta_R3_dot t ,
DFPSubsys1inst.vf_FB2_1_dot t

The state space matrices (A, B, C and D) used to define the LQR controller can be found by expanding

the following code edit region.

# State Space Definition

The step response of the closed-loop system (plant + LQR controller) is plotted below, using the 

parameters defined earlier in DCMotorParameters.
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t
0.005 0.010 0.015 0.020

RO6

0

0.2

0.4

0.6

0.8

1

Step Response

As shown in the step response plot, the controller removed many of the oscillations that were present 

in the operating bandwidth of the plant model. 

Step 2: Kalman State Estimator Design

In step 1, the gain values for the LQR controller blocks were defined. However, this definition assumed 

that all of the states for the plant model were available. This is not the case for this application because

the angle position of the arm is not measurable. To compensate for this, a Kalman filter block was 

incorporated into the design of the controller module to estimate the value of the unmeasurable states. 

A Kalman filter is formulated by assuming that noise (both process and measurement noise) on the 

output signal are uncorrelated. The process noise describes the mismatch between the model and the 

physical system, while the measurement noise is an estimate of the noise at the output.

The covariance matrices for the process and measurement noise are defined below. 

Process Noise

The covariance matrix defined in V1 is based on a classic formula generally used as a first approach. 
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(12)(12)

The use of an identity matrix for V0 indicates that the process noise on each of the states is roughly of 
the same relative weight. 

V0d

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

:

 q1d 1 :

V1d subs DCMotorParameters, V0Cq1
2
.LinearizedSystem_SS:-b.LinearizedSystem_SS:-

b
%T

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1.00000001 10
8

Measurement Noise

In this application, there is only one measured output. As a result, a 1x1 covariance matrix was defined 

in W1 to represent the level of noise on the output. 

W1d 0.00000001 :

Using proprietary software, we could use the values defined by the covariance matrices in V1 and W1 

to calculate the Kalman filter gain Kf . 

Kfd

15936.0644386437434

7.69790748963028788 10
7

K71589.1680138910888

K9.33536895842888236 10
8

8.32664854267932102 10
6

:

With the Kalman filter gain defined, the equation representing the LQG controller (LQR controller + 

Observer) can be obtained. The state space representation of the LQG controller is defined in the 

variable LQGcontroller:

LQGcontrollerdDynamicSystems StateSpace a_lqg, b_lqg, c_lqg, d_lqg
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(14)(14)

(13)(13)

State Space

continuous

1 output(s); 2 input(s); 5 state(s)

inputvariable = u1 t , u2 t

outputvariable = y1 t

statevariable = x1 t , x2 t , x3 t , x4 t , x5 t

The state space matrices (A, B, C, and D) used to define the LQG controller can be found by 

expanding the following code edit region.  

# State Space Definition

The state space representation of the closed-loop system, which includes the LQG controller and the 

plant model, is defined in the variable LQGClosedLoopDefinition:

LQGClosedLoopDefinitiondDynamicSystems StateSpace a_cl, b_cl, c_cl, d_cl,
outputvariable = y1 t , y2 t , y3 t , inputvariable = u1 t , statevariable = x1 t ,
x2 t , x3 t , x4 t , x5 t , x6 t , x7 t , x8 t , x9 t , x10 t

State Space

continuous

3 output(s); 1 input(s); 10 state(s)

inputvariable = u1 t

outputvariable = y1 t , y2 t , y3 t

statevariable = x1 t , x2 t , x3 t , x4 t , x5 t , x6 t , x7 t , x8 t , x9 t , x10 t

The state space matrices (A, B, C, and D) used to define the closed-loop system can be found by 

expanding the following code edit region. 

# State Space Definition

The step response of the closed-loop system is plotted below:
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Step Response

As expected, the step response with the inclusion of an LQG controller yields similar results to that of 

the LQR controller alone. 

Closed-Loop Parameter Sensitivity Analysis

Since the DC motor parameters still appear in the closed-loop system equations, we can investigate the 

sensitivity of the controlled system with respect to changes in the parameter definition. Analyzing the 

sensitivity of the closed-loop DC motor parameters provides us with insight into the robustness of the 

controller with respect to uncertainty in the parameter values.

For this section, the same nominal and adjusted DC motor parameter values that were defined in the 

open-loop sensitivity section (see the Open-Loop Parameter Sensitivity Analysis section) will be used. In 

addition, Monte-Carlo simulations for the EMF, inductor, and resistor parameter values will be calculated to

ensure that parameter variations and fluctuations that may occur in the real world result in minimal 

disturbances to the overall closed-loop system response. 

As will be shown, the effects of parameter variations on the closed-loop system will be minimal in 

comparison to that of the open-loop system. This is expected since the system is now controlled. This 

finding proves that the LQG controller developed in the previous section is robust. 
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EMF parameter sensitivity 

The sensitivity of the system to a change in EMF parameter value is shown in the following step 

response plot. The EMF parameter value was perturbed from 0.1 Nm/A to 0.2 Nm/A.

EMF2.k = 0.1 EMF2.k = 0.2
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0
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0.6

0.8

1

Step Response

As shown, the effects of changing the EMF parameter value in the closed-loop system are very small 

compared to that of the open-loop system. 
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Inductor parameter sensitivity 

The sensitivity of the system to a change in inductor parameter value is shown in the following step 

response plot. The inductor parameter value was perturbed from 0.0001 H to 0.0002 H. 

I2.L = 0.0001 I2.L = 0.0002
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Step Response

The effects of varying the inductor parameter on the system response is negligible. 
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Resistor parameter sensitivity 

The sensitivity of the system to a change in resistor parameter value is shown in the following step 

response plot. The resistor parameter value was perturbed from 1U to 2 U. 

R4.R = 0.0001 R4.R = 0.0002
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Step Response

As shown in the plot, increases to the resistor parameter value only affect the amount of overshoot 
present in the system. 

Monte-Carlo simulations  

As mentioned previously, conducting Monte-Carlo simulations is very useful for understanding the 

system dynamics of unknown (or uncertain) parameters. The main criterion for conducting Monte-Carlo

simulations is that the statistical distribution of the parameter under investigation is known. The table 

below performs a Monte-Carlo simulation for the EMF, inductor, and resistor parameters with different 

statistical characteristics. 
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Monte-Carlo Simulations

Variable parameter Standard deviation
0.2e-1

Mean
.1

Number of samples
10

0 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

0

0.2

0.4

0.6

0.8

1

Run Simulation

** Please Note: This simulation takes a few minutes to run. 
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Closed-Loop Response

The equations governing the LQG controller were encapsulated into a MapleSim component using the 

Custom Component template. (To access the template, refer to the LQRController file located in the 

Document Folder, or double-click the Controller Model block in the model diagram).  

The inclusion of an LQG feedback control system resulted in significant speedup improvements in terms of

positioning. This can be verified by comparing the step response of the controlled and uncontrolled system

in the plots below. As shown below, the controller removed many of the oscillations that were present in 

the operating bandwidth of the plant model. This results in a positioning speedup gain of 70% compared to

the open-loop response. 

System Response Comparison

Controlled Signal
Uncontrolled Signal

t

0.005 0.010 0.015 0.020
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1

AngleArm.value t

Controlled Signal
Uncontrolled Signal

t

0 0.005 0.010 0.015 0.020
0

0.2

0.4

0.6
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1

MotorAngle.value t

Controlled Signal
Uncontrolled Signal

t

0.005 0.010 0.015 0.020

K0.4

K0.3

K0.2

K0.1

0

0.1

0.2

0.3

Vibration.value t



www.maplesoft.com/appsbriefs Page 30 of 30

Results

This document outlines a procedure to quickly and reliably control the position of a voice coil actuator head. 

In section 2, the dynamics of the plant model were investigated. The electromagnetic force that was 

responsible for driving the voice coil actuator was modeled as a simple DC motor, while the voice coil actuator 

head was modeled by cascading two MapleSim Multibody components, namely a revolute joint and a flexible 

beam. The DC motor parameters that best describe the behavior of the real-world system were identified by 

linearizing the nonlinear plant model equations. Using system identification techniques, the DC motor 

parameters for the inductor and EMF component were found to be 0.0001 H and 0.1 Nm/A respectively. The 

sensitivity of these parameters, including that of the resistor, was investigated. The open-loop system 

response showed the plant model to be sluggish in terms of positioning. 

In section 3, user-defined algorithms were used to determine the gain values of the LQG controller. The 

robustness of the controller was investigated by perturbing the DC motor parameter values. As expected, the 

controller was found to be robust. The equations defining the LQG controller were encapsulated into a custom 

MapleSim component and simulated with the plant model. The results of the simulation show the closed-loop 

system to have a 70% speed improvement in comparison to the open-loop system.
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