
Paper Presented at AlaSim 2023

A Mechatronics Virtual Testbed for Investigating Concepts and Practices
in Software Engineering Education

Dan Tappan
Department of Computer Science, Eastern Washington University, Spokane, WA

Keywords: software engineering, mechatronics, pedagogy

ABSTRACT: Modern engineering problems are addressed by highly multidisciplinary solutions involving mechanical
and electrical engineering with software engineering at the core, a synergistic combination known as mechatronics.
Computer science and software engineering students do not generally receive exposure to the holistic process of
developing complex software to drive such hardware systems. This work provides a virtual testbed environment for
modeling and simulating an extensive breadth and depth of common concepts and practices. It allows them to design,
build, manipulate, visualize, and analyze arbitrary mechatronic systems from a software engineering perspective. The
primary example investigates its usage in developing a fly-by-wire aircraft control system.

1 Introduction

Software is the heart of modern multidisciplinary
engineering systems. Computer scientists and software
engineers therefore play a critical role in developing
them. However, as students they receive very little
theoretical and practical experience in understanding the
problems such systems address and their corresponding
solutions.

The objectives of this work are to provide a student-
friendly modeling and simulation toolkit that allows them
to build realistic virtual systems and to analyze them
before, during, and after development. It allows students
to play the roles of analyst for design, programmer for
implementation, and end user for test and evaluation.

2 Problem Domain

The breadth and depth of real-world problems this system
can address is vast, but they all fall under the umbrella of
mechatronics. This field is relatively new, at least as an
established term, but it reflects what engineers have
always done to solve multidisciplinary problems [9].
Specifically, it refers here to the bridge in Figure 1
between computer science (CS) and the real world. CS
does not interact directly with the world (although a good
system appears this way to the end user). Rather, it
interacts with the electrical engineering (EE) layer, which
in turn interacts with the mechanical engineering (ME)
layer, which finally interacts with the world.

Throughout the historical evolution of engineering
solutions, each new layer has appeared to the right and
taken on many of the responsibilities of those to the left.

For example, purely mechanical control systems were
managing steam engines well before electrical systems
appeared. The physical ME and EE layers have always
been limited in what they can provide given their
hardware constraints, whereas the virtual CS layer is for
all practical purposes unlimited in software. This
evolution explains, for example, why today ordinary
automobiles are heading toward 300+ million lines of
programming code managing almost every aspect of
operation [2].

With the exception of minor excursions into shared EE
topics like digital design, CS students study exclusively
CS. They are not expected to be experts in the other
solution layers or the problem layer from the real world.
However, they personally will have to interact with those
practitioners in their careers, and their solutions will have
to interact with those solutions. Such is the nature of
multidisciplinary work. It is critical for students to
understand that all four layers address the exact same
problem from four different perspectives. To function
effectively as a system – of both people and technology –
they must have exposure to such problems and a healthy
appreciation for learning outside the comfort zone of their
formal education. This system is designed specifically to
address these aspects.

2.1 Theoretical Foundation

The theoretical foundation briefly covers directly relevant
aspects of how to learn effective problem solving in
software engineering, as defined above.

Anecdotally, based on 10 years of industry experience and
nearly 20 in academia, the author considers the two top
problems in software engineering to be:

#1 Not understanding the customer’s problem
#2 Not understanding the customer’s problem domain

Figure 1: Mechatronics

A large part of this lack of understanding is that students
do not really know what the science in computer science
is or the engineering in software engineering. Despite
taking required science classes, most students are of the
opinion that the class is only about the subject matter, for
example, rocks in geology, and not about learning how
scientists think and act. Students even have this
misconception about computer science itself. Edsger
Dijkstra, one of the fathers of computing, sums it up well:
“Computer science is no more about computers than
astronomy is about telescopes” [10].

It is critical to connect this background properly because
it plays an important role in modeling and simulation. In
particular, this work considers the following definitions,
where each is the study of:

Science: how existing natural systems work
Engineering: how to create new artificial systems

In general, science plays the role of analysis, and
engineering plays the role of synthesis. Both involve a
well-defined process to work from the question or
problem to a corresponding solution. In science, this
process is called the scientific method, as depicted in
Figure 2.

The complementary process, the engineering method in
Figure 3, is almost identical. Both are also the basis for
how modeling and simulation works. Students see that all
three processes are effectively the same and already
familiar. This system helps them identify suggested
actions at each stage with respect to the context of the
problem.

Much like solving algebraic problems, both methods
contain elements that practitioners have (from the
problem), want to have (as the solution), and need to get
there, as well as a way to obtain what is missing. General
categories for this process are based on what is known
and on what is known about it, called metacognition [4]:

Things... we know we do not know
we know facts questions
we do not know intuition exploration

Table 1: Metacognition

Read by row then column, Table 1 captures four
possibilities. For each, there are different ways to obtain
the desired results in increasing level of difficulty; for
example:

Facts: ask Google or ChatGPT
Questions: ask the customer; use modeling/simulation
Intuition: rely on experience
Exploration: use modeling/simulation

Two cases use modeling and simulation. Questions are
generally lighter weight, where a proof of concept or by
construction may produce a useful answer. Exploration is
more complex, often involving analysis of alternative
approaches in trade studies, for example.

Intuition relies on experience, which is precisely what
students do not have. Facts, which should involve a
straightforward process of looking up the answer, are
oddly problematic because students often feel background
research into the problem and its domain are nothing but
busy work.

To support metacognition, there are also familiar
linguistic features in the form of the W5H question words
who, what, when, where, why, and how that help students

Figure 2: The Scientific Method [11]

Figure 3: The Engineering Method [11]

pose the right questions the right way at the right time to
extract the right details. This process is actually very
difficult in general (e.g., eliciting requirements), and
especially among predominantly introverted CS students.
The more practice they get at technical communication in
various forms, the better.

The final theoretical element is the DIKW hierarchy of
data, information, knowledge, and wisdom in Figure 4. It
corresponds closely to everything above as a stepping-
stone approach to understanding the problem and its
domain by establishing and connecting dots. It slices and
dices the subject matter from different perspectives from
the lowest to the highest levels compositionally. This
system considers data as isolated facts, information as the
association of a few facts in a localized context,
knowledge as the association of multiple contexts in the
bigger picture, and wisdom as an understanding of the
entire system of contexts.

The more common visual form is the DIKW Pyramid or
Hierarchy in Figure 5. It aligns with the dot form as
context on the left slope. This composition applies both to
the process of learning about the problem itself, as well as
to the process of solving it, as the next section describes
with design patterns.

The right slope aligns with actions to be taken at each
level. It corresponds with metacognition and the problem-
solving methods discussed above. The aspects of past and
future refer to the learning process, where things are
unfamiliar and often overwhelming the first time they are
encountered, but they are absorbed into wisdom and
expertise over time.

The alternative representation in Figure 6 similarly
captures understanding on the left slope, but it also
elaborates with further linguistic aspects on the right to

show generally what students should be looking for or
working with at each level. Finally, this figure shows the
continuous reduction of overall risk as the understanding
of the problem and its domain increases. As mentioned
earlier, students have an odd aversion to the lower levels,
which are unfortunately where the risk is the highest. The
pedagogical approach in this work forces them to perform
at each level.

2.2 Practical Foundation

The practical foundation briefly covers directly relevant
aspects of how to apply effective problem solving in
software engineering. The primary framework is called
QMSVA, which reflects the scientific and engineering
methods, as well as traditional modeling and simulation:

Question: the question or problem to address
Modeling: a representation of the problem
Simulation: execution of the model
Visualization: the output of the simulation
Analysis: making sense of the output

Every computer program is inherently a model; therefore,
students already have extensive experience in creating
and executing models without even realizing it. This
system emphasizes the connection.

Visualization is actually any form of output, but graphical
representations tend to be the most informative and
useful. Students can often apply common sense to
whether something looks right or wrong1 without being
subject-matter experts or needing extensive background
research to understand the problem domain.

Analysis forces students to apply tools and techniques
from other coursework, such as critical thinking and math,
to make sense of the results with respect to the problem or
question.

The secondary framework is closely based on the concept
of software design patterns [5]. There are dozens of such
“mini-solutions” for commonly encountered design

1 Sometimes called the TLAR approach: that looks about right.

Figure 6: DIKW Pyramid 2 [3]

Figure 5: DIKW Pyramid 1 [8]

Figure 4: DIKW Dots

considerations. The details are not relevant here, though.
What is important is their organization into three
hierarchical categories:

Creational patterns: making components
Structural patterns: connecting components
Behavioral patterns: using connected components

Components are basically the dots in Figure 4. Once
students learn to recognize (from the science perspective)
the composition of the problem domain, it becomes much
easier to apply (from the engineering perspective) the
appropriate solutions in the solution domain. In fact,
entire books are dedicated to this way of thinking, as in
Figure 7.

Conversely, not having the right dots and/or not
connecting them properly leads to incorrect behavior. The
software industry has an atrocious failure rate between 50
and 90%, depending on the size of the project [7]. Many
of the errors in thinking and doing by professionals
develop when they are students. This system attempts to
mitigate many of the causes.

3 Solution Domain

The solution domain is a Java program that provides all
the capabilities available to the instructor and students to
address the problem domain. The breadth and depth of
real-world engineering systems it can address is virtually
unlimited. However, despite this range, every supported
system is based on the same simple concept in Figure 8,
which captures bidirectional motion between two points.

In more concrete terms, A and B define a number line, on
which the orange dot resides. This simple representation
can then map onto a vast array of mechanical mechanisms
and devices, as showcased in the book in Figure 9, for
example.

Students can easily see that the mechanical engineering
layer is not actually as foreign and scary as they initially
believe. Furthermore, this approach demonstrates that one
solution can be applied to a large number of seemingly
disparate problems. This principle is highly valued in
designs, but from inexperience, students naturally tend to
address each problem with a unique solution. The result is
usually bloated software that is difficult to design,
implement, test, and maintain.

3.1 MVC Architecture

The system is based on the model-view-controller (MVC)
architecture in Figure 10. It is the basis of many, if not
most, modern software solutions. The model plays the
same role as in modeling and simulation, namely the thing
being represented; it is also the M in QMSVA. The view
is some representation of the output from the model, and
the V. The controller is a mechanism to manipulate the
model, and the S.

Again, this single solution accommodates three variants
of problems. Figure 10 shows the human in the loop to
operate the controller. This role can also be a “dumb”
automated component, like an ordinary thermostat, or a
“smart” autonomous component, like an AI entity. The
variants allow the instructor to use this system, and in
fact, often even the same examples, in multiple courses
from different perspectives for different purposes.

Figure 10: MVC Architecture [11]

Figure 9: Mechanical Systems [1]

Figure 8: Conceptual Movement

Figure 7: Everyday Engineering [6]

3.1.1 MVC Model

The MVC model is a hierarchical network of conceptual
components in Figure 8 mapped onto physical
mechanisms, such as those in Figure 9. The running
example here is the fly-by-wire aircraft flight control
system in Figure 11. The mechanisms include the labeled
control surfaces, as well as the landing gear and engines.

Each of the boxes in Figure 12 is a component or
collection of supporting components that the next sections
describe.

Boxes are the creational elements, and the network is the
structural element connecting them. The behavioral
element is making use of the system as constructed.

3.1.1.1 Primary Components

Primary components are required because they define the
minimum operational capabilities.

3.1.1.1.1 Actuator

All movement of any kind is effected by actuators. These
can be considered as motors that provide the capability to
move between points A and B. Figure 13 shows a single
actuator and a snippet of the network. The required
controller manages one or more actuators because
actuators are inherently dumb devices that make no

decisions for themselves. The next section covers the
controller in more detail.

Figure 14 shows the actuators in blue that correspond to
Figure 11.

Figure 8 describes linear movement between points A and
B. There is also the second variant available in Figure 15
for rotary movement. It plays the same role, but without
the restriction of end points. This configuration captures
the movement of the engines, for example.

Either form of movement can be configured to reflect
real-world performance. Figure 16 shows a variety of
examples. The x-axis is time and the y-axis is based on the
actuator configuration. The blue lines are position; the red
are speed.

Figure 15: Rotary Movement

Figure 13: Actuator Connection

Figure 11: Simulated Airplane

Figure 12: Hierarchical Network

Figure 14: Actuator Network

3.1.1.1.2 Controller

Each controller2 in Figure 13 and Figure 14 manages one
or more actuators. This organization allows related
components to have localized authority over well-defined
subsystems. For example, Figure 17 has a controller for
all three parts of the landing gear (left, right, and nose). A
command to lower the gear collectively (the what action)
goes to the controller, which then determines the details of
individual actuator movements (the how action).
Controllers can also manage subcontrollers for advanced
systems.

3.1.1.1.3 Message

The command to lower the landing gear is a message
transmitted over the network, as in Figure 18. The virtual
network is very similar to a standard computer network
with unique identifiers (like IP addresses) for each
component.

2 This controller is not the same as the MVC controller in
Section 3.1.

Although the conventional term is command, most
communication is actually in the form of a request. This
distinction reflects the possibility that a controller may not
be able to service a request at the time or even at all,
depending on the state of the components it is managing.
For example, lowering the landing gear takes a certain
amount of time. If a subsequent request is received to
raise the gear back up during this process, it cannot be
serviced until the lowering is complete. In other cases, a
subsequent request may interrupt and cancel the ongoing
one and be serviced immediately. Other variants are
possible, too.

3.1.1.2 Secondary Components

Secondary components are optional to provide advanced
capabilities. They connect to other components and
cannot stand alone.

3.1.1.2.1 Sensor

An actuator is a dumb device that does not know its own
state. Sometimes this limitation is appropriate, such as
with a fan, which does not need to know its current speed
or orientation. This open-loop control system assumes the
state of an actuator is always as desired, but it has no way
to make this determination or to react if it is not true.

In other cases, a closed-loop control system is more
appropriate. One or more sensors can be attached to an
actuator, as in Figure 19. The sensor reads the state data
from the actuator and provides it to the controller, which
then decides on the suitable action. For example, the
controller for an automobile cruise control verifies that
the actual speed is the same as the expected speed. If not,
it instructs the engine actuator to speed up or slow down.

Figure 18: Message Role

Figure 17: Controller Connection

Figure 16: Movement Configuration

3.1.1.2.2 Mapper

A sensor reads the raw state of an actuator. This form may
not be directly usable for subsequent processing in the
controller. For example, the wheel sensor of the cruise
control may measure revolutions per second, but the
controller expects miles per hour. Such algebraic
manipulation is the role of a mapper. One or more may be
connected to a sensor, as in Figure 20.

In addition to a variety of options for equation-based
conversions, it is possible to reference tables in external
files that define specialized performance. For example,
Figure 21 shows the performance curves for horsepower
and torque of an internal combustion engine.

3.1.1.2.3 Reporter

In order to evaluate the performance of a system, there
needs to be a way to export the data generated from its
behavior to external files. One or more reporters play this
role by connecting to a sensor, as in Figure 22. Section
3.1.3 covers the log files.

3.1.1.2.4 Watchdog

The closed-loop controller in Section 3.1.1.2.1 manages
behavior under normal operating circumstances. The role
of one or more watchdogs connected to a sensor is to
monitor for abnormal behavior, as in Figure 23. If
performance is outside a defined range, it raises an alarm.
A variety of configuration settings define minimum and
maximum values, acceptable changes over time, etc.

3.1.1.2.5 Summary

Figure 24 shows a complete complement of each primary
and secondary component. There is no limit to the number
of each in a system, but student projects are generally
kept to a reasonably simple level of complexity.

Figure 22: Reporter Connection

Figure 20: Mapper Connection

Figure 19: Sensor Connection

Figure 21: Performance Curves [11]

Figure 23: Watchdog Connection

3.1.2 MVC Controller

The controller in the MVC architecture is where the user
interacts with the system to build and execute the model.
The command generator in Figure 25 is the top level of
the hierarchical network.

3.1.2.1 Parser Commands

The user performs all interaction with the system by
issuing text commands through a basic command-line
interface. There are commands in many variations for
each of the categories in Section 2.2. The following
sections provide an overview.

3.1.2.1.1 Creational Commands

Creational commands are responsible for defining the
components to be added to the network. There are 16.
Most have optional arguments to allow for fine tuning, if
desired.

For example, the command to create a watchdog with a
threshold value looks like this:

CREATE WATCHDOG (LOW | HIGH) id mode THRESHOLD
 value1 [GRACE value2]

Parentheses mean to choose one from the options
delimited by a vertical bar. Square brackets mean
optional. Lowercase arguments require values or
reference additional rules.

The description is: Creates a watchdog with identifier id
that monitors a value. For the LOW variant, the watchdog
triggers if the value is less than value1. For HIGH, the
watchdog triggers if the value is greater than value1. The
grace argument states that a violation must be present for
value2 consecutive clock ticks before raising an alarm.
Omitting it reports the first violation.

The mode argument defines how to measure value1:

MODE (INSTANTANEOUS | (AVERAGE [value1]) |
 (STANDARD DEVIATION [value2]))

• INSTANTANEOUS uses the current value.
• AVERAGE uses the average of the last value1 values or

all values if value1 is omitted.
• STANDARD DEVIATION uses the standard deviation of

the last value2 values or all values if value2 is
omitted.

This functionality for basic real-time statistical analysis
offers students a range of options in determining what to
measure and how to measure it.

3.1.2.1.2 Structural Commands

Structural commands are responsible for connecting the
created components to each other and to the network.
There are two forms. One connects secondary
components when creating a primary component; e.g.,

CREATE ACTUATOR LINEAR a1 SENSORS s1 s2 s3

It creates a linear actuator called a1 with sensors s1, s2,
and s3 (which must already exist).

The other form performs the connections at the end; e.g.,

BUILD NETWORK WITH COMPONENTS c1 c2

It adds controllers c1 and c2 to the network (along with
the components they manage and anything connected to
them).

The difference in forms is primarily due to automated
error checking of the design. Some checks can be done
earlier, while others must wait until everything is
available. Examples include duplicate identifiers and
components that are unused or used more than once.

Figure 25: MVC Controller

Figure 24: Connection Summary

3.1.2.1.3 Behavioral Commands

Behavioral commands are responsible for manipulating
the fully constructed network. Most relate to messaging.
For example,

SEND MESSAGE [ids] [groups] POSITION value

sends a request to any controllers in the list of ids and/or
any in the list of groups (an arbitrary association of
related controllers) to do whatever is appropriate to
achieve the state value. If neither list is present, the
message goes to all controllers. Those that cannot process
it ignore it.

The complementary command is to ask a controller or
controllers to report their state, which is based on the state
of the components they are managing:

SEND MESSAGE [ids] [groups] POSITION REPORT

There are also several commands that “cheat” by directly
forcing components to assume a state or report a value
instead of going through the appropriate networking
process. For example,

SET SENSOR s1 VALUE 9

forces sensor s1 to report output 9 regardless of the actual
value from the actuator it is monitoring. This capability
allows students to inject errors into the system for
advanced analysis.

3.1.2.1.4 Miscellaneous Commands

Miscellaneous commands are responsible for controlling
aspects of the system itself. They include, for example,
pausing or one-stepping the clock or changing its update
rate, executing script files, or exiting the system:

@CLOCK PAUSE
@CLOCK ONESTEP 3
@CLOCK SET RATE 20
@RUN "test1.mvt"
@EXIT

3.1.3 MVC View

The view in the MVC architecture is where the various
forms of output appear. The system generates some views
automatically or upon request; others come from reporters
selectively connected to components of interest.

3.1.3.1 Graph View

All the earlier figures depicting the network were created
manually to meet cosmetic expectations. This approach is
not viable for actual solutions because it is too tedious and
error prone. Instead, the system can automatically
generate an image of the network, as in Figure 26.

This visualization is the first step in verifying that the
model is structurally correct before simulating it. It helps
identify obvious missing components or misconnections.

3.1.3.2 XML View

The graphical representation is helpful for visual
inspection, but it omits the configuration details. The
system can also generate a corresponding XML
(Extensible Markup Language) representation. XML is a
standard format that any web browser can import and then
automatically format in a meaningful way with
indentation and color, as in Figure 27. This feature gives
students exposure to using external tools for analysis.

3.1.3.3 JSON View

Similarly, many tools (including browsers) work with
another industry-standard format, JSON (JavaScript
Object Notation). The system can export the same
information in this representation, as in Figure 28.

Figure 26: Network Graph View

Figure 27: Network XML View

3.1.3.4 State View

A message goes through a life cycle from creation to
processing to destruction. It can be important for analysis
(especially debugging) to know which state a message is
in at any point. The system can automatically generate
state diagrams, as in Figure 29.

3.1.3.5 Network View

Similar to the state view, the route a message takes across
the network can be important. The system can
automatically generate swim-lane diagrams to depict
message traffic, as in Figure 30. In this example, each of

five components occupies a column. Message traffic is
depicted as an unbroken sequence of arrows from creation
to destruction.

3.1.3.6 Log View

The system runs a continuous time-stepped simulation.
This execution generates a text-based log file with the
state data from the simulation and from every reporter at
each time step. The CSV (comma-separated values)
format can be imported directly into Excel or any similar
tool for viewing and manipulation after the simulation
completes. Figure 31 provides a more detailed view of
Figure 30.

Figure 32 provides a view of an actuator in motion. It
reports the position and speed at each time step, as well as
a more detailed view of Figure 29.

Figure 30: Network Traffic View

Figure 31: Log Network View

Figure 28: Network JSON View

Figure 29: Actuator State Diagram

3.1.3.7 Graph View

Once the actuator state data is in Excel, all of its graphing
capabilities are available to visualize what is happening.
Figure 33, for example, shows eight3 flight control
surfaces starting from a neutral position (0 degrees on the
y-axis) at callout (1), moving at different rates to 90
degrees over time on the x-axis until meeting up at (2),
and then each half splitting to 20 and 20 degrees,
respectively. It is essential to be able to plot simultaneous
actions in a complex system to verify that they occur
correctly and to report these results.

Figure 34 shows the same components performing a
similar operation with more diversity in the states. Visual
analysis is intuitive because the eye is often easily drawn
to discrepancies, such as lack of symmetry, discontinuity,
or misaligned convergence points.

3 Multicolored lines are exactly on top of each other.

3.1.3.8 Test and Evaluation

The final process of test and evaluation allows students to
play the role of an end user. The instructor provides a set
of test requirements, such as:

Create a linear actuator and manipulate it as follows:
Starting at 0 degrees, command it to 45 degrees;
upon arrival, command it to 45 degrees; upon
arrival, command it to 0 degrees; upon arrival,
command it to 30 degrees, but at 15 degrees
interrupt it with a command to 45 degrees, and allow
it to arrive.

For each test, they must address the seven elements stated
verbatim in the assignment:

1. The rationale behind the test; i.e., what is it testing
and why we care.

2. A general English description of the initial conditions
of the test.

3. The commands for (2), which must appear in a
standalone form that could be directly copied into a
text file to reproduce the test without manual
intervention. Do not cross-reference other tests.

4. A brief English narrative of the expected results of
executing the test. Proper testing discipline expects
that you establish this before running the test.

5. At least one representation of the actual results. The
form is your choice.

6. A brief discussion on how the actual results differ
from the expected results, if at all.

7. A suggestion for how to extend this test to cover
related aspects not required here.

Figure 35 shows an appropriate visualization for (5) in
this example.

Figure 32: Log Actuator View

Figure 33: Graph View 1

Figure 34: Graph View 2

The callouts refer to the following key states:

1. at initial position 0˚ neutral; command to 45˚ left
2. arrives; command to 45˚ right
3. arrives; command to 0˚
4. arrives; command to 30˚ left
5. at 15˚ left preemptively command to 45˚ right
6. arrives

The callouts and artwork in the graph are manual
processes. Students need to learn how to present complex
data in an appropriate form, which is expected in industry.

The @RUN command is especially convenient here to keep
everything organized. It allows students to put each test
definition in a separate script file and to indicate where to
output the results.

4 Examples

The following two examples provide an overview of
actual projects that students worked on for an entire 10-
week quarter in a junior-level introductory course on
software engineering.

4.1 Fly-by-Wire Aircraft Control System

The airplane in Figure 11 depicts the actuator-driven
components that would allow it to fly. Nevertheless, this
project is not a flight simulator, so the aircraft remains
stationary on the ground. However, it executes the same
general actions that it would in flight. Its control system
in Figure 12 is relatively simple in that it just moves the
components appropriately to demonstrate aspects of
interest. The students used the text-based inputs from
Section 3.1.2.1.3 to control this behavior. Control is not
directly tied to a realistic user interface like a joystick, but
this capability will be provided eventually.

Figure 36 shows a three-dimensional view of the flight
control surfaces in red. This part is currently provided by
an external visualization tool, so it is not automatically
available to the students. The instructor must build it
manually and feed it the appropriate data after the

simulation completes. This visualization will eventually
be part of the built-in views in Section 3.1.3.

The control surfaces are kept simple because the course is
not about aerospace engineering. However, the
capabilities of the system allow for much more
complexity, such as the full complement for a real-world
airliner in Figure 37.

Not only does this model have far more components, they
also behave in far more complex ways. Figure 36 depicts
simple “barn door” surfaces with no mechanical
interdependencies. Figure 38, on the other hand,
represents the multistage actions necessary to deploy a
sequence of components appropriately. This model would
be overkill for a software engineering course, but it is
appropriate for one on modeling and simulation and
aerospace engineering, for example.

Figure 36: Airplane 3D View

Figure 37: Flight Control Surfaces [3]

Figure 38: Slat and Flap Deployment [11]

Figure 35: Test and Evaluation Result

4.2 Heavy Construction Equipment

Figure 39 depicts a similar project with different
mechanisms. Here the components are articulated
members of the excavator, such as the bucket and
multilinkage boom. The model represents hydraulic,
pneumatic, and electrical systems. As with the airplane,
the goal is not to perform construction activities, but
rather to demonstrate the underlying concepts.

5 Future Work

From the technical side, a better three-dimensional viewer
is desirable. Examples currently require extensive
graphics programming in an external visualization tool.
Simplifying this process and integrating it into this system
would accommodate a richer breadth and depth of
examples with less effort.

From the pedagogical side, conveniently packaged
resources need to be made available. There is currently no
way for anyone outside the author’s classroom
environment to use this system. Having it available for
download, along with examples and tutorials, would make
it useful to others.

6 Conclusion

This system is designed around the needs of students. It
provides them with realistic but manageable theoretical
and practical experiences in using modeling and
simulation as part of software development. It also
connects many of the pieces of their studies into a more
coherent form for better understanding and application.
The system is also convenient for the instructor to be able
to walk students through various stages of development,
set up experiments, and evaluate performance.

References

[1] Brown, H. 507 Mechanical Movements. Martino Fine
Books, 2013.

[2] Charette, R. “How Software is Eating the Car.” IEEE
Spectrum, 7 June 2021.

[3] Creative Commons noncommercial license.
[4] Cunningham, P., Matusovich, H., Hunter, D.,

McCord, R. “Teaching metacognition: Helping
engineering students take ownership of their own
learning.” 2015 IEEE Frontiers in Education
Conference, El Paso, TX, USA, 2015, pp. 1-5.

[5] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[6] Hillhouse, G. Engineering in Plain Sight. No Starch
Press, 2022.

[7] Lauesen, S. “IT Project Failures, Causes and Cures.”
IEEE Access, vol. 8, pp. 72059-72067, 2020.

[8] Ossamah, A., Meshari, A., Yazed, A., and Norah, A.
“Cloud Based Cyber Physical System for Factory
Automation.” 2020 IEEE 6th World Forum on
Internet of Things, New Orleans, LA, USA, 2020,
pp. 1-7.

[9] Soliman, F. Mechatronics: Multidisciplinary
Engineering. Lambert Academic Publishing, 2017.

[10] Usually attributed to Edsger Dijkstra as a direct quote
but actually a paraphrase.

[11] Variations on this figure have been floating around
the internet for years. There is no clear attribution
anymore.

Author Biography
DAN TAPPAN is a professor and director of computer
science and electrical engineering at Eastern Washington
University. He has been a professor for over 18 years and
before that 10 years as a DoD civilian at White Sands
Missile Range and Aberdeen Proving Ground mostly
doing software engineering and modeling and simulation
of flight and weapons systems. His main research areas
are software and hardware systems engineering,
especially for aviation and military applications with
embedded systems and mechatronics; modeling,
simulation, visualization, and analysis; intelligent
systems/artificial intelligence; and computer science and
engineering education.

Figure 39: Excavator

