
Modeling and Simulation for Grounding a Mechatronic
Test Environment for Inertial Measurement Units

Dan Tappan and Josh Czoski
Department of Computer Science, Eastern Washington University, Cheney, WA, USA

Abstract - One of the most difficult aspects of learning to
play violin is posture. Students practice endlessly in front of
a teacher and mirror to ensure correct bow movement with
respect to the violin. This work describes a hybrid
modeling-and-simulation environment fabricated to
evaluate the use of inexpensive inertial measurement units
for a larger project to perform such monitoring
automatically. It describes a mechatronic test rig that
simulates complex bow movement for repeatable, controlled
experiments. This physical hardware model introduces its
own idiosyncrasies into the evaluation process and in turn
requires evaluation by a virtual software model. The
combined result is an objective comparative proof-of-
concept framework for grounding (calibrating and tuning)
the two models against each other and reality to tease out
performance characteristics.

Keywords: violin, data acquisition, inertial measurement
unit, mechatronics, performance evaluation

1 Introduction

Learning to play violin is a long and challenging process.
One of the greatest difficulties involves developing and
maintaining appropriate posture to keep the bow oriented
correctly with respect to the violin. During lessons, a
teacher closely monitors this activity and indicates
whenever there is a problem. Students on their own practice
in front of a mirror to monitor themselves. Either way, the
process is onerous. An automated system could be much
more practical. The recent explosion of popularity in drones,
virtual-reality gaming devices, and motion-based
smartphone apps has had a profound effect on increasing the
capabilities and availability of small, inexpensive inertial
measure units (IMUs) that keep track of their position and
orientation in three-dimensional space in real time.
Attaching one to the violin and another to the bow provides
their physical states. In theory, subtracting the two states
would produce the relative state of the bow with respect to
the violin and facilitate its evaluation within an acceptable
range of motion.

In practice, however, this approach morphs into a much
larger problem of using the IMUs appropriately and
compensating for their many shortcomings. The focus of
this paper is on how to evaluate the real-world performance
of IMUs objectively for a larger project of this kind. The
underlying approach involves conducting repeatable,

controlled experiments as part of the scientific method.
Directly measuring the IMUs on a real violin and bow
exhibits neither property: the tests are not controlled
because the violinist cannot be precisely sure of his or her
actions, isolate and change them individually, or
quantitatively compare them to a standard of correctness;
nor are they repeatable because multiple attempts cannot
produce the same results or in the same way because
humans are not consistent enough.

To mitigate this limitation, a physical model served as a
surrogate for the real violin and bow assembly. This
mechatronic device combined solutions from computer
science, electrical and mechanical engineering, and
fabrication with commercial off-the-shelf parts to produce a
physical simulation device that was much more amenable to
controlled experiments on the real IMUs. However, its
idiosyncrasies introduced their own problems, which led to
the need to evaluate its own performance. The final result
was a virtual model in software that was both convenient for
high-speed experiments and arbitrarily accurate. In order to
use the virtual model as a surrogate for the physical model,
which in turn was a surrogate for the real assembly, the
performance characteristics of all three needed to be
identified, measured, modeled, tested, analyzed, and
validated.

This paper addresses a proof-of-concept integrated
environment of modeling, simulation, visualization, and
analysis as an objective comparative framework for this
heavily underdetermined, messy comparative problem. It
involves a wide range of creative what if engineering
thinking and doing. Specifically, it addresses calibrating and
tuning (i.e., grounding) each of the models to each other,
executing them, and comparing their performance. It
partially uses a Monte Carlo approach to perform sensitivity
analysis on the parameters to tease out their independent
and interdependent contributions.

2 Background

The larger violin project aimed at determining in real time
whether the violinist was manipulating the bow
appropriately. It addressed posture and movement only, not
how to play correctly in terms of musical notes and style.
The definition of acceptable manipulation is complicated
and not strictly necessary here. This paper focuses only on
establishing the state of the bow and violin in space and

time as correctly and reliably as possible, not on their
interrelationships to produce music. For context, however,
the purpose of this information was to establish and monitor
a complex three-dimensional region of acceptability based
on two sources of state data in Figure 1a: the violin, and the
left end of the bow opposite the violinist's hand. The
violinist has a wide range of freedom in holding the
instrument (even upside-down is physically possible);
therefore, the acceptable state of the bow is relative to the
state of the violin, and both are needed. Conveniently, the
same solution applied to both, but for simplicity, the rest of
this paper usually refers to the bow only. The bow was also
subject to the most movement and demanding tests, so it
makes the better representative given the space limitations.

Figure 1: Violin with bow [1], violin and bow coordinate systems

State is defined in terms of three components in three-
dimensional space that together compose a spatial model
with six degrees of freedom (6DOF). The first is position as
(x,y,z) relative to the initial position (0,0,0) from when the
measurements started. It is not necessary to know the
absolute start position in the real world (e.g., two meters
from the wall, one from the floor), and in fact, these values
have no specific units of distance. The second is attitude as
yaw, pitch, and roll in degrees relative to the initial values of
zero. The third is relative time, which contributes to
computing the speed (change in state) and acceleration
(change in speed).

The state of the violin in the coordinate system in Figure 1b
serves as the reference against which to measure the state of
the bow. The bow uses the system in Figure 1c because it is
more intuitive to swap the roll and pitch axes to account for
the perpendicular interaction. In other words, pitch for the
bow in the right hand should be at a right angle to the pitch
of the violin in the left hand. The desired bow yaw should
be 90 degrees counterclockwise from the violin yaw about
the z axis at the origin, which is where the bow and strings
intersect. Bow pitch is the arcing movement as the bow
passes over the strings. It is the angle of the bow relative to
the angle of the violin on the plane formed by the x and y
axes, ranging over roughly ±20 degrees.

Yaw deviation of the bow is what violinists at all levels
strive to minimize. Pitch deviation is not an error because
pitch must vary in order to interact with different strings.
Roll deviation could be a consideration, but compared to
yaw, it is minor. Determining the state on all axes, however,
is necessary to solve the state of the complete system. The

details of the math, physics, and engineering involved in
moving a bow are out of scope, but their relationship to the
larger project is worth mentioning for context. Kinematics is
the study of geometry in motion without regard to the
underlying mechanism (the kinetics), such as force, mass,
and gravity. For example, pushing the base of the bow
forward in line with it moves the other end a corresponding
distance in the same direction. This event translates an
action (the cause) into a reaction (the effect). In other words,
the violinist must do the former so that the latter happens.
Inverse kinematics in this context is the study of how to
achieve this result given the many options. For example, the
upper arm, elbow, forearm, and wrist can combine in many
ways to produce the same action, and other actions can also
lead to the same reaction. It is the teacher's job to make sure
that the appropriate actions occur in the right way for the
right reasons. This system considers only the kinematics of
producing the result. In the bigger picture, the correct result
is necessary to play a violin well, but it alone is not
sufficient because technique also matters.

3 Architecture

The architecture consists of two complementary parts for
reliably executing repeatable, controlled experiments: the
physical model operates directly on hardware to simulate
the role of the bow, and the virtual model is its software
counterpart. Section 5 discusses how the two work together.

3.1 Physical model

The hardware is a computer-controlled electromechanical
device consisting of a movable turret with a movable bow
holding an IMU, collectively called the test rig.

3.1.1 Turret

The turret, a stock RobotGeek Roboturret in Figure 2a,
provides a flat, open platform typically intended to hold a
camera [6]. A separate hobby servo motor (2b) drives the
rotational movement of its two degrees of freedom, pan and
tilt, which respectively correspond to yaw and pitch for the
bow. The turret is a self-contained unit with its own power
supply, an Arduino Duemilanove embedded controller (2c),
and a thumb-sized joystick [7]. It is strong and fast enough
to simulate the angular movement of the bow, but it does
have notable limitations, covered in Section 3.2.

 a b c

Figure 2: Turret, servo, and controller [6,6,7]

x

y

z

pitch
yaw

roll

x

y

z

roll
yaw

pitch

a b c

3.1.2 Bow

The drive mechanism in Figure 3a for the simulated bow
occupies the platform of the turret. This component required
design and fabrication from scratch. It consists of a geared
motor with a pinion gear that meshes against the rack on a
lightweight, extruded square aluminum shaft 50cm long.
The motor driver is a JRK 12v12 (3b), which accepts a wide
range of convenient parameters, such as acceleration and
deceleration profiles [8].

a b

Figure 3: Bow drive mechanism and motor controller [8]

Rotating the motor and thus the pinion gear causes the shaft
to move linearly through a low-resistance channel guided by
bearings. This action must be precise because the shaft has
to move to a specified position at a specified rate. The
hardware has two complementary positioning strategies.
The first is an open-loop control system that counts how
many rotations of the motor occur in 1/48th increments. The
motor has a built-in quadrature encoder for this purpose,
which interfaces directly with the motor controller. Each
partial rotation, or step, translates into a corresponding
linear movement of theoretically around 0.06mm. However,
the messy operating environment causes minor counting
errors that compound over time. For example, moving the
bow back and forth the same number of steps many times
does not return to exactly the original position. This error is
minor, but in combination with many other errors inherent
throughout this work, this solution alone is not acceptable.

To mitigate this limitation, a simple closed-loop control
system uses an optical sensor to determine when a black dot
at the back center of the shaft passes the drive mechanism,
which means that the bow is back in its home position. This
signal resets the step count to negate any counting errors. In
fact, it is so effective that the front of the shaft includes
similar dots at 5mm increments as reference points for the
image processing discussed in Section 5.2. The back dot
also serves to initialize the bow to the same starting position
for each test. The Arduino can also initialize it to other
positions in code, or the user can manipulate the joystick.

3.1.3 Sensors

Reliably knowing the position and attitude of the bow and
violin (real or simulated) is essential. Three types of sensors
determine these values. In general terms, an accelerometer
measures change in position from the previous
measurement; a gyroscope, change in yaw, pitch, and roll;
and a magnetometer, absolute yaw (i.e., compass heading).

They collectively form an inertial measurement unit and
typically reside on a single chip, here an MPU-9150 in Figure
4a [9].

 a b

Figure 4: Inertial measurement unit and Raspberry Pi [9,10]

In reality, computing these values reliably is far more
complex. Despite the apparent convenience of this IMU, it is
in practice quite an unreliable device with messy output and
many inherent errors. Higher-quality devices were available
at acceptably higher cost, but they were larger and heavier,
which was prohibitive for use on the end of a long bow in
motion. (The supplier also billed this product as “the
world’s first” 9DOF device with complex onboard digital
motion processing, which sounded highly promising [9].)
Mitigating these errors in the larger project involved
complex signal processing, primarily Kalman filtering,
which is out of scope here [2]. Nevertheless, even with such
processing, the results were hardly ideal, which is the
subject of Section 6.

The two IMUs simply acquired state data. They did not
process or store anything. For this part, they communicated
with a Raspberry Pi, a small, inexpensive, yet powerful
single-board computer in Figure 4b [10]. The programming
language for processing the data was Python. While not the
fastest for number crunching, it was adequate for the
requirements. Moreover, it includes convenient libraries for
communicating with the test rig over the I2C and USB buses
and GPIO (general-purpose input/output) pins.

3.1.4 Architectural overview

Figure 5 shows the architectural overview of the main
components of the system and their communication. A
laptop serves as the base station to provide the user with a
convenient interface into the other components, which do
not have a keyboard or display of their own. It also collects
the raw data during tests.

Figure 5: Architectural overview

laptoplaptop

PiPi
IMU 1IMU 1

IMU 2IMU 2

optical sensoroptical sensor

yaw servoyaw servo

pitch servopitch servo

motormotor

encoderencoder

ArduinoArduino

controllercontroller

Figure 6 shows the test rig, which contains the components
within the dashed box above. The IMU is on the right end of
the bow.

Figure 6: Test rig in calibration chamber

3.2 Virtual model

The physical model is a surrogate for the real-world bow,
which does not reliably lend itself to controlled
experiments. The virtual model in turn is a surrogate for the
physical model, which exhibits a large number of issues that
undermine its use as the only means of testing the IMU on
the bow. Section 5 covers in detail how the three variants
function together better in a modeling-and-simulation
environment than any one could alone.

The virtual model is a simplified computational engineering
representation of the turret and bow, as well as of the
physical mechanisms that connect and move them. The
turret has inputs for yaw and pitch, and the bow for speed
and distance of motor rotation. The virtual model in this
form is perfect, which would be the ideal goal for the
physical model, too. However, the latter exhibits a wide
range of errors and limitations owing to its real-world nature
and the quality of the components and construction. In order
to use the virtual model in place of the physical, it must
model these errors to some configurable degree. Trial-and-
error experimentation through simulation played this role.

All substantive errors are related to interconnections and
movement. For instance, the yaw and pitch axes of the turret
pivot through their respective servo motors. These low-cost
hobby units have a noticeable amount of rotational
backlash, or slop, in their ability to hold a specified angle: it
can vary by plus or minus several degrees, depending on
how much force is applied. The bow suffers from a similar
problem in multiple respects because the motor has its own
internal gears with backlash, and the pinion gear does not
mesh perfectly with the rack. As a result, the bow can vary
in position along its length by plus or minus a millimeter or
more. The bow also has sideways slop because the bearings
that hold it in position have some freedom. Reducing the
tolerance improves this performance, but it introduces
another problem because the friction becomes much higher,
and the bow motor does not behave as uniformly.

Everything in engineering design is a compromise. The goal
here was not to produce the best solution for a specific set of
test cases, but rather a generalized proof of concept that
fleshed out areas to investigate further.

While the contribution of any of these errors alone is
relatively small, they amplify over the length of the bow.
For example, one degree of error at its maximum extension
(normally avoided) equates to roughly a centimeter of
perpendicular distance error that the IMU at the end sees.
Even worse, some errors compound. For example, the yaw
axis of the turret holds the servo for the pitch axis, so pitch
measurements suffer from both errors.

A completely realistic virtual model would be
overwhelmingly complex and difficult to define, test, and
evaluate. Therefore, this abstraction and simplification
ignores contributions from vibration and resonance
(compounded interacting vibrations), as well as balance and
stress-related factors. For example, the bow at its maximum
extension exerts far more bending moment (twisting) at the
bearings than it does in balance at its minimum extension.
Similarly, electromagnetic effects on the magnetometers
from the motors were problematic, but effectively
impossible to model.

4 Visualization

A laptop logs the data from the controllers and sensors in
quantitative form in terms of the expected and actual states
(i.e., position and attitude), as well as time. The nature of
this work lends itself to interpreting and evaluating the
results in visual form. The visualization stage thus provides
a variety of perspectives that help determine performance
qualitatively, which tends to be more intuitive.

4.1 Two-dimensional static visualization

Static visualization involves displaying the results after a
test is complete. Although it should be possible to present
them dynamically in real time with additional software, the
amount of data is large, and the changes are generally too
quick and subtle for a person to follow in detail anyway.
Instead, the output exports natively to Excel, as in Figure 7,
where any manner of post-analysis is then possible.

Figure 7: Excel numerical data

Ordinary two-dimensional graphs in countless
configurations and combinations can provide a wealth of
insight into the results. Figure 8 shows a notional example
from a one-second test on attitude (at 10ms intervals). The

paired lines show how the expected (smooth) and actual
(jagged) results varied over time.

Figure 8: Excel graphical data

4.2 Three-dimensional dynamic visualization

Dynamic visualization involves displaying the results in real
time as a test executes or afterwards statically in replay
mode. The Java OpenGL 3D viewer in Figure 9 shows the
mechanical configuration at any point in time from any
perspective [4]. Its code is highly configurable and
extensible to any special-purpose analysis. It can also render
a variety of metadata to depict information that is not
possible in the Excel visualization.

Figure 9: 3D viewer

5 Experimental framework

The overarching goal of this work was to use both physical
and virtual modeling and simulation as a better integrated
test environment for the IMUs than the real violin and bow
could provide. In particular, it was essential to be able to run
a wide range of tests for good breadth of coverage, as well
as more instances of each for depth in statistical processing
and analysis. The advantages of the physical and virtual
models over the real bow in this respect are substantial.
However, the value of their collective results depends on
how well all three representations agree. There is no simple
way to perform these comparisons because each
representation has its own idiosyncrasies. For example, the
real bow held by the violinist is, of course, the most
accurate at being itself, but it is also the least reliable in
accommodating a specific test. It is also completely useless
for collecting multiple samples from the same test because
the violinist cannot exactly repeat the same actions. In other
words, the violinist would contribute the most errors and
overshadow the errors in the IMU itself, which are the true
interest. The physical model improves on these limitations,
but it introduces inconsistencies that are not present in the
real bow. Finally, the virtual model attempts to be a
surrogate for both to tease out the performance

characteristics of the entire system piece by piece; i.e.,
which components contribute which errors and by how
much. Configuring the models to reflect reality involved
substantial trial and error.

The approach was to compare the performance of the bow
IMU on the same tests across various combinations of the
physical and virtual models. All tests used the same
methodology of mapping inputs to outputs and measuring
error as expected versus actual output. Specifically, in the
perfect world, the same input (cause) would map to the
same output (effect) every time. In practice, however, a
multitude of factors introduced many errors that could not
be isolated directly. The following combinations were the
first attempt at building an objective comparative
framework, which is still a work in progress.

5.1 IMU against physical model (C–A)

The first type of experimental comparison took the obvious
route and aimed to determine how well the data from the
IMU on the bow in Figure 3a corresponded to where the test
rig believed it actually was. For example, in the perfect case,
the bow would go to the expected state of position (x,y,z)
and attitude (yaw, pitch), and the IMU would indeed report
exactly this actual state; i.e., no error. In reality, however,
there are three types of states in play: (A) where the rig
believes it put the IMU, (B) where the IMU actually is, and
(C) where the IMU believes it is. Therefore, there are errors
likely in the comparisons between states A and B, B and C,
and A and C. The difference between A (input) and C
(output) is supposed to reflect the IMU error, but in fact, it
really includes errors from all three. Some of these errors
are additive (i.e., two wrongs make a bigger wrong), and
some are subtractive (i.e., two wrongs make a smaller
wrong or accidentally even a right).

This system is heavily underdetermined, and no amount of
comparison can completely overcome having more
unknowns than knowns, as well as a lack of confidence in
the truth of the knowns. Establishing (as much as possible)
which states contribute which errors and how they combine
is the purpose of the next four similar (and admittedly
confusing) types of experimental comparisons. To reiterate,
this C–A test above intended to measure the IMU
performance by comparing state C and A, but it actually
does C and B because A and B are not the same due to errors
in the rig. (Comparisons are reflexive, so A against B is the
same as B against A.)

5.2 Physical model against ground truth (A–B)

The second type of experimental comparison aimed to
determine the performance of the physical model against the
best representation of reality — the ground truth. In other
words, this comparison was of state A against B to discover
errors in the rig. These tests used the calibration chamber in

Figure 6 in combination with three digital cameras to
provide front, side, and top perspectives. The grid on the
background permitted accurate visual measurement of the
actual state of the IMU by hand. An LED on the test rig
indicated when the test started and ended so the three
streams could be synchronized. The tests were the same as
earlier: command the bow to an expected state, measure its
actual state, and report the error.

While this approach produced the best results on the true
performance of the test rig, it was totally impractical for real
tests. The image processing was a very tedious manual
effort of isolating the IMU against the background grid in all
three perspectives, translating the coordinates, then
calculating the corresponding position and attitude.
Furthermore, only the start and end states were available
this way, limiting this approach to static tests only.

5.3 IMU against ground truth (C–B)

The third approach compared the IMU (C) against the
ground truth (B). These tests used the same conditions as
those in Section 5.2 and actually occurred at the same time.
For the same reasons, they were utterly impractical for real-
time tests, but they did provide more insight into the nature
of the errors throughout the system.

5.4 Virtual model against ground truth (D–B)

The fourth approach compared the virtual model (D) against
the ground truth (B). This process involved grounding the
virtual model to match the physical model, including its
errors. Each error source in Section 3.2 is actually a range
from minimum to maximum with a probability distribution
(typical uniform or Gaussian). Endless trial and error
resulted in values that produced the same general behavior
as the physical model on the limited number of data points
captured.

5.5 Virtual model against physical model (D–A)

The fifth and final approach compared the virtual model (D)
against the physical model (A). The values painstakingly
processed in Section 5.2 served as the training data, where
the actual results could be tweaked until they reasonably
matched the expected results. The correspondence was
generally good because it is not a fair measure of
performance to know both the questions and the answers in
advance. The true measure is how well the virtual model
performs on tests that it has not yet seen, which Section 6
addresses.

5.6 Recap

The previous subsections capture five of the six possible
comparisons in Table 1. PM and VM stand for physical and
virtual model, respectively. The qualifier believed refers to
where the device reports itself to be, whereas actual is

where it truly is. (PM actual corresponds to the omitted IMU
actual because they are connected at the same location and
would have the same values.) Comparison C–D is not an
option at this point because it would require modeling the
IMU and its own errors, which is far outside the scope of
this work.

Table 1: Summary of comparisons

Section Types Description

5.2 A B PM believed vs. PM actual
5.1 A C PM believed vs. IMU believed
5.5 A D PM believed vs. VM actual
5.3 B C PM actual vs. IMU believed
5.4 B D PM actual vs. VM actual

C D IMU believed vs. VM actual

6 Results and discussion

There was nothing elegant about the tests: they were pure
brute force. This approach was actually convenient,
however, because it mitigated the curse of dimensionality,
which rapidly expands the test space into an intractable
number of combinations as the number and range of test
parameters increase [5]. Looping over the combinations in
the virtual model was by intent very fast. The physical
model, on the other hand, was relatively slow (and self-
destructive over time as the rig wore out), but it was still
immeasurably more effective than a violinist attempting
such tests repeatedly.

The first category of tests involved static snapshots of the
final state of the IMU after all kinematic actions had
completed. Each test of the physical model involved
averaging 10 independent runs, and on the virtual model,
100. (Strictly speaking, the number of runs should be the
same, but the physical model would not have survived a
higher value, and the probability-based virtual model would
have suffered from a lower one.) Each run started from the
same initial conditions. Angle parameters increased by 10
degrees per test. Bow extension increased by 10
centimeters, as measured from the pinion gear to the IMU.

Two subcategories considered parameters independently and
in combination. The independent tests were:

1. yaw 0º and extension 10cm, pitch 30º to 30º; 7 tests
2. pitch 0º and extension 10cm, yaw 45º to 45º; 10 tests
3. yaw and pitch 0º, extension 10cm to 40cm; 4 tests

The combinational tests were:

4. yaw 0º, pitch 30º to 30º, extension 10cm to 40cm;
28 tests

5. yaw 45º to 45º, pitch 0º, extension 10cm to 40cm;
40 tests

6. yaw 45º to 45º, pitch 30º to 30º, extension 10cm
to 40cm; 280 tests

As this paper is about using modeling and simulation in
support of other work, this discussion primarily addresses
the methodology, not the actual results per se. Czoski [3]
covers the IMU performance in great detail. Space
limitations also prevent further analysis. Tests 1–6 were
static tests because they reported the final state only. The
independent variants (1–3) were acceptable, whereas the
combinational ones (4–6) were very inconsistent because of
amplified errors. The second set of tests, 7–12, were
respectively 1–6 again, but with intermediate states sampled
at 10ms intervals. Figure 8 is a small representative example
(based on Test 8) that shows how the expected versus actual
states translated to error measurements. This graph
considers only accuracy (i.e., how closely they agree);
precision (how repeatable they are) and variance (spread, in
terms of standard deviation) are also useful, along with
many other statistical measures.

Unfortunately, while the virtual model corresponds
reasonably well to the physical model in the static and
dynamic independent tests and static combinational tests, it
does not come close to reflecting the chaotic operating
characteristics of the dynamic combinational tests. These
tests are unfortunately the most representative of a violin
and bow in actual use. It is questionable whether improving
the virtual model would even be worthwhile because the
physical model is so problematic.

7 Future work

For more meaningful and useful results, a better test rig is
undeniably necessary. As a proof of concept, this one served
its purpose, but it introduced far too many problems that
unnecessarily complicated all aspects of this work.
Likewise, better IMUs are needed. It is also likely that a
second one on the other end of the bow might help correlate
the raw data to mitigate some of the errors. Similarly, a
more practical approach to establishing the ground truth via
automated image processing could improve some of the
convoluted inferences on A through D. Finally, full motion
capture on a violinist could provide even more potential for
appropriate grounding.

8 Conclusion

The goal of doing engineering on the cheap with
commercial off-the-shelf components was reasonable, but
no amount of basic modeling and simulation appeared to be
on a promising track to compensate adequately for the many
combinations of inherent errors throughout the system.
Isolating a single type of error was indeed achievable, but in
this messy, highly underdetermined environment, the final
results collectively were unfit for actual use. Nevertheless,
as a proof of concept, this work overall demonstrated that an
integrated framework of modeling, simulation,
visualization, and analysis successfully supports repeatable,
controlled experiments in the otherwise intractable realm of
real-time data collection and processing for complex violin
movement. The widespread use of IMUs in countless other
applications could benefit from this approach, as well.

9 References

[1] Adapted from Google Sketchup Warehouse,
3dwarehouse.sketchup.com, last accessed Mar. 17, 2016.
[2] Caron, F., E. Duflos, D. Pomorski, and P. Vanheeghe.
GPS/IMU data fusion using multisensor Kalman filtering:
introduction of contextual aspects. Information Fusion, vol.
7, no. 2, pp. 221–230, June 2006.
[3] Czoski, J. A Violin Practice Tool Using 9-Axis Sensor
Fusion. Masters thesis, Eastern Washington University,
2015.
[4] Tappan, D. A Pedagogy-Oriented Modeling and
Simulation Environment for AI Scenarios. WorldComp
International Conference on Artificial Intelligence, Las
Vegas, NV, July 13–16, 2009.
[5] Thomopoulos, N. Essentials of Monte Carlo Simulation:
Statistical Methods for Building Simulation Models.
Springer: New York, 2012.
[6] www.trossenrobotics.com, last accessed Mar. 20, 2016.
[7] www.arduino.cc, last accessed Mar. 20, 2016.
[8] www.pololu.com, last accessed Mar. 20, 2016.
[9] www.sparkfun.com, last accessed Mar. 20, 2016.
[10] www.raspberrypi.org, last accessed Mar. 20, 2016.

