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Abstract - One of the most difficult aspects of learning to
play violin is posture. Students practice endlessly in front of
a teacher and mirror to ensure correct bow movement with
respect  to  the  violin.  This  work  describes  a  hybrid
modeling-and-simulation  environment  fabricated  to
evaluate the use of inexpensive inertial measurement units
for  a  larger  project  to  perform  such  monitoring
automatically.  It  describes  a  mechatronic  test  rig  that
simulates complex bow movement for repeatable, controlled
experiments.  This physical  hardware model  introduces its
own idiosyncrasies into the evaluation process and in turn
requires  evaluation  by  a  virtual  software  model.  The
combined  result  is  an  objective  comparative  proof-of-
concept framework for grounding (calibrating and tuning)
the two models against each other and reality to tease out
performance characteristics.

Keywords:  violin,  data  acquisition,  inertial  measurement
unit, mechatronics, performance evaluation

1  Introduction

Learning to play violin is a long and challenging process.
One  of  the  greatest  difficulties  involves  developing  and
maintaining appropriate  posture to  keep the bow oriented
correctly  with  respect  to  the  violin.  During  lessons,  a
teacher  closely  monitors  this  activity  and  indicates
whenever there is a problem. Students on their own practice
in front of a mirror to monitor themselves. Either way, the
process  is  onerous.  An automated  system could  be  much
more practical. The recent explosion of popularity in drones,
virtual-reality  gaming  devices,  and  motion-based
smartphone apps has had a profound effect on increasing the
capabilities  and  availability  of  small,  inexpensive  inertial
measure units (IMUs) that keep track of their position and
orientation  in  three-dimensional  space  in  real  time.
Attaching one to the violin and another to the bow provides
their  physical  states.  In  theory, subtracting the  two states
would produce the relative state of the bow with respect to
the violin and facilitate its evaluation within an acceptable
range of motion.

In  practice,  however,  this  approach  morphs  into  a  much
larger  problem  of  using  the  IMUs  appropriately  and
compensating for  their  many shortcomings.  The focus  of
this paper is on how to evaluate the real-world performance
of  IMUs objectively for a  larger  project  of this kind. The
underlying  approach  involves  conducting  repeatable,

controlled  experiments  as  part  of  the  scientific  method.
Directly  measuring  the  IMUs  on  a  real  violin  and  bow
exhibits  neither  property:  the  tests  are  not  controlled
because the violinist cannot be precisely sure of his or her
actions,  isolate  and  change  them  individually,  or
quantitatively compare them to a standard of  correctness;
nor  are  they repeatable  because  multiple  attempts  cannot
produce  the  same  results  or  in  the  same  way  because
humans are not consistent enough.

To mitigate  this  limitation,  a  physical  model  served  as  a
surrogate  for  the  real  violin  and  bow  assembly.  This
mechatronic  device  combined  solutions  from  computer
science,  electrical  and  mechanical  engineering,  and
fabrication with commercial off-the-shelf parts to produce a
physical simulation device that was much more amenable to
controlled  experiments  on  the  real  IMUs.  However,  its
idiosyncrasies introduced their own problems, which led to
the need to evaluate its own performance. The final result
was a virtual model in software that was both convenient for
high-speed experiments and arbitrarily accurate. In order to
use the virtual model as a surrogate for the physical model,
which  in  turn  was  a  surrogate  for  the  real  assembly, the
performance  characteristics  of  all  three  needed  to  be
identified,  measured,  modeled,  tested,  analyzed,  and
validated.

This  paper  addresses  a  proof-of-concept  integrated
environment  of  modeling,  simulation,  visualization,  and
analysis  as  an  objective  comparative  framework  for  this
heavily  underdetermined,  messy  comparative  problem.  It
involves  a  wide  range  of  creative  what  if engineering
thinking and doing. Specifically, it addresses calibrating and
tuning (i.e.,  grounding) each of the models to each other,
executing  them,  and  comparing  their  performance.  It
partially uses a Monte Carlo approach to perform sensitivity
analysis  on  the  parameters  to  tease  out  their  independent
and interdependent contributions.

2  Background

The larger violin project aimed at determining in real time
whether  the  violinist  was  manipulating  the  bow
appropriately. It addressed posture and movement only, not
how to play correctly in terms of musical notes and style.
The  definition  of  acceptable  manipulation  is  complicated
and not strictly necessary here. This paper focuses only on
establishing the state  of  the bow and violin in  space and



time  as  correctly  and  reliably  as  possible,  not  on  their
interrelationships to produce music. For context, however,
the purpose of this information was to establish and monitor
a complex three-dimensional region of acceptability based
on two sources of state data in Figure 1a: the violin, and the
left  end  of  the  bow  opposite  the  violinist's  hand.  The
violinist  has  a  wide  range  of  freedom  in  holding  the
instrument  (even  upside-down  is  physically  possible);
therefore, the acceptable state of the bow is relative to the
state of the violin, and both are needed. Conveniently, the
same solution applied to both, but for simplicity, the rest of
this paper usually refers to the bow only. The bow was also
subject  to the most movement  and demanding tests,  so it
makes the better representative given the space limitations.

Figure 1: Violin with bow [1], violin and bow coordinate systems

State  is  defined  in  terms  of  three  components  in  three-
dimensional  space  that  together  compose  a  spatial  model
with six degrees of freedom (6DOF). The first is position as
(x,y,z) relative to the initial position (0,0,0) from when the
measurements  started.  It  is  not  necessary  to  know  the
absolute start  position in the real  world (e.g.,  two meters
from the wall, one from the floor), and in fact, these values
have no specific units of distance. The second is attitude as
yaw, pitch, and roll in degrees relative to the initial values of
zero.  The  third  is  relative  time,  which  contributes  to
computing  the  speed  (change  in  state)  and  acceleration
(change in speed).

The state of the violin in the coordinate system in Figure 1b
serves as the reference against which to measure the state of
the bow. The bow uses the system in Figure 1c because it is
more intuitive to swap the roll and pitch axes to account for
the perpendicular interaction. In other words, pitch for the
bow in the right hand should be at a right angle to the pitch
of the violin in the left hand. The desired bow yaw should
be 90 degrees counterclockwise from the violin yaw about
the z axis at the origin, which is where the bow and strings
intersect.  Bow pitch  is  the  arcing  movement  as  the  bow
passes over the strings. It is the angle of the bow relative to
the angle of the violin on the plane formed by the  x and  y
axes, ranging over roughly ±20 degrees.

Yaw deviation  of  the  bow is  what  violinists  at  all  levels
strive to minimize. Pitch deviation is not an error because
pitch must vary in order to interact  with different strings.
Roll  deviation could be  a consideration,  but  compared  to
yaw, it is minor. Determining the state on all axes, however,
is necessary to solve the state of the complete system. The

details  of  the  math,  physics,  and  engineering involved  in
moving a bow are out of scope, but their relationship to the
larger project is worth mentioning for context. Kinematics is
the  study  of  geometry  in  motion  without  regard  to  the
underlying mechanism (the  kinetics),  such as force,  mass,
and  gravity.  For  example,  pushing  the  base  of  the  bow
forward in line with it moves the other end a corresponding
distance  in  the  same  direction.  This  event  translates  an
action (the cause) into a reaction (the effect). In other words,
the violinist must do the former so that the latter happens.
Inverse kinematics in  this  context  is  the study of  how to
achieve this result given the many options. For example, the
upper arm, elbow, forearm, and wrist can combine in many
ways to produce the same action, and other actions can also
lead to the same reaction. It is the teacher's job to make sure
that the appropriate actions occur in the right way for the
right reasons. This system considers only the kinematics of
producing the result. In the bigger picture, the correct result
is  necessary  to  play  a  violin  well,  but  it  alone  is  not
sufficient because technique also matters.

3  Architecture

The architecture  consists  of  two complementary parts  for
reliably  executing  repeatable,  controlled  experiments:  the
physical  model  operates  directly on hardware  to  simulate
the role of  the bow, and the virtual  model is  its  software
counterpart. Section 5 discusses how the two work together.

3.1  Physical model

The  hardware  is  a  computer-controlled  electromechanical
device consisting of a movable turret with a movable bow
holding an IMU, collectively called the test rig.

3.1.1  Turret

The  turret,  a  stock  RobotGeek  Roboturret  in  Figure  2a,
provides a flat, open platform typically intended to hold a
camera [6]. A separate hobby servo motor (2b) drives the
rotational movement of its two degrees of freedom, pan and
tilt, which respectively correspond to yaw and pitch for the
bow. The turret is a self-contained unit with its own power
supply, an Arduino Duemilanove embedded controller (2c),
and a thumb-sized joystick [7]. It is strong and fast enough
to simulate the angular movement of the bow, but it  does
have notable limitations, covered in Section 3.2.
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Figure 2: Turret, servo, and controller [6,6,7]
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3.1.2  Bow

The drive mechanism in Figure 3a for the simulated bow
occupies the platform of the turret. This component required
design and fabrication from scratch. It consists of a geared
motor with a pinion gear that meshes against the rack on a
lightweight,  extruded  square  aluminum  shaft  50cm  long.
The motor driver is a JRK 12v12 (3b), which accepts a wide
range of  convenient  parameters,  such  as  acceleration and
deceleration profiles [8].

a b

Figure 3: Bow drive mechanism and motor controller [8]

Rotating the motor and thus the pinion gear causes the shaft
to move linearly through a low-resistance channel guided by
bearings. This action must be precise because the shaft has
to  move  to  a  specified  position  at  a  specified  rate.  The
hardware  has  two  complementary  positioning  strategies.
The first  is  an open-loop control  system that  counts  how
many rotations of the motor occur in 1/48th increments. The
motor  has  a  built-in  quadrature  encoder  for  this  purpose,
which  interfaces  directly  with  the  motor  controller.  Each
partial  rotation,  or  step,  translates  into  a  corresponding
linear movement of theoretically around 0.06mm. However,
the  messy  operating  environment  causes  minor  counting
errors that compound over time. For example, moving the
bow back and forth the same number of steps many times
does not return to exactly the original position. This error is
minor, but in combination with many other errors inherent
throughout this work, this solution alone is not acceptable. 

To  mitigate  this  limitation,  a  simple  closed-loop  control
system uses an optical sensor to determine when a black dot
at the back center of the shaft passes the drive mechanism,
which means that the bow is back in its home position. This
signal resets the step count to negate any counting errors. In
fact,  it  is  so effective  that  the  front  of  the  shaft  includes
similar dots at 5mm increments as reference points for the
image  processing  discussed  in  Section  5.2.  The  back  dot
also serves to initialize the bow to the same starting position
for  each  test.  The  Arduino  can  also  initialize  it  to  other
positions in code, or the user can manipulate the joystick.

3.1.3  Sensors

Reliably knowing the position and attitude of the bow and
violin (real or simulated) is essential. Three types of sensors
determine these values. In general terms, an  accelerometer
measures  change  in  position  from  the  previous
measurement; a  gyroscope, change in yaw, pitch, and roll;
and a magnetometer, absolute yaw (i.e., compass heading).

They  collectively  form  an  inertial  measurement  unit  and
typically reside on a single chip, here an MPU-9150 in Figure
4a [9].

             a  b

Figure 4: Inertial measurement unit and Raspberry Pi [9,10]

In  reality,  computing  these  values  reliably  is  far  more
complex. Despite the apparent convenience of this IMU, it is
in practice quite an unreliable device with messy output and
many inherent errors. Higher-quality devices were available
at acceptably higher cost, but they were larger and heavier,
which was prohibitive for use on the end of a long bow in
motion.  (The  supplier  also  billed  this  product  as  “the
world’s first”  9DOF device  with  complex  onboard  digital
motion  processing,  which  sounded highly promising [9].)
Mitigating  these  errors  in  the  larger  project  involved
complex  signal  processing,  primarily  Kalman  filtering,
which is out of scope here [2]. Nevertheless, even with such
processing,  the  results  were  hardly  ideal,  which  is  the
subject of Section 6.

The  two  IMUs  simply  acquired  state  data.  They  did  not
process or store anything. For this part, they communicated
with  a  Raspberry  Pi,  a  small,  inexpensive,  yet  powerful
single-board computer in Figure 4b [10]. The programming
language for processing the data was Python. While not the
fastest  for  number  crunching,  it  was  adequate  for  the
requirements. Moreover, it includes convenient libraries for
communicating with the test rig over the I2C and USB buses
and GPIO (general-purpose input/output) pins.

3.1.4  Architectural overview

Figure  5  shows  the  architectural  overview  of  the  main
components  of  the  system  and  their  communication.  A
laptop serves as the base station to provide the user with a
convenient  interface into the other  components,  which do
not have a keyboard or display of their own. It also collects
the raw data during tests.

Figure 5: Architectural overview
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Figure 6 shows the test rig, which contains the components
within the dashed box above. The IMU is on the right end of
the bow.

Figure 6: Test rig in calibration chamber

3.2  Virtual model

The physical model is a surrogate for the real-world bow,
which  does  not  reliably  lend  itself  to  controlled
experiments. The virtual model in turn is a surrogate for the
physical model, which exhibits a large number of issues that
undermine its use as the only means of testing the IMU on
the bow. Section 5 covers in detail how the three variants
function  together  better  in  a  modeling-and-simulation
environment than any one could alone.

The virtual model is a simplified computational engineering
representation  of  the  turret  and  bow,  as  well  as  of  the
physical  mechanisms  that  connect  and  move  them.  The
turret has inputs for yaw and pitch, and the bow for speed
and distance of  motor  rotation.  The virtual  model  in  this
form  is  perfect,  which  would  be  the  ideal  goal  for  the
physical  model,  too.  However,  the  latter  exhibits  a  wide
range of errors and limitations owing to its real-world nature
and the quality of the components and construction. In order
to use the virtual  model in place of  the physical,  it  must
model these errors to some configurable degree. Trial-and-
error experimentation through simulation played this role.

All  substantive  errors  are  related  to  interconnections  and
movement. For instance, the yaw and pitch axes of the turret
pivot through their respective servo motors. These low-cost
hobby  units  have  a  noticeable  amount  of  rotational
backlash, or slop, in their ability to hold a specified angle: it
can vary by plus or  minus several  degrees,  depending on
how much force is applied. The bow suffers from a similar
problem in multiple respects because the motor has its own
internal gears with backlash, and the pinion gear does not
mesh perfectly with the rack. As a result, the bow can vary
in position along its length by plus or minus a millimeter or
more. The bow also has sideways slop because the bearings
that hold it  in position have some freedom. Reducing the
tolerance  improves  this  performance,  but  it  introduces
another problem because the friction becomes much higher,
and  the  bow  motor  does  not  behave  as  uniformly.

Everything in engineering design is a compromise. The goal
here was not to produce the best solution for a specific set of
test  cases,  but  rather  a  generalized  proof  of  concept  that
fleshed out areas to investigate further.

While  the  contribution  of  any  of  these  errors  alone  is
relatively small,  they amplify over the length of the bow.
For example, one degree of error at its maximum extension
(normally  avoided)  equates  to  roughly  a  centimeter  of
perpendicular distance error that  the  IMU at  the end sees.
Even worse, some errors compound. For example, the yaw
axis of the turret holds the servo for the pitch axis, so pitch
measurements suffer from both errors.

A  completely  realistic  virtual  model  would  be
overwhelmingly complex and difficult  to define,  test,  and
evaluate.  Therefore,  this  abstraction  and  simplification
ignores  contributions  from  vibration  and  resonance
(compounded interacting vibrations), as well as balance and
stress-related factors. For example, the bow at its maximum
extension exerts far more bending moment (twisting) at the
bearings than it does in balance at its minimum extension.
Similarly,  electromagnetic  effects  on  the  magnetometers
from  the  motors  were  problematic,  but  effectively
impossible to model.

4  Visualization

A laptop logs the data from the controllers and sensors in
quantitative form in terms of the expected and actual states
(i.e., position and attitude), as well as time. The nature of
this  work  lends  itself  to  interpreting  and  evaluating  the
results in visual form. The visualization stage thus provides
a variety of perspectives  that  help determine performance
qualitatively, which tends to be more intuitive.

4.1  Two-dimensional static visualization

Static  visualization involves  displaying  the  results  after  a
test is complete. Although it should be possible to present
them dynamically in real time with additional software, the
amount of data is large, and the changes are generally too
quick and subtle for a person to follow in detail  anyway.
Instead, the output exports natively to Excel, as in Figure 7,
where any manner of post-analysis is then possible.

Figure 7: Excel numerical data

Ordinary  two-dimensional  graphs  in  countless
configurations  and  combinations  can  provide  a  wealth  of
insight into the results. Figure 8 shows a notional example
from a one-second test on attitude (at 10ms intervals). The



paired  lines  show how the  expected  (smooth)  and  actual
(jagged) results varied over time.

Figure 8: Excel graphical data

4.2  Three-dimensional dynamic visualization

Dynamic visualization involves displaying the results in real
time  as  a  test  executes  or  afterwards  statically  in  replay
mode. The Java OpenGL 3D viewer in Figure 9 shows the
mechanical  configuration  at  any  point  in  time  from  any
perspective  [4].  Its  code  is  highly  configurable  and
extensible to any special-purpose analysis. It can also render
a  variety  of  metadata  to  depict  information  that  is  not
possible in the Excel visualization.

Figure 9: 3D viewer

5  Experimental framework

The overarching goal of this work was to use both physical
and virtual modeling and simulation as a better integrated
test environment for the IMUs than the real violin and bow
could provide. In particular, it was essential to be able to run
a wide range of tests for good breadth of coverage, as well
as more instances of each for depth in statistical processing
and  analysis.  The  advantages  of  the  physical  and  virtual
models  over  the  real  bow in  this  respect  are  substantial.
However, the  value of  their  collective results  depends on
how well all three representations agree. There is no simple
way  to  perform  these  comparisons  because  each
representation has its own idiosyncrasies. For example, the
real  bow  held  by  the  violinist  is,  of  course,  the  most
accurate at  being itself,  but  it  is  also the least  reliable in
accommodating a specific test. It is also completely useless
for collecting multiple samples from the same test because
the violinist cannot exactly repeat the same actions. In other
words,  the violinist  would contribute  the  most  errors  and
overshadow the errors in the IMU itself, which are the true
interest. The physical model improves on these limitations,
but it introduces inconsistencies that are not present in the
real  bow.  Finally,  the  virtual  model  attempts  to  be  a
surrogate  for  both  to  tease  out  the  performance

characteristics  of  the  entire  system  piece  by  piece;  i.e.,
which  components  contribute  which  errors  and  by  how
much.  Configuring  the  models  to  reflect  reality  involved
substantial trial and error.

The approach was to compare the performance of the bow
IMU on the same tests across various combinations of the
physical  and  virtual  models.  All  tests  used  the  same
methodology of mapping inputs to outputs and measuring
error as expected versus actual output. Specifically, in the
perfect  world,  the  same  input  (cause)  would  map  to  the
same  output  (effect)  every  time.  In  practice,  however,  a
multitude of factors introduced many errors that could not
be isolated directly. The following combinations were the
first  attempt  at  building  an  objective  comparative
framework, which is still a work in progress.

5.1  IMU against physical model (C–A)

The first type of experimental comparison took the obvious
route and aimed to determine how well the data from the
IMU on the bow in Figure 3a corresponded to where the test
rig believed it actually was. For example, in the perfect case,
the bow would go to the expected state of position (x,y,z)
and attitude (yaw, pitch), and the  IMU would indeed report
exactly this actual state; i.e.,  no error. In reality, however,
there  are three  types  of  states  in  play:  (A)  where  the rig
believes it put the IMU, (B) where the IMU actually is, and
(C) where the IMU believes it is. Therefore, there are errors
likely in the comparisons between states A and B, B and C,
and  A and  C.  The  difference  between  A (input)  and  C
(output) is supposed to reflect the IMU error, but in fact, it
really includes errors from all three. Some of these errors
are additive (i.e.,  two wrongs make a bigger wrong),  and
some  are  subtractive  (i.e.,  two  wrongs  make  a  smaller
wrong or accidentally even a right).

This system is heavily underdetermined, and no amount of
comparison  can  completely  overcome  having  more
unknowns than knowns, as well as a lack of confidence in
the truth of the knowns. Establishing (as much as possible)
which states contribute which errors and how they combine
is  the  purpose  of  the  next  four  similar  (and  admittedly
confusing) types of experimental comparisons. To reiterate,
this  C–A test  above  intended  to  measure  the  IMU
performance by comparing  state  C and  A,  but  it  actually
does C and B because A and B are not the same due to errors
in the rig. (Comparisons are reflexive, so A against B is the
same as B against A.)

5.2  Physical model against ground truth (A–B)

The  second  type  of  experimental  comparison  aimed  to
determine the performance of the physical model against the
best  representation of  reality — the ground truth.  In  other
words, this comparison was of state A against B to discover
errors in the rig. These tests used the calibration chamber in



Figure  6  in  combination  with  three  digital  cameras  to
provide front,  side,  and top perspectives.  The grid on the
background permitted accurate visual  measurement  of  the
actual  state  of  the  IMU by hand.  An  LED on the test  rig
indicated  when  the  test  started  and  ended  so  the  three
streams could be synchronized. The tests were the same as
earlier: command the bow to an expected state, measure its
actual state, and report the error.

While this approach produced the best  results on the true
performance of the test rig, it was totally impractical for real
tests.  The  image  processing  was  a  very  tedious  manual
effort of isolating the IMU against the background grid in all
three  perspectives,  translating  the  coordinates,  then
calculating  the  corresponding  position  and  attitude.
Furthermore,  only the  start  and end states  were  available
this way, limiting this approach to static tests only.

5.3  IMU against ground truth (C–B)

The  third  approach  compared  the  IMU (C)  against  the
ground truth (B).  These tests used the same conditions as
those in Section 5.2 and actually occurred at the same time.
For the same reasons, they were utterly impractical for real-
time tests, but they did provide more insight into the nature
of the errors throughout the system.

5.4  Virtual model against ground truth (D–B)

The fourth approach compared the virtual model (D) against
the ground truth (B). This process involved grounding the
virtual  model  to  match  the  physical  model,  including  its
errors. Each error source in Section 3.2 is actually a range
from minimum to maximum with a probability distribution
(typical  uniform  or  Gaussian).  Endless  trial  and  error
resulted in values that produced the same general behavior
as the physical model on the limited number of data points
captured.

5.5  Virtual model against physical model (D–A)

The fifth and final approach compared the virtual model (D)
against  the  physical  model  (A).  The  values  painstakingly
processed in Section 5.2 served as the training data, where
the actual  results  could be  tweaked until  they reasonably
matched  the  expected  results.  The  correspondence  was
generally  good  because  it  is  not  a  fair  measure  of
performance to know both the questions and the answers in
advance. The true measure is  how well  the virtual  model
performs on tests that it has not yet seen, which Section 6
addresses.

5.6  Recap

The previous subsections capture  five  of  the  six  possible
comparisons in Table 1.  PM and VM stand for physical and
virtual model, respectively. The qualifier  believed refers to
where  the  device  reports  itself  to  be,  whereas  actual is

where it truly is. (PM actual corresponds to the omitted IMU
actual because they are connected at the same location and
would have the same values.)  Comparison  C–D is  not  an
option at this point because it would require modeling the
IMU and its own errors, which is far outside the scope of
this work.

Table 1: Summary of comparisons

Section Types Description

5.2 A B PM believed vs. PM actual
5.1 A C PM believed vs. IMU believed
5.5 A D PM believed vs. VM actual
5.3 B C PM actual vs. IMU believed
5.4 B D PM actual vs. VM actual

C D IMU believed vs. VM actual

6  Results and discussion

There was nothing elegant about the tests: they were pure
brute  force.  This  approach  was  actually  convenient,
however, because it  mitigated the curse of dimensionality,
which  rapidly  expands  the  test  space  into  an  intractable
number of  combinations as  the number and range of  test
parameters increase [5]. Looping over the combinations in
the  virtual  model  was  by  intent  very  fast.  The  physical
model,  on  the  other  hand,  was  relatively slow (and  self-
destructive over time as the rig wore out), but it was still
immeasurably  more  effective  than  a  violinist  attempting
such tests repeatedly.

The first category of tests involved static snapshots of the
final  state  of  the  IMU after  all  kinematic  actions  had
completed.  Each  test  of  the  physical  model  involved
averaging 10 independent runs,  and on the virtual  model,
100. (Strictly speaking, the number of runs should be the
same,  but  the physical  model  would not  have  survived  a
higher value, and the probability-based virtual model would
have suffered from a lower one.) Each run started from the
same initial  conditions.  Angle parameters increased by 10
degrees  per  test.  Bow  extension  increased  by  10
centimeters, as measured from the pinion gear to the IMU.

Two subcategories considered parameters independently and
in combination. The independent tests were:

1. yaw 0º and extension 10cm, pitch 30º to 30º; 7 tests
2. pitch 0º and extension 10cm, yaw 45º to 45º; 10 tests
3. yaw and pitch 0º, extension 10cm to 40cm; 4 tests

The combinational tests were:

4. yaw 0º, pitch  30º to  30º, extension 10cm to 40cm;  
28 tests

5. yaw  45º to  45º, pitch 0º, extension 10cm to 40cm;  
40 tests

6. yaw  45º to  45º,  pitch  30º to  30º, extension 10cm
to 40cm; 280 tests



As this  paper  is  about  using modeling  and  simulation  in
support of other work, this discussion primarily addresses
the methodology, not the actual results  per se.  Czoski [3]
covers  the  IMU performance  in  great  detail.  Space
limitations  also  prevent  further  analysis.  Tests  1–6  were
static tests because they reported the final  state only. The
independent  variants  (1–3)  were  acceptable,  whereas  the
combinational ones (4–6) were very inconsistent because of
amplified  errors.  The  second  set  of  tests,  7–12,  were
respectively 1–6 again, but with intermediate states sampled
at 10ms intervals. Figure 8 is a small representative example
(based on Test 8) that shows how the expected versus actual
states  translated  to  error  measurements.  This  graph
considers  only  accuracy  (i.e.,  how  closely  they  agree);
precision (how repeatable they are) and variance (spread, in
terms  of  standard  deviation)  are  also  useful,  along  with
many other statistical measures.

Unfortunately,  while  the  virtual  model  corresponds
reasonably  well  to  the  physical  model  in  the  static  and
dynamic independent tests and static combinational tests, it
does  not  come  close  to  reflecting  the  chaotic  operating
characteristics  of  the  dynamic  combinational  tests.  These
tests are unfortunately the most  representative of  a  violin
and bow in actual use. It is questionable whether improving
the virtual  model  would even  be  worthwhile  because  the
physical model is so problematic.

7  Future work

For more meaningful and useful results, a better test rig is
undeniably necessary. As a proof of concept, this one served
its  purpose,  but  it  introduced far  too many problems that
unnecessarily  complicated  all  aspects  of  this  work.
Likewise,  better  IMUs  are  needed.  It  is  also likely that  a
second one on the other end of the bow might help correlate
the  raw data  to  mitigate  some of  the  errors.  Similarly,  a
more practical approach to establishing the ground truth via
automated  image  processing  could  improve  some  of  the
convoluted inferences on  A through D. Finally, full motion
capture on a violinist could provide even more potential for
appropriate grounding.

8  Conclusion

The  goal  of  doing  engineering  on  the  cheap  with
commercial  off-the-shelf  components  was  reasonable,  but
no amount of basic modeling and simulation appeared to be
on a promising track to compensate adequately for the many
combinations  of  inherent  errors  throughout  the  system.
Isolating a single type of error was indeed achievable, but in
this messy, highly underdetermined environment,  the final
results collectively were unfit for actual use. Nevertheless,
as a proof of concept, this work overall demonstrated that an
integrated  framework  of  modeling,  simulation,
visualization, and analysis successfully supports repeatable,
controlled experiments in the otherwise intractable realm of
real-time data collection and processing for complex violin
movement. The widespread use of  IMUs in countless other
applications could benefit from this approach, as well.
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