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Abstract - Learning  to  fly  a  full-sized  helicopter  is  a
complex iterative process of mapping interdependent causes
to  effects  via  inputs  to  outputs  in  real  time  in  a  wildly
dynamic,  messy,  and  unforgiving  environment.  This  work
presents  a  prototype  system  for  noninvasively  acquiring
otherwise inaccessible data from the controls, instruments,
and flight dynamics of a Robinson R22 helicopter with an
array  of  cameras  and sensors  and then  processing  these
images  with  OpenCV-based  solutions  into  corresponding
numerical form for later use in a machine-learning project.
It describes a hardware and software architecture for safely
and successfully calibrating the system, running a breadth
and depth of representative experiments, and qualitatively
and quantitatively presenting and validating the results.

Keywords:  feature  extraction,  data  acquisition,  machine
learning, aviation

1  Introduction

Autonomous  aircraft,  especially  consumer  drones,  have
become an  $11 billion  yearly industry [9].  Machines  can
learn to fly well  for  many mainstream purposes now, but
most  approaches  are  disconnected  from  the  way  human
pilots learn to fly [6].  The computational  models  provide
little insight into the learning processes of either group. A
better  understanding  would  advance  the  field  of  artificial
intelligence and intelligent systems. It could also extend this
capability  to  other  environments  where  machine  learning
might be advantageous.

This  paper  addresses  the  first  two  objectives  of  a  larger
project:  (1)  to  build  an  acquisition  system  for  recording
flight data from a full-sized helicopter;  (2) to collect data
from  basic  flight  maneuvers  as  representative  teaching
examples of how to perform them; (3) to investigate data
processing  and  fusion  techniques  to  merge  data  from
numerous  repetitions  of  maneuvers  done  to  account  for
variation  and  errors;  (4)  to  build  a  rudimentary  software
flight-dynamics model based on the nature of the collected
data; and (5) to investigate machine-learning techniques to
allow the system to learn and explain how to perform the
same actions as the human pilot (Tappan).

The  key  element  is  to  acquire  real-world  data  from  a
Robinson R22 two-place  helicopter,  which  is  the  world’s
most popular trainer [15]. Its wide range of capabilities and
relatively low operating cost  make it  convenient  for  such
activities.  However, its  primitive instrumentation provides

no capability to log flight  data directly. This limitation is
significant because the machine-learning project must have
the same awareness that a human pilot has, namely visual
perception of the outside world and an understanding of the
internal  state  of  the  helicopter  by  visually  observing  its
instrumentation.  Outfitting  the  helicopter  with  a  complex
array  of  sensors,  as  is  common  in  other  work,  would
undoubtedly be more effective, but a human pilot does not
learn to fly based on such unnatural stimuli [4].

Two aspects of this proof-of-concept solution are considered
here:  the  architecture  for  visual  data  acquisition,  and  an
OpenCV-based postprocessing system for converting these
data  into  usable  numerical  form  [13].  The  primary
requirements address safety and practicality (in no order):
no interference (physical or electrical) with the helicopter;
no  attachments  at  all  outside,  and  no  substantive  ones
inside;  ease  of  setup and tear  down;  minimal  wiring;  the
fewest number of cameras in the least obtrusive places; and
no distraction for the pilot. Section 3 covers the technical
requirements.

2  Background

A helicopter exhibits six degrees of freedom in its physical
state: it has a position in space on the x, y, and z axes and an
orientation respectively in roll,  pitch, and yaw (collectively
known as attitude) about them. A seventh variable is  time,
which contributes to computing the speed (change in state)
and  acceleration (change in  speed)  of  the  other  six.  This
work assumes the coordinate system in Figure 1a.

    a   b

Figure 1: Degrees of freedom and cockpit controls [2,1]

2.1  Control inputs

In order to establish cause-and-effect relationships in flight,
the  machine-learning  system  must  be  able  to  connect
changes in the inputs to their effects on the output state of
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the helicopter. To this end, the first part of image acquisition
monitors the primary flight controls available to the pilot.
Most  aircraft  have  dual  controls  available  to  both  pilots
simultaneously, which is essential in a training environment.
This work assumes only one pilot, sitting on the right.

The  cyclic pitch control (usually called the “cyclic”) is in
principle a joystick for the right hand with two degrees of
freedom (x and  y)  such that  forward/backward movement
affects pitch, and sideways movement affects roll. However,
the actual arrangement in Figure 1b (a), known as a T-bar,
places the pivot in the middle of the cockpit. The downside
is  that  the  position of  the pilot’s hand cannot  be  directly
tracked to determine the corresponding inputs because the
teetering  nature  of  the  bar  allows  vertical  movement  of
roughly 30 centimeters without any actual  changes to the
input. Section 6.4 covers this issue further.

The  collective pitch control (the “collective”) in Figure 1b
(b) is a lever with a vertical arc of travel that changes the
amount of thrust from the main rotor to affect the z position
(altitude), and through more complex interactions, the x and
y positions. While its range of motion is more regular than
that of the cyclic, it is mostly obscured by the seats and the
pilot’s left arm. On the end of the lever is the throttle, which
is like a motorcycle twist grip. In some helicopters, the pilot
manages  this  input  manually,  which  would  require
corresponding  data  acquisition,  but  the  R22  normally
operates in automatic mode.

Finally, the antitorque pedals (the “pedals”) in Figure 1b (c)
travel in a forward/backward arc to change the amount of
thrust from the tail rotor to affect yaw. The pedals are linked
in  opposition,  so  pushing  one  forward  moves  the  other
backward correspondingly. Only one needs to be tracked.

2.2  Augmented outputs

Through complex flight dynamics far beyond the scope of
this paper, every input affects the state of the helicopter in
multiple interdependent ways. Unlike an airplane, which is
always  in  motion  in  flight  and  must  generally  face  its
direction of travel, a helicopter is practically unlimited in its
maneuverability.  This  capability  offers  great  flexibility  in
use,  but  it  has  a  significant  downside  for  automated  data
acquisition  because  most  of  the  fine  state  awareness  is
acquired visually by the pilot looking out the window. At
least in small helicopters, instrumentation is sparse.

To mitigate this limitation, this work provides quantitative
instrumentation in the form of small, inexpensive sensors.
The  CHR-UM7 integrated inertial measurement unit  (IMU)
and attitude heading reference system (AHRS) in Figure 2a
records all six degrees of freedom [12]. It operates within a
local frame of reference, meaning that it is aware of the state
of the helicopter relative to itself only, not of its relationship
to  the  world  it  operates  in.  In  other  words,  it  records
changes  only;  it  cannot  establish  absolute  state  data  like

latitude  and  longitude  or  altitude.  For  this  purpose,  the
Parallax LS20031 GPS receiver in Figure 2b supplies x,  y,  z
coordinates and compass heading for yaw, as well as real-
world  time,  for  the  global  frame  of  reference  [14].  This
instrumentation is essential for data acquisition in the larger
project, but its role in this paper is limited to crosschecking
the results from the image acquisition and processing.

                     a        b

Figure 2: IMU/AHRS and GPS units [12,14]

2.3  Instrument outputs

The sensors do not interact with the helicopter beyond being
simply attached to it internally. Despite the rich quantitative
data they provide in native digital form, the overall picture
is  still  incomplete.  The  visual  data  available  to  the  pilot
from the following cockpit instruments are also needed.

The altimeter in Figure 3a measures altitude above sea level
in feet. It  has three elements of interest: a long needle for
hundreds,  a short needle for thousands, and a triangle for
tens of thousands. Converting them from individual needles
into a single value for altitude is a straightforward equation,
but it does require establishing their values separately.

The  vertical  speed indicator (VSI)  in Figure 3b measures
change  in  altitude  in  feet  per  minute.  The  GPS already
provides  the  equivalent  of  the  altimeter  and  VSI  data.
However, it is counter-intuitively too good in this role. The
cockpit instruments have complex real-world behaviors and
limitations that affect how the pilot interprets them, such as
a lag in response time. For machine learning to function as a
human does, it needs to deal with the same issues.

The  airspeed  indicator (ASI)  in  Figure  3c  measures  the
speed of the helicopter  through the air. The  GPS receiver
also appears to provide these data, but it actually measures
the speed over the ground. Wind conditions almost always
cause these two values to be different. The aircraft, and thus
the  pilot,  react  to  airspeed,  which  the  sensors  inside  the
cockpit cannot measure.
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Figure 3: Altimeter, VSI, and ASI instruments

The manifold pressure gauge (MAP) in Figure 4a measures
the  amount  of  power  being  demanded  from  the  engine,
which  varies  according to  the  inputs  from the  pilot.  The



acceptable  range  is  based  on  atmospheric  conditions  and
determined from tables in the pilot’s operating handbook.

The combined engine and main-rotor RPM gauge in Figure
4b measures the rotations per minute of each as a percent
and  indicates  the  acceptable  operating  range.  This
instrument is not considered here because of the automatic
throttle  management,  but  in  other  helicopters  or  more
advanced  experiments,  it  would  be  important.  Section  7
covers its value for future work.

Finally, Figure 4c depicts the least high-tech instrument, the
yaw string, which is a small piece of yarn attached to the
front outside of the canopy. It indicates by wind deflection
how the nose and tail of the helicopter (essentially the yaw)
are aligned with respect to the direction of travel, known as
coordinated flight. While this detail could actually be very
useful in some contexts, for logistical reasons this output is
not considered here. (And it can be derived reasonably well
from  the  sensors.)  Similarly,  the  compass,  which  also
technically  provides  yaw,  is  not  considered  because  in
practice  it  is  so  unreliable  as  to  be  almost  completely
useless, even to a human.
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Figure 4: MAP and RPM gauges and yaw string [3]

3  Architecture

The  hardware  architecture  needed  to  support  up  to  six
cameras in simultaneous operation for complete coverage.
The  requirements  were  (in  no  order)  that  they  be
inexpensive,  small,  lightweight,  relatively easy  to  mount,
externally powered, have reasonable video quality, store to
flash  memory  cards,  and  permit  remote  operation.  The
FlyCamOne eco V2 in Figure 5a satisfied all these needs
remarkably well [11]. Designed to provide a pilot’s view in
small radio-controlled aircraft, its compact 15-gram package
records 24 frames per  second of  24-bit  color  at  720480
resolution with three megapixels. The image quality from its
tiny lens is acceptable, but not great.

a         b

Figure 5: FlyCamOne and BeagleBone [11,10]

A critical safety requirement in this work was not to distract
the  pilot  from  flying  the  helicopter.  Each  test  flight
generally  took an  hour  and involved  several  dozen small

experiments. The pilot could not afford to be manipulating
the system in any complex way to start, run, and end each
experiment. (The acquisition system occupied the other seat,
so having an assistant was not an option.) The large number
of experiments combined with the large number of cameras
and  sensors  required  simple  one-button  coordinated
operation to advance to the next experiment. 

To this  end,  the  compact  BeagleBone Black  single-board
computer in Figure 5b mapped this button to the appropriate
actions [10]. Through serial and I2C interfaces, it controlled
the sensors and recorded their data. Controlling the cameras
was  similarly  convenient  because  their  intended  use  in
radio-controlled aircraft provided a communication interface
through  standard  pulse-width-modulated  (PWM)  servo
signals. The camera data, however, were stored on the 8GB
microSD  memory  cards  in  the  cameras  themselves.
Transferring  so  much  data  over  such  a  distance  on
lightweight unshielded cables to a relatively weak computer
was not an option, so the BeagleBone could not manage the
files itself.  (In earlier proof-of-concept tests,  even a high-
powered laptop was unable to keep up with six comparable
cameras connected via USB.)

This  solution  introduced  a  major  problem  with
synchronizing the files across all the cameras because each
camera  generates  a  different  filename with  no  timestamp
when  started.  Therefore,  after  a  flight,  it  was  almost
impossible  to  determine  which  file  referred  to  which
experiment.  Conveniently,  however,  these  cameras  also
record  audio.  Each  time  the  BeagleBone  instructed  the
cameras  to  start  recording,  it  played  a  Morse  code-like
preamble  identifying  the  automatically  generated  test
number.  While  not  particularly  human-friendly,  this  code
provided  enough  information  to  change  the  filenames  by
hand to something meaningful later. The BeagleBone also
generated  a  second  tone  sequence  every  five  seconds  to
ensure  that  the  timing  across  all  videos  could  be
synchronized when startup delays occurred or the recording
rates were not exactly the same.

4  Image processing

Image processing is the core of this work, but this paper is
primarily about the architecture that  facilitated it.  It  plays
the role of postprocessing the videos into a series of values
that correspond to the state of the controls and instruments.
The processing itself is relatively straightforward and uses
traditional approaches in OpenCV as intended. Hempleman
[5] provides a very detailed description to supplement the
summary here.

4.1  Controls

The controls come in three forms with related types of linear
or angular motion, so the same image-processing approach
could be applied to each.  The most important  aspect  was



being able to track a known object affixed to key points on
the  controls.  This  step  entailed  significant  what  if
experimentation  to  find  a  satisfactory  (but  never  ideal)
solution.  The  requirements  limited  the  object  to  being
something small  and unobtrusive,  like a  sticker. Selecting
the size  and  color  alone  could  be  its  own paper  because
image  acquisition  operated  under  such  a  wide  range  of
environmental  conditions.  (See  Section  6.4.)  This  part
investigated dozens of combinations of swatches made of
every  conceivable  colored  tape  and  paper,  as  well  as  19
small  LEDs.  Similarly,  camera  placement  entailed  many
experiments to find reasonable compromises within the tiny,
cramped  cockpit.  This  section  summarizes  the  overall
approach of color-based blob detection, the details of which
often varied depending on the particular  goals  and actual
conditions, etc.

Although  the  lighting,  contrast,  and  other  uncontrollable
dynamic factors varied wildly in the cockpit, nothing else
consistently resembled the roughly 8mm reflective orange
tape squares on a black background in Figure 6. Color, hue,
and saturation isolation were usually able to find this object
within the expected region.  The controls  do not normally
move quickly, so tracking the position of a known object at
24  frames  per  second  was  reliable.  However,  different
positions  of  both  the  controls  and  the  helicopter  itself
changed the target  color  threshold frequently. To mitigate
this variation, the tracking algorithm started with the exact
color  to  find  (or  its  components)  and  then  relaxed  the
requirements iteratively until it found a strong match. If it
could  not,  it  ignored  these  frames  until  it  could  again.
Further  postprocessing  into  machine-learning  data
interpolated any missing frames, assuming that the missed
motion was linear.

Figure 6: Pedal, collective, and cyclic tracking objects

With  the  target  object  isolated  within  the  frame  and  the
bounds of the calibrated range known (see Section 5), it was
a straightforward algebra problem to translate the centroid
of the object to its corresponding approximate coordinates.

4.2  Instruments

The  instruments  also  share  many  commonalities  in  their
presentation  and  behavior,  so  generally  the  same  image-
processing approach could be applied to each. However, the
need  for  finer  resolution  combined  with  the  presence  of
smaller  features,  more  clutter,  interference  and  distortion,
and a lack of pilot-provided tracking objects, proved more
challenging. Unlike the controls, attaching anything to the
needles was not an option because they are in sealed glass

cases.  Even  worse  is  that  both  the  needles  and  the
information on the instruments are usually presented in the
same white on black. Due to space limitations, this section
summarizes  the  general  process  that  applied  to  all  the
instruments. Each instrument also had its own positive and
negative aspects and idiosyncrasies to accommodate.

Interpreting the instruments  first  involved knowing where
they were. The camera responsible for this perspective was
mounted in the middle of the cockpit facing forward (see
Figure 1b). The top and left edges of the instrument panel
form  a  high-contrast  fixed  reference  that  helped
automatically establish the exact  scale and bounds of  the
instrument region, which then established the position of the
instruments,  as  in  the  top  row  of  Figure  7.  Next  came
contrast normalization to improve the boundary between the
needles  and  the  background.  This  process  involved
redistributing the histogram representation of the colors in
use  over  the  entire  range  available,  thereby  spreading
similar colors farther apart. The standard luminosity method
then converted these new colors to grayscale. Tests showed
that under normal conditions, the needles were (by design)
almost  always  the  most  prominent  feature.  The  primary
color value of the needle thus became the binary threshold
by which all pixels were finally converted into either pure
black or white, as in the bottom row.

Figure 7: Original and binary-thresholded images

The  needles  are  normally  the  most  prominent  linear
features, called blobs. Glare can produce artifacts, but the
shape does not normally lend itself to recognition as a line,
as in Figure 7 (a). When it does, as in (b), the needle still
tends to be larger, as well as in its expected position and a
legal  orientation.  In  the  event  that  no  line  is  found,  two
relaxation methods take over. The first incrementally erodes
the image in an attempt to break up congealed features until
the needle is present. If this attempt fails, then the opposite
occurs to dilate the image to join separate features until they
form a blob. If both fail, no instrument data are recorded for
this frame.

Running a best-fit line approximation on the blob produces
an angle, which maps to the predefined numerical scale on
the instrument dial for the state value to record. In the case
of  the  altimeter,  there  are  two  needles  to  isolate.  (The



triangle  for  tens  of  thousands  of  feet  was  not  considered
because  no  flight  tests  took  place  so  high.)  When  the
needles are far enough apart to differentiate, the process is
identical. When they are fused, however, the centroid of this
superblob still suffices. Later cleanup for machine learning
could interpolate from the last known separate values, but in
practice, this occlusion (which also happens to pilots) is not
an issue. The altimeter is not precise enough anyway.

5  Calibration and experiments

For reliable,  repeatable measurements  of the controls  and
instruments, each in-flight testing session required an initial
calibration  stage  to  ensure  that  the  same  states  mapped
acceptably close to the same values. In fact, calibration was
actually necessary before and after each session to verify
that  no changes  occurred  from vibration.  This  calibration
qualified  as  experiments  in  its  own  right  because  it
permitted comparison of the actual values to the expected.

5.1  Static experiments

It  is  extremely difficult  to  establish a  set  of  ground-truth
states  during  real  flight  maneuvers  because  the  dynamic
operating environment is so messy; i.e., the expected values
are  not  precisely  known.  The  sensors  provided  some
capability  for  cross-checking,  but  their  coverage  was
limited.  To establish  best-case  baseline  performance,  the
initial tests were static on a non-operating helicopter.

5.1.1  Controls

The  pedals  travel  along  a  known  arc  with  three  natural
calibration points: full forward, full backward, and half way,
which is straightforward to determine because both pedals
are adjacent. Similarly, the collective has full down and up
positions.  A  vertical  calibration  jig  with  known  angles
printed on a poster  board  established intermediate  points.
The cyclic,  however,  was  troublesome.  Its  range  of  two-
dimensional motion is over a large horizontal plane whose
limits exceeded the field of view of any single camera. Data
collection in flight was not affected because the cyclic rarely
reaches these limits; however, calibration did need them, or
at  least  an  equivalent.  To this  end,  a  similar  jig  with  a
rectangular internal cutout established the known limits for
the  center  post,  which  also  established  the  neutral  center
position.  However,  positioning  the  jig  itself  was  tricky
because there are few convenient fixed reference points in
the cramped cockpit. This process looked ridiculous because
it involved aligning small stick-on bubble levels and a lot of
contortion, but it was actually effective.

5.1.2  Instruments

Static calibration of the instruments was far  more limited
because there is almost no access to their needles. Only the
altimeter has a knob that changes the internal value, but its

range  is  limited  to  a  thousand  feet  or  so.  Instead,  the
simplest approach proved most effective: color printouts of
the instruments to scale with known needle positions taped
over  the  actual  instruments.  While  this  approach  did  not
account  for  the  visual  disturbances  covered  in  the  next
section,  calibration  would  be  inappropriate  under  such
suboptimal conditions anyway.

5.2  Dynamic experiments

The dynamic experiments involved a breadth and depth of
representative flight maneuvers. The purpose was to test the
data  acquisition  system,  not  to  collect  actual  data  for
machine  learning.  It  was  therefore  not  necessary  to
demonstrate  more  than  one  acceptable  representative
exemplar  of  each.  Data  for  machine  learning  actually
requires  many  such  samples  for  filtering,  smoothing,
averaging, fusion, complex statistical analyses, etc. beyond
the scope here.

The first set involved airborne maneuvers. They exhibited
relatively large changes in the inputs and instruments:

• straight and level at a constant speed, accelerating, 
and decelerating

• straight with a shallow climb at a fixed climb rate
• straight with a steep climb
• straight with a shallow descent at a fixed speed
• straight with a steep descent
• straight with shallow sinusoidal climbs and descents
• right turn level
• right turn with a shallow climb
• right turn with a steep climb at a fixed speed
• right turn with a shallow descent
• right turn with steep descent at a fixed descent rate
• a left rectangular runway traffic pattern: taking off, 

climbing, leveling off, descending, and landing

The second set was near the ground with small changes:

• stationary hover
• pivot turn: stationary while rotating about the z axis
• square, circle, and figure 8: always facing forward, and 

always facing the center of the shape

6  Results and discussion

Evaluating results in terms of the agreement between actual
and expected values is difficult when the former are messy
and  the  latter  are  not  definitively  known.  There  was
significant variation in the experiments caused by pilot error
and  uncontrollable  conditions  like  wind,  as  well  as
measurement errors in the sensors  themselves.  This paper
focuses on the raw image acquisition, not on their complex
postprocessing into cleaner form, so the discussion of the
results  is  mostly subjective.  To mitigate  biases,  however,
there were several complementary approaches.



6.1  Qualitative internal validation

Qualitative  validation  involved  the  pilot  reviewing  the
results of each test in a form that consolidated the inputs and
outputs  into  a  meaningful  representation.  The  instrument
panel in Figure 8 shows the results derived from the image
processing and the sensors  [7].  Validation in  this  form is
based on whether the instrument view internally from the
pilot’s local perspective in the virtual cockpit was consistent
with performing the maneuvers correctly. Here the low-level
data combine with the high-level knowledge and wisdom of
the  experienced  human  pilot  to  make  informed
interpretations and evaluations.

Figure 8: Virtual instrument panel and control indicator

Also available were the underlying raw values strategically
plotted in Excel in Figure 9 to show relationships. The exact
values are not so important as the trends and behaviors. For
example, discontinuities and abrupt jerks inconsistent with
regular flight can be attributed to acquisition errors because
no exemplars with such events were used.

Figure 9: Excel data plots

6.2  Qualitative external validation

Qualitative  external  validation  was  also  from  the  pilot’s
perspective,  but  from  outside  the  cockpit.  Plotting  this
global  representation  in  two  and  three  dimensions,  along
with helpful metadetails, as in Figure 10, provided another
valuable consistency check [8]. However, unlike the internal
view, a pilot is not ordinarily familiar with interpreting the
cause-and-effect relationships of inputs to outputs this way.
Still, the same kinds of discontinuities would be apparent.

Figure 10: 2D and 3D visualization

Finally, for a richly integrated perspective, the position data
exported directly to Google Earth, as in Figure 11.

Figure 11: Google Earth track

6.3  Quantitative validation

Quantitative validation was as objective as possible given
the current limitations of this prototype system. The first set
of tests was a variant on the calibration process, in which
the image processing analyzed color printouts with known
needle positions. These tests were static because there was
no way to change the needle positions without substituting
another image by hand. The second set involved dynamic
tests  in  flight  where  the  sensors  provided  a  reasonable
approximation of the expected values. However, over time
these sensors  had an  unfortunate  tendency to drift  out  of
calibration.  They  could  not  be  recalibrated  in  flight,  so
usually only the earlier tests in a session were reliable.

6.4  Observations

The weakest link in the image processing is the cameras. On
the positive  side,  consistency in  accurate  positioning was
not a factor because the postprocessing successfully isolated
features  and  produced  comparable  results  from  any
reasonably similar  position and perspective.  Likewise,  the
endless vibration inherent throughout all tests surprisingly
played  no  significant  role  (except  in  gradually  nudging
cameras out of alignment at times). The frame rate was high
enough  to  capture  redundant  images  that  effectively
canceled it out. On the negative side, the dynamic range of
the camera sensors is poor and tends to smear colors and
especially wash them out toward the low and high ends of
brightness, which degraded contrast. The small lens likely
contributed  to  this  problem,  which  means  that  higher
resolution alone would probably not be an improvement.

Object tracking for the controls was very effective. Except
in cases where the orange square was completely washed
out, the postprocessing generated positions that were within
a few percent of the believed expected values. Still, for the



larger  project,  this  resolution turns  out  to  be  problematic
because much of flying a helicopter involves subtle control
movements — very  often  just  pressure,  not  even  overt
movement.  Large  movements  are  comparatively  rare,
especially  in  ground  maneuvers,  which  are  the  ones  of
greatest  interest.  Similarly,  manual  inspection  shows  that
there is noticeable backlash (slop) in the cyclic, especially
vertically, which means that small movements do not always
translate into actual inputs. The size of the tracking square
also  plays  a  role:  larger  area  is  easier  to  follow,  but  it
requires  more  movement  before  the  image  processing
perceives  it.  Poor  contrast  causes  the  edges  to  appear  to
change,  which  affects  the  centroid  that  translates  to  the
position value. Averaging multiple frames helps stabilize the
raw  values  by  smoothing  them,  but  it  simultaneously
smooths away desired movements and hides actual changes
until they become larger.

Needle  localization  was  also  very  effective  in  most
nonpathological  cases,  isolating 92 out  of  100 frames  on
average. Translating needle positions to absolute values was
always within 2.9 degrees of the expected values, with 82%
being  within  1.5  degrees.  This  error  is  completely
acceptable because the instruments themselves are not this
precise.  The  only influences  that  could  not  be  overcome
were lens flare and glare from sunlight, but even the human
pilot was rarely able to interpret such cases.

7  Future work

From the  standpoint  of  technology, better  cameras  would
improve the results. FlyCam now offers (at a much higher
price)  an  HD  1080P  version  with  a  larger  lens,  which
appears to be a drop-in replacement for the ones used here
[11].  Even  better  would  be  to  reduce  the  complexity  of
having  many  cameras  and  use  one  4K  high-resolution
GoPro  with  a  fisheye  lens.  This  approach  would  require
another  stage  of  image  processing  to  correct  for  the
spherical distortion, which could introduce its own issues,
but the idea seems promising. Likewise, using better sensors
and more of them for error detection and correction would
provide better baseline data for performance evaluation.

Future work on the methodology and testing will involve a
much richer breadth and depth of experiments, as well as
many repetitions of them. This effort could lead to improved
results and a better mechanism for quantitatively evaluating
accuracy and precision.

Finally,  future  projects  could  involve  the  yaw  string  for
actual data about the aerodynamic behavior of the helicopter
in  flight,  which  the  sensor-derived  approach  only
approximates. Similarly, using the view of the outside world
could contribute to machine learning of hovering based on
visual references, which is the hardest part of learning to fly

for a human. Finally, despite the R22’s predominant role as
a training helicopter, it has few features that help the student
recognize  when  they  are  doing  something  wrong.  In
particular,  the  maximum  manifold  pressure  is  extremely
easy to exceed when a student is focused/fixated on other
activities.  (This  condition  does  not  cause  instantaneous
destruction of the engine, but it does reduce its operational
life  over  time.)  A  simple  warning  tone  based  on  an
automated observation of the gauge would be helpful. Other
such conveniences are also likely possible.

8  Conclusion

This  proof-of-concept  work  successfully  showed  that  an
array of inexpensive cameras can collect data from complex
control inputs and instrumentation outputs. The architecture
met all the safety and performance requirements, although
the latter could use improvement from better cameras. The
image processing was able to isolate features reliably and
translate  their  states  into  numerical  form for  later  use  in
machine learning.
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