
A Data Analytics Approach to a Computer Science
Senior Capstone Project Management Tool

Dan Tappan
Department of Computer Science, Eastern Washington University, Cheney, WA, USA

Abstract - Managing students in computer science senior
capstone courses is comparable to herding cats. Many
students can not or will not perform their tasks, and they go
to great lengths to hide this behavior from their teammates
and the instructor. This poster introduces a proof-of-concept
web-based management tool that helps all stakeholders
track activities, report on progress, and identify issues and
concerns before they become problems, as well as reflect on
the development process from an educational perspective.

Keywords: capstone, project management, data analytics

1 Introduction

Software engineering has a bad reputation of being far too
similar to the age-old joke from the public domain in
Figure 1. Despite endless warnings to students in their
senior capstone course in computer science that they need to
take the development process seriously, the outcome almost
inevitably resembles “The Cartoon” to a significant degree.
A big part of disciplined development on a reasonably
complex real-world project, which is indeed the experience
that the students are supposed to be gaining, is to learn how
to iteratively make a small plan, execute it, and verify that
the actual results reasonably match the expected results. If
they do not match, then some remedial action is necessary
before continuing. However, this process only works if
students have all three of these elements, continuously apply
them in a serious, disciplined manner, and honestly assess
and report their performance to their teammates, their
project sponsors, and the course coordinator. Needless to
say, typical team dynamics result in one or more students
not carrying their weight and trying to hide this behavior.

This poster showcases a prototype web-based tracking
system that helps students account for their activities and
those of their teammates in an informative, intuitive way
that is not especially onerous. Nobody enjoys generating
status reports, but they are a necessary evil in a field where
anarchy and disorder are the norm, even among
professionals. Students, left to their own devices, generally
fare far worse.

This experiment followed eight teams totaling 30 students
as each team worked on its own independent project over 23
weeks covering two academic quarters. The development
methodology was Agile, which offers considerable freedom,
but it also demands a reasonable level of maturity and
discipline. The intent was for students to be able to partition

their work into bite-sized activities that aligned well with
Agile thinking, doing, and verifying. Status reports helped
students identity gaps and disconnects in the plans and their
execution, as well as monitor the behavior of themselves
and their teammates. They also provided a rich opportunity
for students to reflect on the process to learn from it, instead
of fixating on the product, which is really not the true
purpose of the course.

Figure 1: Software engineering reality

2 Report elicitation

The Agile sprint period was one week, Saturday to Friday,
with the submission period on Friday. An earlier pilot test in
the author’s prerequisite software engineering course had
successfully used a shorter period, so this approach is very
flexible. There are two kinds of reports to submit.

2.1 Individual reports

Each team member completes their individual report on
their own. It contains elements that will contribute to the

public and private summaries in the next section. The first
section is public and elicits the progress that a student has
made. It starts with basic time-keeping of hours of effort per
day. Students’ grades are not directly tied to these numbers,
but because there is an average expectation over the project,
students in the past had vastly inflated their numbers. The
second section, also public, elicits new activities that were
started, open activities that were continued from previous
sprints, activities that were abandoned, and those that were
transferred to other teammates or shared. Each
automatically receives its own unique reference number that
is retained throughout the project. A student must briefly
describe the activity, including an estimate on completion
time for new and open ones.

The third section is private and consists of three subsections
that evaluate the claims made by teammates in the last
sprint. For each teammate, it summarizes the hours and the
four categories of activities and requires the student to
indicate whether they concur, do not concur, or are not sure.
The latter two require a brief explanation. It also asks
whether performance is meeting expectations. Finally, there
is a field for general comments.

2.2 Team report

The entire team completes the single team report together. It
relates to the general experience of the team as a whole over
the last sprint, not to specific activities of individual
members. The reflective framework first asks the team to
articulate briefly for each of these questions which aspects
were both the easiest and hardest:

• understand: comprehending what needs to be done;
• approach: planning to solve it;
• solve: implementing the actual solution;
• evaluate: demonstrating that the performance of the

solution is consistent with the problem and everything
else in the project.

It also requests an estimate on how far along the project is
and whether this pace is on target to finish on time. Teams
routinely neglect communication with the project sponsors,
so the next question asks whether there was any, and if not,
when the last contact occurred. The final question addresses
whether there are any issues, concerns, or comments not
captured elsewhere.

3 Report generation

Reports are HTML-based emails that go to all stakeholders.

3.1 Public reports

The public report goes to each member of each team and the
project sponsors. It summarizes the hours in a variety of
intuitive statistical ways and depicts trend information over
the project to this point. It also organizes the four types of

activities from all team members into a readable summary,
also with trend information. Finally, it presents the contents
of the team report.

3.2 Private reports

The private report goes to the coordinator only. It contains
everything in the public report, as well as the private entries.
As the coordinator has many teams and students to manage
on a weekly basis, the results are presented in such a way
that skimming it reveals whether deeper investigation is
warranted. A colorful heat map and matrix of green, yellow,
and red dots help cross-reference each team member with
themselves and each other. There is also an automatic tie-in
with GitHub to produce a graphical representation of
activity in the code repository by individual and team.

4 Results and discussion

In its first deployment as a proof of concept, this approach
has already far and away demonstrated that it expedites the
processes of keeping track of teams and individuals. In fact,
instructors scheduled to teach this course in the future are
envious and want access to this tool. It is difficult to
compare this group of students against past ones because
each offering of the course involves different projects, but
there have been far fewer cases of deceptive behavior, or
they have not continued very far before being questioned.
The students very quickly got a feel for how to articulate
their progress and interpret that of their teammates, which
has done wonders for managing expectations. Software
development is not a constant, linear activity, and certainly
not for students in an academic setting. They all have ups
and downs, easy weeks and difficult ones, etc. As long as
their teammates are informed of, understand, and accept this
performance, then they are functioning effectively as a
team. This approach had a notable effect on improved
quality in the final products. Anecdotal evidence suggests
that it has also improved the process of software
development, and especially the behavior of the people
involved, who are traditionally the most troublesome factor.

The data elicited throughout the process are both
quantitative and qualitative. No amount of manipulation is
going to entirely automate the process of making sense of
them, but the expectation is that there are likely to be clear
patterns related to various aspects of performance. Faculty
who have previously taught any course already have a
general feeling for when, where, why, and how certain
things go right or wrong. This approach does not replace
such wisdom, but it appears likely to be helpful in managing
the large amount of activities and information from so many
students on completely independent projects over a long
period. Other analytical measures will likely be added over
time to highlight areas of interest and concern, etc. in an
intuitive manner that is easier for all stakeholders to
identify, monitor, and resolve.

