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ABSTRACT: The foundation of modern systems of systems is computer systems controlling electrical systems in turn
controlling mechanical systems. Despite the core role computers play, computer science students do not generally see
or appreciate this perspective because few classroom projects demonstrate it. This work showcases eight recent projects
that employ a systems-engineering approach to teaching software engineering. Specifically, it shows how modeling,
simulation, visualization, and analysis serve as a powerful toolkit for the analysis, design, implementation, testing, and
evaluation of engaging real-world projects related to aviation, military, construction, and railroad applications.

1. Introduction

Modern  technology  is  a  complex  system  of  systems
composed of mechanical systems controlled by electrical
systems  controlled  by  software  systems.  Software
engineering  is  not  just  about  software  anymore.  The
systems-engineering  processes  of  analysis,  design,
implementation,  testing,  evaluation,  verification,
validation,  and  accreditation demand far  more  than  the
typical  classroom environment  can  address.  This  paper
presents an overview of a highly successful reusable Java-
based  software  architecture  and  corresponding  holistic
pedagogical  approach  that  utilize  modeling,  simulation,
visualization,  and  analysis  at  all  levels  with  an
overarching focus on software quality assurance. It uses
multiagent  continuous  time-stepped  simulations  for
interactive virtual worlds that capture a vast breadth and
depth of multidimensional  exposure to realistic systems
while  still  being  manageable  for  students  and  the
instructor.  This  overview  highlights  commonalities  and
results from a survey of eight recent projects:

• AAR: aircraft  accident  reenactment  environment  for
creating, recreating, and analyzing events

• ACO: aircraft  carrier  operations  with  fighters  taking
off,  landing,  and  repositioning,  and  refueling
from tankers

• ATC: air  traffic  control  with  airplanes  operating  on
the  ground  and  in  the  air  in  various  airspace
configurations and contexts

• FBW: fly-by-wire  control  system  with  networked
control surfaces and external components of an
airplane on a test stand

• HCE: heavy  construction  equipment  toolkit  with
sensors  and  electrical,  mechanical,  hydraulic,
and pneumatic actuators

• MTR: military  test  range  with  airplanes,  ships,  and
submarines using sensors and weapons

• RLM: railroad  layout  manager  with  tracks,  cars,
engines, and signaling and safety systems

• UAV: unmanned  aerial  vehicle  remote  cockpit  with
instrumentation and flight data recording

This  approach  forces  students  to  develop  and  apply
critical-thinking  and  technical-communication  skills  by
pushing  them  out  of  their  comfort  zone  into
overwhelmingly  unfamiliar  real-world  environments.  It
helps establish the endless dots and their interconnections
and interrelationships to learn about the problem domain
of  the  subject  matter,  to  translate  it  into  the  solution
domain,  and  to  evaluate  the  results.  Modeling  and
simulation here uses software as a surrogate for the real
world  to  investigate  what-if  scenarios  from  countless
perspectives. It dovetails with the scientific method as a
disciplined  approach  for  envisioning,  building,  and
conducting repeatable controlled experiments in support
of  developing  quality  software  systems  of  systems.
Finally,  it  emphasizes  an  array  of  underutilized
visualization  techniques  as  an  expressive  yet  intuitive
means of conveying information to all stakeholders in the
development process.

2. Software Systems Engineering

The term software systems engineering as a combination
of  software engineering and  systems engineering is  not
mainstream yet.  In  fact,  it  produces  only 340 thousand
hits on Google versus 34 and 16 million for the other two,
respectively. However, despite the lack of terminological
recognition,  the  fusion  of  these  fields  is  indeed  how
professionals  develop  complex  systems  of  systems.
Although  the  students  referenced  in  this  paper  are
studying computer science as their major discipline, they
cannot be completely oblivious to the central role that it
plays in the larger world where they plan to spend their
careers.  The  multidisciplinary  nature  of  these  projects



fosters  an  understanding  and  appreciation  of  such  a
holistic perspective.

2.1  Software Engineering

Software  engineering  is  a  complex,  multidimensional,
multifaceted process. There are countless ways to conduct
it.  This paper considers the following traditional  stages:
analysis is  the  process  of  understanding  the  problem
domain; design is mapping the many real-world elements
of  the  analysis  to  the  corresponding  virtual-world
elements  of  the  solution  domain;  implementation is
building  the  solution  with  appropriate  tools  and
techniques;  and  finally,  testing   and   evaluation is
demonstrating that  the solution works and is  consistent
with  the  original  problem,  as  well  as  refining  and
optimizing it.

In reality, the process invariably ends up looking like a
variant  of  the  popular  joke  in  Figure  2.1,  which
apparently  has  been  floating  around the  public  domain
since  the  advent  of  software  engineering.  The  panes
correspond  from  top  left  to  bottom  right  as:  how  the
customer explained it; how the project leader understood
it;  how  the  analyst  designed  it;  how  the  programmer
wrote it; what the beta testers received; how the business
consultant described it; how the project was documented;
what operations installed;  how the customer was billed;
how it  was  supported;  what  marketing  advertised;  and
finally what the customer really needed.

The particulars of each pane are irrelevant.  What really
matters  is  the  larger  perspective  that  every  manner  of
absurdity happens from one step to the next. While there
are unquestionably many genuinely unavoidable pitfalls
in software engineering, many need not become problems
with  some  reasonable  care.  The  approach  throughout
these projects aims to reduce the endless disconnects as
students translate from one stage to the next. Far too often
their “strategy” is to try anything that comes to mind with
the  hope  that  it  works.  In  fact,  one  student  blatantly
admitted  that  he  “kept  throwing  more  code  at  the
compiler  until  it  shut  up.”  In  the  world  of  physical

engineering, developing what-if mockups and prototypes
is commonplace and extremely useful, but because of the
investment in actually building something, engineers put
more  thought  into  the  design.  In  the  virtual  world  of
programming, students develop the bad habit of believing
that  haphazard  trial  and  error  is  an  actual  strategy  to
problem-solving because it appears to come at no cost. In
reality, they often do not know why their solutions fail to
work,  or  if  the solutions do actually  work,  they cannot
articulate  why.  Neither  perspective  is  conducive  to
producing quality software.

2.2  Systems Engineering

Systems engineering is a superset of software engineering
that  involves  a  vast  array of  systems of  systems of  all
types.  While  systems  engineering  often  tends  to  be  a
higher-level,  more  managerial  and  less  technical
perspective, this work focuses on the engineering aspects
of  multidisciplinary  systems.  In  fact,  the  breadth  and
depth of subject  matter throughout these projects aligns
quite well with  mechatronics, which is an amalgamation
of at least the disciplines represented in Figure 2.2.

Computer science students are naturally not expected to
have a background in all of these areas. These projects,
especially in the analysis stage, offer many opportunities
for  students  to  familiarize  themselves  with  the  subject
matter  to  the  degree  necessary  to  do  something
computational  with  it.  This  approach  provides  good
training because in the working world, professionals are
always being immersed into unfamiliar environments. The
ability to adapt and learn quickly is essential.

3. Pedagogical Foundation

The pedagogical foundation is extensive and covered in
great  detail  in  [2].  The goal  here  is  to  provide  just  an
overview  of  how  modeling  and  simulation  relate  to
thinking and doing for software systems engineering.

3.1  Modeling

Modeling can be considered the process of translating a
problem in the real  physical  world to a  solution in the
virtual computer world, as depicted by the right arrow in

Figure 2.2: Systems Engineering Convergence [1]

Figure 2.1: Software Engineering in Practice



Figure  3.1.  By  and  large,  students  do  understand  this
direction  because  they  are  accustomed  to  receiving
problems  to  solve.  What  they  rarely  recognize  is  the
inverse direction depicted by the left arrow. In this case, if
their solution were given to someone with no knowledge
of the original problem, it is very unlikely that this person
would be able to recreate it correctly. The reason relates to
the cartoon in Figure 2.1, which reflects an endless parade
of translation errors  where important  details  are lost  or
mangled, and new unfounded ones mysteriously appear.
The  result  is  poor  software,  which  Weinberg  [3]
characterizes eloquently:  “If builders built  buildings the
way  programmers  write  programs,  then  the  first
woodpecker that came along would destroy civilization.”

The pedagogical emphasis in this paper is on how to teach
students to translate the problem domain to the solution
domain  appropriately  and  to  verify  the  translation.
Section 5.1 covers this process in much more detail. Here
it suffices to define the approach as “slicing and dicing”
the problem domain into increasingly smaller pieces that
ultimately have clear translations, such as in Figure 3.2. In
particular, students need to be able to articulate what they
want,  how to get  it,  and how to know that  they got it.
These steps correspond generally to analysis, design, and
testing, respectively, but for small, bite-sized pieces that
are easier to understand and process.  They also capture
both  directions  in  Figure  3.1.  One  of  the  simplest
approaches plays a commanding role: posing and getting
resolution  on  any  number  of  who,  what,  when,  where,
why, and how (W5H) questions, which form the backbone
of mental models for understanding anything in the world
[4,5].

Establishing  small  pieces  helps  combine  them
meaningfully into ever-larger ones, which ultimately leads
to  systems  of  systems.  Figure  3.3 shows  the  data-
information-knowledge-wisdom  (DIKW)  hierarchy,
which  helps  guide  this  process  by  establishing  these
pieces as dots and providing a framework for connecting
them appropriately [7]. This process reflects learning by
accumulating experience.

• Data: raw entities with no context

• Information: entities in one context

• Knowledge: entities in multiple contexts

• Wisdom: generalized principles created by connect-
ing a network of contexts from different
sources  for  predictive,  anticipatory, pro-
active understanding

Finally,  Bloom’s  Taxonomy  of  Educational  Objectives
plays  the  overarching  role  of  helping  foster  critical
thinking by leading students upward from the low-level,
data-oriented  learning  activities  of  remembering,
understanding,  and  applying to  the  high-level,
knowledge-oriented activities of  analyzing,  creating, and
evaluating  [8].  In  many  respects,  this  flow  also
corresponds  to  analysis,  design,  implementation,  and
testing in software development.

3.2  Simulation

The role of simulation in these projects is two-fold. First,
it makes them interesting, which helps entice students to
take  the  process  of  learning to  develop them seriously.
Second,  it  provides  a  disciplined  way  of  evaluating
whether their solutions work correctly, and if so, then how
well. The basis is the scientific method, which is common
to all sciences except ironically computer science [9,10].
Figure  3.4 captures  the typical  process  flow, which  for
software development tends to reflect the following steps:

• Determine what needs to be tested.

• Define an appropriate test.

• Run controlled experiments.

• Collect and interpret results.

• Report  on  whether  the  test  passed.  If  not,  make
proposed corrections to the program and run the same
test again. If so, refine the program to make the results
better until meeting a specified level of performance.

Figure 3.3: DIKW Hierarchy
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Figure 3.1: Real to Virtual-World Correspondence

Figure 3.2: Domain Decomposition [6]
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A third use of  simulation is  the traditional  purpose for
developing such software:  to  evaluate what-if  scenarios
about  the  problem domain  by  using  the  software  as  a
surrogate. This use plays only a minor role here, primarily
for demonstration and discussion, because the students are
not studying to become subject-matter experts.

4. Project Showcase

Each  project  investigates  a  rich  breadth  and  depth  of
aspects  that  exercise  important  elements  of  software
engineering.  The  overview  here,  however,  is  of  the
general characteristics of each.

4.1  Unmanned Aerial Vehicle

Project UAV involved the architecture for interacting with
the flight dynamics model of an unmanned aerial vehicle,
as  well  as  receiving  and  interpreting  navigation
information from ground stations [12].  It  also involved
implementing parts of the instrumentation in Figure 4.1 to
present the results of this processing to the pilot.

4.2  Air Traffic Control

Project  ATC  involved  a  large-scale  world  of  arbitrary
aircraft, navigation systems, airports, and airspace under
the command of various air traffic controllers [13]. Figure
4.2 depicts the respective views of ground, approach, and
enroute controllers, each with a different perspective on
the same world and different goals and procedures.

The same underlying display accommodated all variants.
Figure  4.3 shows  a  composite  view with  almost  every
option  enabled  simultaneously.  A  hallmark  of  good
software design is being able to apply the same solution to
many related problems without undue effort [14].

4.3  Fly-by-Wire Aircraft Control

Project FBW involved a hierarchical network of networks
that  coordinated controllers, sensors,  and actuators on a
fly-by-wire aircraft on a test stand [15]. Figure 4.4 depicts
the  flight  control  surfaces  and  other  components  like
engines  and  landing  gear,  which  had  very  specific
behaviors  that  had to be ensured.  (See Figures  5.7 and
5.8.)

Figure 4.2: ATC Controller Viewers

Figure 4.3: ATC Viewer, Composite

Figure 4.1: UAV Viewer

Figure 3.4: Scientific Method [11]



Figure 4.5 depicts the corresponding fly-by-wire network,
which  the  architecture  utilized  through  rich
communication protocols.

4.4  Aircraft Accident Reenactment

Project  AAR  involves  a  combination  of  projects  UAV,
ATC, and FBW to define,  execute,  and analyze a wide
variety of failures that  lead to aircraft  accidents.  Figure
4.6 depicts a mockup of the expected final form, which is
still under development.

4.5  Aircraft Carrier Operations

Project  ACO involved a very dynamic environment  for
aircraft  carrier  operations  [2].  It  included  fighters  on
board and in the air. Carriers maintained components like
catapults,  blast  barriers,  arresting  wires,  and  optical
landing  systems.  The fighters  interacted  with  them and
airborne tankers to carry out simple training missions by
taking off, refueling, and landing. Figure 4.7 depicts top,
side, and front views of a launch.

4.6  Military Test Range

Project MTR involved the most complex dynamic world
[17].  It  provided  an evaluation environment  for  a  wide
variety  of  weapon  systems  on  different  platforms.
Munitions supported the specific combinations of sensors
and fuzes in Table 4.1.

Sensor

Munition

A
coustic

D
epth

D
istance

R
adar

S
onar, passive

S
onar, active

T
herm

al

T
im

e

Bomb

Depth Charge      

Missile    

Shell 

Torpedo       

Table 4.1: Compatibility Matrix

Similarly, Table 4.2 shows which platforms could engage
each other with which munitions. (Submarines A and B
are above and below water, respectively. The other letters
correspond to the first letter of each munition.)

Figure 4.4: FBW Viewer

Figure 4.6: AAR Viewer Mockup [16]

Figure 4.7: ACO Viewer

Figure 4.5: Fly-By-Wire Network Architecture



Target

Source

A
irplane

S
hip

S
ubm

arine (A
)

S
ubm

arine (B
)

Airplane M B,M,T B,T D,T

Ship M,S,T S,T D,T

Submarine (A) M,T T T

Submarine (B) T T T

Table 4.2: Applicability Matrix

Acquisition, lethality, engagement, countermeasures, and
other considerations played out in a two-dimensional top-
view world, as in Figure 4.8.

Some of the output, as in Figure 4.9, naturally exported to
the three-dimensional visualizer that Section 5.3 covers.

4.7  Heavy Construction Equipment

Project HCE involved the design and evaluation of heavy
construction  equipment.  Despite  major  differences  in
appearance,  as  in  Figure  4.10,  the underlying  model  is
quite  similar  to  the  fly-by-wire  architecture  in  project
FBW.  Here,  however,  the  actuators  are  electrical,
mechanical,  hydraulic,  and  pneumatic  cylinders  that
connect  fixed  and  variable  linkages  and  free-body

components.  As with FBW, the equipment resides on a
virtual  test  stand  and  does  not  actually  perform  any
function in the world.

4.8  Railroad Layout Manager

Project  RLM  involved  a  railroad  layout  manager  that
captured the usual components like tracks, engines, and
cars.  It  also  supported  complex  signaling  and  safety
systems.  The viewer  in  Figure  4.11 is  characteristic  of
many projects, which present the world from an iconified
top view. Although the graphics are expressive, they are
not  particularly  attractive.  However,  the  architecture  of
these projects accommodates improvements to the model,
view,  and  controller  concerns  (see  Section  5.2.1)
relatively  independently,  which  is  another  hallmark  of
good software design [18].

5. Architectural Framework

The  architectural  framework  contains  the  elements  for
modeling, simulation, visualization, and analysis. For the
most part, only the model and parts of the visualization
differ substantially among projects.

5.1  Modeling

The  first  step  in  making  sense  of  any  project  is  to
establish  what  its  pieces  are  and  consist  of.  The  term

Figure 4.9: MTR Viewer, 3D Perspective

Figure 4.10: HCE Viewer

Figure 4.8: MTR Viewer, 2D Perspective

Figure 4.11: RLM Viewer



agent generally applies to top-level entities of study like
airplanes,  whereas  a  component is  part  of  one,  such as
landing gear. However, from many perspectives, there is
no  practical  difference,  so the  latter  term is  used  here.
Table 5.1 provides examples of both categories from each
project as defined in Section I.

Project Example

AAR airplane, cockpit control, flight control surface, data logger

ACO fighter, tanker, catapult, arresting gear, refueling boom

ATC aircraft, taxiway, runway, airspace geometry, navigation aids

FBW elevator, aileron, rudder, flap, slat, landing gear, engine

HCE chassis, frame, linkage, joint, lever, hydraulic cylinder

MTR airplane, ship, submarine, sensor, fuze, missile, bomb

RLM track, switch, engine, car, sensor, gate, semaphore, signal light

UAV airplane, instrument, navigational transmitter and receiver

Table 5.1: Components

5.1.1  Data

The next  step is  to  define each component  in terms of
three  aspects.  The  first  is  data,  which  captures  what  a
component  is.  For  example,  Table  5.2 specifies
representative characteristics of a component from Table
5.1. A model is always an abstraction, so not every detail
is captured. Determining what to include, as well as how
to represent it,  is  part  of the model-based thinking that
students need to learn [19].

Project Example

AAR an airplane has a callsign, latitude, longitude, and altitude

ACO a catapult has an acceleration rate to maximum speed

ATC an aircraft has an (x,y,z) position and a direction at a speed

FBW a rudder has a maximum positive/negative deflection angle

HCE a hydraulic cylinder has a minimum and maximum extension

MTR a radar sensor has a maximum range and sensitivity

RLM an engine has a current and maximum speed

UAV an airplane has a yaw, pitch, and roll attitude

Table 5.2: Data

Students  tend  to  experience  surprising  difficulty  in
representing  real-world  data.  The  emphasis  in  these
projects  in  primarily  on  breadth,  not  depth,  so it  is  an
inappropriate use of time to expect students to implement
complex representations themselves. Therefore, the author
provides most as predefined datatypes, such as in Figure
5.1. Each captures the practical essence of its abstracted
role in the project. Most are simplifications, such as a flat-
earth model for latitude and longitude. Each manages its
units and magnitudes and provides error checking, utility
methods, logging, and other useful features.

5.1.2  Control

The  second  aspect  to  define  for  each  component  is  its
control, which captures what it can do. These capabilities
must be consistent with the use of the component, as in
Table  5.3.  They  must  also  be  consistent  with  the  data
because control  operates on data to produce more data.
This  input-processing-output  model  is  the  basis  of  all
computing,  yet  students’  solutions  frequently  have
disconnects  with  control  operating  on  nonexistent  or
incorrect  data,  or  with  data  having  no  corresponding
control. The relationships between data and control must
be clearly established before proceeding.

Project Example

AAR increase the altitude of the airplane

ACO activate the catapult as configured

ATC instruct to change the direction of the aircraft

FBW set the target deflection angle

HCE set the cylinder target extension distance

MTR transmit a radar pulse

RLM set the target engine speed

UAV set the attitude components 

Table 5.3: Control

5.1.3  Behavior

Data  and  control  are  static  in  that  they  define  the
existence  and  capabilities  of  components.  Behavior,  on
the  other  hand,  is  dynamic  because  it  specifies  how
components  function  with  respect  to  an  operational
context.  For  example,  each  action  in  Table  5.4 has  a
purpose. It translates to the control level to manipulate the
data level. All levels must be bidirectionally consistent.

Acceleration, Altitude, AngleMath, AngleNav,
Attitude, AttitudePitch, AttitudeRoll,

AttitudeYaw, Azimuth, Bearing, Callsign,
CoordCartAbsolute, CoordCartRelative,

CoordPolarMath, CoordPolarNav, CoordPolarNav3D,
CoordWorld, CoordWorld3D, Course, Distance,
Drag, Elevation, FieldOfView, FieldOfRegard,

Heading, Identifier, Interval, Latitude, Lift,
Longitude, Percent, Power, Range, Rate, Speed,
Time, Thrust, Track, Vector, Velocity, Weight

Figure 5.1: Datatypes



Project Example

AAR climb to avoid terrain

ACO launch a fighter to defend the carrier

ATC change aircraft direction to avoid conflicting traffic

FBW deflect the rudder left to coordinate a turn

HCE extend a cylinder to dump the load bucket

MTR ping a target with radar to lock a missile

RLM reduce the engine speed to arrive at a station

UAV change the attitude to execute a landing maneuver

Table 5.4: Behavior

Figure  5.2 demonstrates two extended examples. In both
cases, the goal is to align an airplane with the runway at
point  S. Depending on the arrival position and direction,
the  actions  to  carry  out  differ.  The  top-level  goal
decomposes  into  the  lower-level  steps  a–g or  a–f that
reference the corresponding control.

5.1.4  Decompositional Characteristics

Establishing other characteristics of components does not
exhibit the same ordered road map. Instead, it is up to the
students to decide what is relevant, as well as how and
why, and then to act accordingly on these decisions. This
section covers three of the main breakouts.

Table  5.5 distinguishes  between  independent and
dependent components.  They  generally  align  with  the
definition  of  top-level  agents  versus  lower-level
components,  respectively, but  often the world is  not so
clear.  For  example,  an  airplane  in  project  FBW  is
independent because it  operates on its own, whereas its
landing  gear  is  always  dependent  on  it  because  this
component  would  never  be  found  separate  from  an
airplane. Similarly, in MTR, a (fire-and-forget) missile in
flight is on its own, but before launch, it was dependent
on  the  fighter  carrying  it.  Finally,  a  fighter  aboard  a
carrier  in  ACO  is  initially  dependent  when  parked.  It
becomes both independent and dependent while taxiing.
Upon  takeoff  it  becomes  independent  until  landing.
Students  must  recognize  and  understand  such  dynamic
complexities in order to manage them properly.

Project Independent Dependent

AAR airplane flight data recorder

ACO carrier, tanker catapult, arresting wire

ATC airplane, airport radar station (in a network)

FBW airplane landing gear, engine

HCE chassis bulldozer blade

MTR missile in flight missile on fighter

RLM track layout engine and rail car

UAV airplane flight control surface

Table 5.5: Independent/Dependent Components

Table  5.6 distinguishes  between  static and  dynamic
components, which are generally those that do not change
and  those  that  do,  respectively.  In  project  FBW,  for
example, the wing is merely an attachment point. It has
data defining its shape, but no control that allows it to do
anything with the data.  On the other  hand,  the landing
gear can extend and retract, which changes its state over a
time interval.

Project Static Dynamic

AAR airport layout, terrain air traffic, weather

ACO parking area, taxiway refueling booms, tailhook

ATC taxiway, runway, airspace airplane, weather pattern

FBW fuselage, wing landing gear, engine

HCE chassis, support linkage, actuator

MTR sea floor and surface bomb, missile, torpedo

RLM straight and curved track switch track, drawbridge

UAV instrument panel background instrument needle

Table 5.6: Static/Dynamic Components

Dynamic components can change state in different ways.
Table  5.7 distinguishes  between  discrete events,  which
happen instantaneously, and  continuous ones,  which are
relatively smooth transitions. In project FBW, switching
the landing light on or off is instantaneous, whereas the
landing  gear  takes  time  to  change  state.  Students  are
familiar  with  discrete  events  because  ordinary
programming  operates  this  way:  calling  a  method
executes  it  immediately,  and  the  program  does  not
proceed until  execution is complete.  Continuous events,
on the other  hand,  are  much more difficult  to  manage,
especially in a controlled way for simulation purposes.

Figure 5.2: Landing Approaches



Project Discrete Continuous

AAR aircraft responds to radio call aircraft descends to altitude

ACO fighter reports position carrier changes direction

ATC engines start airplane taxis to runway

FBW landing light illuminates landing gear retracts

HCE hydraulic pump activates hydraulic cylinder extends

MTR radar pulse propagates torpedo tracks target

RLM switch track changes drawbridge goes up

UAV navigation aid turns on aircraft accelerates in a dive

Table 5.7: Discrete/Continuous Components

5.2  Simulation

Simulation is the realization of the operational context of
behavior  in  Section  5.1.3  with  respect  to  the  scientific
method in Section 3.2. It involves setting up and running
controlled  experiments  and  collecting  results  for
visualization and analysis.

5.2.1  Simulation Framework

The  simulation  framework  is  based  on  a  traditional
model-view-controller  architecture.  This  model  aligns
closely with the simulation model in Section 5.1, and the
view  aligns  with  visualization  in  Section  5.3.  The
controller plays two roles: to interact with the user and to
execute the simulation.

5.2.2  Domain-Specific Languages

All  interaction  with  the  user  (except  for  simple  mouse
manipulation  of  the  views)  is  through  text-based
commands, which can be typed directly from a command
line  or  read  from  a  file.  Each  project  has  its  own
application-specific  language,  as  in  Figure  5.3,  which
plays  three  distinct  roles  based  on  well-established
software design patterns [20].

Creational commands play the role of defining separate
components  at  their  lowest  levels.  The  commands  are
highly  specific  to  the  projects,  but  all  are  of  the  same
basic form:

CREATE something WITH arguments

For example, project MTR uses the following commands
to create two sensors as radar and depth fuzes with certain
characteristics:

DEFINE SENSOR RADAR fuze_radar1
  WITH FIELD OF VIEW 30 POWER 50 SENSITIVITY 10

DEFINE SENSOR DEPTH fuze_depth1
  WITH TRIGGER DEPTH -250

Structural  commands combine the  separate  components
into  higher-level  components  or  top-level  agents.  For
example, the following command creates and assembles a
missile  with  a  previously  created  radar  sensor  and
proximity fuze,  plus  it  defines  additional  characteristics
like a minimum flyout distance before arming:

DEFINE MUNITION MISSILE munition_mission1
  WITH SENSOR sensor_radar1 
  FUZE fuze_proximity1 ARMING DISTANCE 0.5

Behavioral  commands control  the  behavior  of
components.  For  example,  the  following  commands
change the course of a fighter, make it descend, and arm
and fire its missile:

DO fighter1 CHANGE COURSE 315 DESCEND D-900

DO fighter1 ARM missile1

DO missile1 FIRE

Miscellaneous and metacommands control the simulation
itself. For example, the following commands change the
granularity  of  the  simulation  time  steps  and  their
correspondence to wall-clock time, wait 500 milliseconds,
and then exit.

@CLOCK 100 20

@WAIT 500

@EXIT

One of  the  most  useful  metacommands  is  @RUN,  which
reads commands from a file as a script. This capability is
extremely powerful for disciplined testing and evaluation
because it allows students to partition separate tests into
separate  files.  Instead  of  the  usual  approach  of
manipulating their programs directly to set up and execute
tests and save the results, in which they generally undo or
corrupt  previous  tests,  here  everything  remains
independent and more organized. Complex testing often
involves executing different behaviors on the same initial
configuration, which is easy to set up by having files call
other  files.  This  approach  instills  a  lot  of  discipline  in
students,  who  would  otherwise  have  no  other  practical
way of performing such actions.

5.2.3  Simulation Implementation

The  architecture  manages  a  continuous  time-stepped
simulation.  It  maintains  a  collection  of  all  components

Figure 5.3: Script Snippet



and  periodically  updates  each  according  to  a  single
system  clock  such  that  every  component  performs  its
relevant  actions at  that  instant.  For  example,  extending
landing gear in project FBW involves repeated updates to
the  components  of  the  gear  assembly,  each  of  which
advances the extension by a small amount. The end effect
is the impression of continuous, smooth movement over
time from the start of the physical interval (retracted) to
the end (extended).

5.3  Visualization

Visualization involves far more than just graphics. It is a
means  of  presenting  complex  data  and  information  in
ways  that  convey  the  content,  structure,  and  meaning
intuitively.  No  single  way  captures  all  aspects.  At  the
lowest  level,  the  compositional  nature  of  agents  and
components lends itself to text output that  indicates the
creational and structural elements, such as for a notional
fighter jet in Figure 5.4. Generating such output from an
object-oriented  program  is  straightforward  and
convenient.  Moreover,  doing  so  with  a  common  data
interchange  format  like  XML results  in  a  great  benefit
because  other  tools  can  do  the  tedious  cosmetic  work,
thereby  freeing  students  to  focus  on  more  appropriate
tasks.  For  example,  the  Google  Chrome  web  browser
manages the indentation and color-coding here.

Similarly,  the  value  of  Microsoft  Excel  is
underappreciated  as  a  legitimate  and  surprisingly
powerful  visualization  tool.  The  architecture  of  these
simulations automatically generates a wealth of low-level
data  about  the  states  of  the  components  and  their
intercommunication, as in Figure  5.5. Almost everything
that occurs is captured somewhere in a structured text log
file that by design exports effortlessly to Excel.

While this presentation contains copious raw data, it is not
at all intuitive. Nobody can just look at the endless rows
and  columns  and  truly  see  the  big  picture  of  what  is
happening.  However,  still  within  Excel,  judicious
selection  of  data  fields  easily  generates  a  wealth  of
graphs,  such  as  in  Figure  5.6,  that  convey information
about relationships, especially causes and effects. The eye
is naturally drawn to the visual form, and the brain sees
patterns.  Anomalies  and  discontinuities  are  far  more
apparent. Furthermore, this form can directly contribute to
test  reports  as  a  concise  depiction  wrapped  by  brief
English text for context. This approach greatly reduces the
effort  of  writing.  Students  do  not  generally  consider
communication  to  be  a  significant  part  of  computer
science,  but  in  the  real  world,  it  is  actually  what
professionals often do the most.

For  more  complex  interactions,  especially  for  precisely
timed  tests,  manual  annotation  is  worth  the  proverbial
thousand  words.  For  example,  Figure  5.7 depicts  the
actions of a rudder actuator from project FBW from two
perspectives at the following key time points:

1. at initial position 0º neutral; command to 45º left
2. arrives; command to 45º right
3. arrives; command to 0º
4. arrives; command to 30º left
5. at 15º left preemptively command to 45º right
6. arrives

Figure 5.4: XML Representation

Figure 5.5: Excel Table Representations

Figure 5.6: Excel Graph Representations



Lower-level  analysis  using  basic  calculus  computed
within  Excel  produces  the  velocity  and  acceleration
breakout in Figure 5.8.

As  many  components  change  position  within  a  two  or
three-dimensional  world,  plotting  their  tracks  in  freely
available Gnuplot over time produces a rich perspective
on their behavior. For example, the tracks in Figure  5.9
follow aircraft  that  were  commanded  to  perform some
actions.  Again,  the  eye  is  naturally  drawn  to  any
disconnects.  This  high  level  does  not  provide  enough
detail to determine specifically what may be wrong, but it
does  help  target  any  problem,  which  can  then  be
diagnosed  by  going  back  into  the  lower-level
visualizations above.

Although  a  major  consideration  in  visualization  is  to
avoid investing costly, tangential effort into purpose-built
graphical  tools,  at  some  point  this  perspective  often
becomes necessary because general-purpose tools have no
inherent relationship to the problem domain. In this case,
the author provides a three-dimensional visualizer written
in JOGL (Java  OpenGL) that  is  used throughout  many
courses, and indeed derives from similar needs in earlier
work in the defense industry [21]. Figure  5.10 depicts a
variety of cartoon-like, yet very informative, sequences of
actions and events.

The capability to integrate domain-specific visualization
is  key.  Metainformation,  such  as  fields  of  view  and
degrees  of  freedom  in  Figure  5.11,  are  invaluable  for
making sense of otherwise hidden aspects of the world.

Finally, as many projects model components in the real
world  with  world  coordinates  (albeit  simplified  to  flat
earth),  their  output  in  latitude,  longitude,  and  altitude
directly  exports  to  tools  like  Google  Earth,  which  can
depict  tracks  overlaid  onto  actual  terrain,  as  in  Figure
5.12.

Figure 5.11: 3D Visualizer Augmentation

Figure 5.9: Gnuplot 2D Representations

Figure 5.12: Google Earth Visualization

Figure 5.10: 3D Visualizer

Figure 5.8: Excel Graph Representations

Figure 5.7: Annotated Events



5.4  Analysis

Analysis  involves  making  sense  of  the  results  of
experiments. For subject-matter experts, simulation tools
provide  insight  into  domain-specific  problems.  For
students  within  the  context  of  an  educational
environment, however, the goal of analysis is primarily to
establish that the software itself works appropriately.

To this  end,  students  have  to  produce  a  professional-
looking test report based on a cross-section of roughly 40
experiments that demonstrate representative aspects of the
system.  For  consistency,  since  not  every  team’s  own
solution was correct or functioned identically, they used
the  author’s.  Each  experiment  addressed  eight
requirements,  where  1–4  relate  to  planning,  5–6  to
execution, and 7–8 to presenting the results:

1. The rationale behind the test; i.e., what it was testing
and why it mattered.

2. A general English description of the initial conditions.

3. The commands for (2).

4. An English narrative of the expected results.

5. The actual results with at least one graph showing the
most representative view of the states.

6. A snippet of the actual results from the log file with a
supporting  explanation,  including  statistics,  metrics,
and graphs, as appropriate.

7. A discussion  on  how well  the  actual  results  agreed
with  the  expected  results,  or  if  they  disagreed,  a
hypothesis on why.

8. A suggestion for  how to extend this  test  to  address
related aspects of potential interest.

The  experiments  varied  wildly  from project  to  project.
The following is a subset from MTR:

• Fly  an  airplane  on  a  constant  course  at  a  constant
altitude and speed.

• Fly  an  airplane  in  a  360-degree  clockwise  turn
approximated by an octagon in a climb where each leg
of the octagon is a separate climb. All legs should have
the same increase in altitude.

• Drop a bomb from a high-speed airplane at 8,000 feet
onto a ship.

• Drop  a  depth  charge  with  an  acoustic  fuze  near  a
submarine, but miss.

• Fire a missile with a radar sensor and depth fuze from a
ship at an airplane, detonating near the airplane.

• Fire a missile with a radar sensor and time fuze from a
ship at an airplane, detonating near the airplane.

• Fire a torpedo with a sonar sensor and sonar fuze from
a submarine at a fast ship.

• Fire a missile with a radar sensor and radar fuze from
an airplane at a ship. Move the ship in such a way that
the  radar  signal  reflectivity  goes  from  maximum  to
minimum and back as a function of aspect angle.

Snippets  of  the  visualizations  are  invaluable  for
supporting the argument that useful tests were conducted
correctly.  For  example,  Figure  5.13 depicts  dropping  a
bomb from a low-speed airplane flying right at 5,000 feet
onto a ship. The bomb missed, but its (simplified) descent
profile was as expected.

Although these simulations are often cartoon-like in their
simplifications,  they  still  reflect  a  relatively  rich  set  of
behaviors  to  tease  out.  A small  set  of  more  complex
experiments always provides this interesting opportunity.

For  example,  Figure  5.14 depicts  firing  two  torpedoes
from a submerged submarine at a ship that is broadside at
launch  and  tries  to  outrun  them.  As  the  torpedoes
converge on the ship, their active sonar sensors begin to
interfere with each other  because they are on the same
frequency.  The  students  needed  to  make  an  earnest
attempt at accounting for this observation. They are not
training to be subject-matter experts and thus are not held

Figure 5.13: Bomb Release, Side View

Figure 5.14: Torpedo Engagement, Top View



to  that  standard,  but  by  this  point  in  the  course,  they
should  be  able  to  articulate  a  reasonable  hypothesis,
whether  correct  or  not.  In  the  DIKW  hierarchy,  this
aspects  demonstrates  knowledge  and  even  hints  of
wisdom.

6. Results

Each project was independent with a different group of
approximately  32  students.  The  papers  cited  for  these
projects  report  on their  particular  results.  However,  the
shared framework for teaching this course generally relies
on  a  common  set  of  measures,  which  generate  a
substantial  amount  of  quantitative  and  qualitative
feedback over 11 weeks:

• Anecdotal observation
• Eight individual assignments
• 10 anonymous weekly self-reflections
• 16 project status reports (both individual and team)
• Three team project deliverables
• Project evaluation
• Team evaluation
• Development reflection
• Course evaluation

In  quantitative  terms,  on  average  88%  of  the  students
stated  that  the  architecture  permitted  them  to  build
interesting and entertaining real-world systems that they
thought they would never have been able to do on their
own.  Furthermore,  90%  indicated  that  the  test  reports
directly contributed to a stronger understanding of what
the  programmatic  solution  was  actually  doing,  whereas
they otherwise would have had much less confidence in it.
Overall,  the  students  rated  the  projects  4.6  out  of  5
(excellent).

7. Future Work

Developing a new project for each of three quarters in an
academic year is taxing for the instructor. Although much
of  this  framework  is  reusable  in  principle,  it  is  not  a
simple  and  straightforward  activity  in  practice.  A
classroom aspect of future work will be to streamline this
process  further.  With  an  ever-growing  set  of  complete
projects, hybrid projects that combine several, such as the
current  aircraft  accident  reenactment  simulator,  are
becoming much more feasible.

A second aspect of future work relates to the breadth and
depth  of  domain  coverage  in  these  projects.  Students
investigate  a  relatively  small  subset  of  the  capabilities.
The author  would not  develop  such large and complex
projects  if  this  limited  perspective  were  the  only  goal.
Rather,  the  dual-purpose  intent  is  also  to  use  them for
research. Although the underlying models tend to be gross

simplifications  and  thus  do  not  adequately  capture  the
fidelity necessary to study the problem domain in intricate
detail,  they do lend themselves nicely to other  research
considerations.  Sensitivity  analysis,  for  example,  is
important  in  determining  appropriate  or  optimal
configurations of components. Monte Carlo methodology
is a powerful means of exercising the models in ways that
reflect  real-world  uncertainty  without  undue  explicit
configuration. Finally, incorporation of machine learning
appears especially promising for countless aspects of the
problem and solution domains.

8. Conclusion

The  eight  projects  showcased  throughout  this  paper
demonstrate  a  rich  breadth  and  depth  of  examples  of
using modeling, simulation, visualization, and analysis in
support  of  teaching  software  systems  engineering.  The
underlying  pedagogical  foundation  successfully  helps
students  to understand how to approach,  carry out,  and
verify  the  many  confusing  and  error-prone  steps  of
analysis, design, implementation, testing, and evaluation
in a way that is educational, practical, and engaging.
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