
Peer Reviewed Paper Presented at AlaSim 2016

A Meta-Case Study of Modeling, Simulation, Visualization, and Analysis for
Real-World Software Systems Engineering Education

Dan Tappan
Department of Computer Science, Eastern Washington University, Cheney, WA

Keywords: software engineering, systems engineering, pedagogy

ABSTRACT: The foundation of modern systems of systems is computer systems controlling electrical systems in turn
controlling mechanical systems. Despite the core role computers play, computer science students do not generally see
or appreciate this perspective because few classroom projects demonstrate it. This work showcases eight recent projects
that employ a systems-engineering approach to teaching software engineering. Specifically, it shows how modeling,
simulation, visualization, and analysis serve as a powerful toolkit for the analysis, design, implementation, testing, and
evaluation of engaging real-world projects related to aviation, military, construction, and railroad applications.

1. Introduction

Modern technology is a complex system of systems
composed of mechanical systems controlled by electrical
systems controlled by software systems. Software
engineering is not just about software anymore. The
systems-engineering processes of analysis, design,
implementation, testing, evaluation, verification,
validation, and accreditation demand far more than the
typical classroom environment can address. This paper
presents an overview of a highly successful reusable Java-
based software architecture and corresponding holistic
pedagogical approach that utilize modeling, simulation,
visualization, and analysis at all levels with an
overarching focus on software quality assurance. It uses
multiagent continuous time-stepped simulations for
interactive virtual worlds that capture a vast breadth and
depth of multidimensional exposure to realistic systems
while still being manageable for students and the
instructor. This overview highlights commonalities and
results from a survey of eight recent projects:

• AAR: aircraft accident reenactment environment for
creating, recreating, and analyzing events

• ACO: aircraft carrier operations with fighters taking
off, landing, and repositioning, and refueling
from tankers

• ATC: air traffic control with airplanes operating on
the ground and in the air in various airspace
configurations and contexts

• FBW: fly-by-wire control system with networked
control surfaces and external components of an
airplane on a test stand

• HCE: heavy construction equipment toolkit with
sensors and electrical, mechanical, hydraulic,
and pneumatic actuators

• MTR: military test range with airplanes, ships, and
submarines using sensors and weapons

• RLM: railroad layout manager with tracks, cars,
engines, and signaling and safety systems

• UAV: unmanned aerial vehicle remote cockpit with
instrumentation and flight data recording

This approach forces students to develop and apply
critical-thinking and technical-communication skills by
pushing them out of their comfort zone into
overwhelmingly unfamiliar real-world environments. It
helps establish the endless dots and their interconnections
and interrelationships to learn about the problem domain
of the subject matter, to translate it into the solution
domain, and to evaluate the results. Modeling and
simulation here uses software as a surrogate for the real
world to investigate what-if scenarios from countless
perspectives. It dovetails with the scientific method as a
disciplined approach for envisioning, building, and
conducting repeatable controlled experiments in support
of developing quality software systems of systems.
Finally, it emphasizes an array of underutilized
visualization techniques as an expressive yet intuitive
means of conveying information to all stakeholders in the
development process.

2. Software Systems Engineering

The term software systems engineering as a combination
of software engineering and systems engineering is not
mainstream yet. In fact, it produces only 340 thousand
hits on Google versus 34 and 16 million for the other two,
respectively. However, despite the lack of terminological
recognition, the fusion of these fields is indeed how
professionals develop complex systems of systems.
Although the students referenced in this paper are
studying computer science as their major discipline, they
cannot be completely oblivious to the central role that it
plays in the larger world where they plan to spend their
careers. The multidisciplinary nature of these projects

fosters an understanding and appreciation of such a
holistic perspective.

2.1 Software Engineering

Software engineering is a complex, multidimensional,
multifaceted process. There are countless ways to conduct
it. This paper considers the following traditional stages:
analysis is the process of understanding the problem
domain; design is mapping the many real-world elements
of the analysis to the corresponding virtual-world
elements of the solution domain; implementation is
building the solution with appropriate tools and
techniques; and finally, testing and evaluation is
demonstrating that the solution works and is consistent
with the original problem, as well as refining and
optimizing it.

In reality, the process invariably ends up looking like a
variant of the popular joke in Figure 2.1, which
apparently has been floating around the public domain
since the advent of software engineering. The panes
correspond from top left to bottom right as: how the
customer explained it; how the project leader understood
it; how the analyst designed it; how the programmer
wrote it; what the beta testers received; how the business
consultant described it; how the project was documented;
what operations installed; how the customer was billed;
how it was supported; what marketing advertised; and
finally what the customer really needed.

The particulars of each pane are irrelevant. What really
matters is the larger perspective that every manner of
absurdity happens from one step to the next. While there
are unquestionably many genuinely unavoidable pitfalls
in software engineering, many need not become problems
with some reasonable care. The approach throughout
these projects aims to reduce the endless disconnects as
students translate from one stage to the next. Far too often
their “strategy” is to try anything that comes to mind with
the hope that it works. In fact, one student blatantly
admitted that he “kept throwing more code at the
compiler until it shut up.” In the world of physical

engineering, developing what-if mockups and prototypes
is commonplace and extremely useful, but because of the
investment in actually building something, engineers put
more thought into the design. In the virtual world of
programming, students develop the bad habit of believing
that haphazard trial and error is an actual strategy to
problem-solving because it appears to come at no cost. In
reality, they often do not know why their solutions fail to
work, or if the solutions do actually work, they cannot
articulate why. Neither perspective is conducive to
producing quality software.

2.2 Systems Engineering

Systems engineering is a superset of software engineering
that involves a vast array of systems of systems of all
types. While systems engineering often tends to be a
higher-level, more managerial and less technical
perspective, this work focuses on the engineering aspects
of multidisciplinary systems. In fact, the breadth and
depth of subject matter throughout these projects aligns
quite well with mechatronics, which is an amalgamation
of at least the disciplines represented in Figure 2.2.

Computer science students are naturally not expected to
have a background in all of these areas. These projects,
especially in the analysis stage, offer many opportunities
for students to familiarize themselves with the subject
matter to the degree necessary to do something
computational with it. This approach provides good
training because in the working world, professionals are
always being immersed into unfamiliar environments. The
ability to adapt and learn quickly is essential.

3. Pedagogical Foundation

The pedagogical foundation is extensive and covered in
great detail in [2]. The goal here is to provide just an
overview of how modeling and simulation relate to
thinking and doing for software systems engineering.

3.1 Modeling

Modeling can be considered the process of translating a
problem in the real physical world to a solution in the
virtual computer world, as depicted by the right arrow in

Figure 2.2: Systems Engineering Convergence [1]

Figure 2.1: Software Engineering in Practice

Figure 3.1. By and large, students do understand this
direction because they are accustomed to receiving
problems to solve. What they rarely recognize is the
inverse direction depicted by the left arrow. In this case, if
their solution were given to someone with no knowledge
of the original problem, it is very unlikely that this person
would be able to recreate it correctly. The reason relates to
the cartoon in Figure 2.1, which reflects an endless parade
of translation errors where important details are lost or
mangled, and new unfounded ones mysteriously appear.
The result is poor software, which Weinberg [3]
characterizes eloquently: “If builders built buildings the
way programmers write programs, then the first
woodpecker that came along would destroy civilization.”

The pedagogical emphasis in this paper is on how to teach
students to translate the problem domain to the solution
domain appropriately and to verify the translation.
Section 5.1 covers this process in much more detail. Here
it suffices to define the approach as “slicing and dicing”
the problem domain into increasingly smaller pieces that
ultimately have clear translations, such as in Figure 3.2. In
particular, students need to be able to articulate what they
want, how to get it, and how to know that they got it.
These steps correspond generally to analysis, design, and
testing, respectively, but for small, bite-sized pieces that
are easier to understand and process. They also capture
both directions in Figure 3.1. One of the simplest
approaches plays a commanding role: posing and getting
resolution on any number of who, what, when, where,
why, and how (W5H) questions, which form the backbone
of mental models for understanding anything in the world
[4,5].

Establishing small pieces helps combine them
meaningfully into ever-larger ones, which ultimately leads
to systems of systems. Figure 3.3 shows the data-
information-knowledge-wisdom (DIKW) hierarchy,
which helps guide this process by establishing these
pieces as dots and providing a framework for connecting
them appropriately [7]. This process reflects learning by
accumulating experience.

• Data: raw entities with no context

• Information: entities in one context

• Knowledge: entities in multiple contexts

• Wisdom: generalized principles created by connect-
ing a network of contexts from different
sources for predictive, anticipatory, pro-
active understanding

Finally, Bloom’s Taxonomy of Educational Objectives
plays the overarching role of helping foster critical
thinking by leading students upward from the low-level,
data-oriented learning activities of remembering,
understanding, and applying to the high-level,
knowledge-oriented activities of analyzing, creating, and
evaluating [8]. In many respects, this flow also
corresponds to analysis, design, implementation, and
testing in software development.

3.2 Simulation

The role of simulation in these projects is two-fold. First,
it makes them interesting, which helps entice students to
take the process of learning to develop them seriously.
Second, it provides a disciplined way of evaluating
whether their solutions work correctly, and if so, then how
well. The basis is the scientific method, which is common
to all sciences except ironically computer science [9,10].
Figure 3.4 captures the typical process flow, which for
software development tends to reflect the following steps:

• Determine what needs to be tested.

• Define an appropriate test.

• Run controlled experiments.

• Collect and interpret results.

• Report on whether the test passed. If not, make
proposed corrections to the program and run the same
test again. If so, refine the program to make the results
better until meeting a specified level of performance.

Figure 3.3: DIKW Hierarchy

Data Information Knowledge Wisdom

Figure 3.1: Real to Virtual-World Correspondence

Figure 3.2: Domain Decomposition [6]

Problem Domain Solution Domain

A third use of simulation is the traditional purpose for
developing such software: to evaluate what-if scenarios
about the problem domain by using the software as a
surrogate. This use plays only a minor role here, primarily
for demonstration and discussion, because the students are
not studying to become subject-matter experts.

4. Project Showcase

Each project investigates a rich breadth and depth of
aspects that exercise important elements of software
engineering. The overview here, however, is of the
general characteristics of each.

4.1 Unmanned Aerial Vehicle

Project UAV involved the architecture for interacting with
the flight dynamics model of an unmanned aerial vehicle,
as well as receiving and interpreting navigation
information from ground stations [12]. It also involved
implementing parts of the instrumentation in Figure 4.1 to
present the results of this processing to the pilot.

4.2 Air Traffic Control

Project ATC involved a large-scale world of arbitrary
aircraft, navigation systems, airports, and airspace under
the command of various air traffic controllers [13]. Figure
4.2 depicts the respective views of ground, approach, and
enroute controllers, each with a different perspective on
the same world and different goals and procedures.

The same underlying display accommodated all variants.
Figure 4.3 shows a composite view with almost every
option enabled simultaneously. A hallmark of good
software design is being able to apply the same solution to
many related problems without undue effort [14].

4.3 Fly-by-Wire Aircraft Control

Project FBW involved a hierarchical network of networks
that coordinated controllers, sensors, and actuators on a
fly-by-wire aircraft on a test stand [15]. Figure 4.4 depicts
the flight control surfaces and other components like
engines and landing gear, which had very specific
behaviors that had to be ensured. (See Figures 5.7 and
5.8.)

Figure 4.2: ATC Controller Viewers

Figure 4.3: ATC Viewer, Composite

Figure 4.1: UAV Viewer

Figure 3.4: Scientific Method [11]

Figure 4.5 depicts the corresponding fly-by-wire network,
which the architecture utilized through rich
communication protocols.

4.4 Aircraft Accident Reenactment

Project AAR involves a combination of projects UAV,
ATC, and FBW to define, execute, and analyze a wide
variety of failures that lead to aircraft accidents. Figure
4.6 depicts a mockup of the expected final form, which is
still under development.

4.5 Aircraft Carrier Operations

Project ACO involved a very dynamic environment for
aircraft carrier operations [2]. It included fighters on
board and in the air. Carriers maintained components like
catapults, blast barriers, arresting wires, and optical
landing systems. The fighters interacted with them and
airborne tankers to carry out simple training missions by
taking off, refueling, and landing. Figure 4.7 depicts top,
side, and front views of a launch.

4.6 Military Test Range

Project MTR involved the most complex dynamic world
[17]. It provided an evaluation environment for a wide
variety of weapon systems on different platforms.
Munitions supported the specific combinations of sensors
and fuzes in Table 4.1.

Sensor

Munition

A
coustic

D
epth

D
istance

R
adar

S
onar, passive

S
onar, active

T
herm

al

T
im

e

Bomb

Depth Charge      

Missile    

Shell 

Torpedo       

Table 4.1: Compatibility Matrix

Similarly, Table 4.2 shows which platforms could engage
each other with which munitions. (Submarines A and B
are above and below water, respectively. The other letters
correspond to the first letter of each munition.)

Figure 4.4: FBW Viewer

Figure 4.6: AAR Viewer Mockup [16]

Figure 4.7: ACO Viewer

Figure 4.5: Fly-By-Wire Network Architecture

Target

Source

A
irplane

S
hip

S
ubm

arine (A
)

S
ubm

arine (B
)

Airplane M B,M,T B,T D,T

Ship M,S,T S,T D,T

Submarine (A) M,T T T

Submarine (B) T T T

Table 4.2: Applicability Matrix

Acquisition, lethality, engagement, countermeasures, and
other considerations played out in a two-dimensional top-
view world, as in Figure 4.8.

Some of the output, as in Figure 4.9, naturally exported to
the three-dimensional visualizer that Section 5.3 covers.

4.7 Heavy Construction Equipment

Project HCE involved the design and evaluation of heavy
construction equipment. Despite major differences in
appearance, as in Figure 4.10, the underlying model is
quite similar to the fly-by-wire architecture in project
FBW. Here, however, the actuators are electrical,
mechanical, hydraulic, and pneumatic cylinders that
connect fixed and variable linkages and free-body

components. As with FBW, the equipment resides on a
virtual test stand and does not actually perform any
function in the world.

4.8 Railroad Layout Manager

Project RLM involved a railroad layout manager that
captured the usual components like tracks, engines, and
cars. It also supported complex signaling and safety
systems. The viewer in Figure 4.11 is characteristic of
many projects, which present the world from an iconified
top view. Although the graphics are expressive, they are
not particularly attractive. However, the architecture of
these projects accommodates improvements to the model,
view, and controller concerns (see Section 5.2.1)
relatively independently, which is another hallmark of
good software design [18].

5. Architectural Framework

The architectural framework contains the elements for
modeling, simulation, visualization, and analysis. For the
most part, only the model and parts of the visualization
differ substantially among projects.

5.1 Modeling

The first step in making sense of any project is to
establish what its pieces are and consist of. The term

Figure 4.9: MTR Viewer, 3D Perspective

Figure 4.10: HCE Viewer

Figure 4.8: MTR Viewer, 2D Perspective

Figure 4.11: RLM Viewer

agent generally applies to top-level entities of study like
airplanes, whereas a component is part of one, such as
landing gear. However, from many perspectives, there is
no practical difference, so the latter term is used here.
Table 5.1 provides examples of both categories from each
project as defined in Section I.

Project Example

AAR airplane, cockpit control, flight control surface, data logger

ACO fighter, tanker, catapult, arresting gear, refueling boom

ATC aircraft, taxiway, runway, airspace geometry, navigation aids

FBW elevator, aileron, rudder, flap, slat, landing gear, engine

HCE chassis, frame, linkage, joint, lever, hydraulic cylinder

MTR airplane, ship, submarine, sensor, fuze, missile, bomb

RLM track, switch, engine, car, sensor, gate, semaphore, signal light

UAV airplane, instrument, navigational transmitter and receiver

Table 5.1: Components

5.1.1 Data

The next step is to define each component in terms of
three aspects. The first is data, which captures what a
component is. For example, Table 5.2 specifies
representative characteristics of a component from Table
5.1. A model is always an abstraction, so not every detail
is captured. Determining what to include, as well as how
to represent it, is part of the model-based thinking that
students need to learn [19].

Project Example

AAR an airplane has a callsign, latitude, longitude, and altitude

ACO a catapult has an acceleration rate to maximum speed

ATC an aircraft has an (x,y,z) position and a direction at a speed

FBW a rudder has a maximum positive/negative deflection angle

HCE a hydraulic cylinder has a minimum and maximum extension

MTR a radar sensor has a maximum range and sensitivity

RLM an engine has a current and maximum speed

UAV an airplane has a yaw, pitch, and roll attitude

Table 5.2: Data

Students tend to experience surprising difficulty in
representing real-world data. The emphasis in these
projects in primarily on breadth, not depth, so it is an
inappropriate use of time to expect students to implement
complex representations themselves. Therefore, the author
provides most as predefined datatypes, such as in Figure
5.1. Each captures the practical essence of its abstracted
role in the project. Most are simplifications, such as a flat-
earth model for latitude and longitude. Each manages its
units and magnitudes and provides error checking, utility
methods, logging, and other useful features.

5.1.2 Control

The second aspect to define for each component is its
control, which captures what it can do. These capabilities
must be consistent with the use of the component, as in
Table 5.3. They must also be consistent with the data
because control operates on data to produce more data.
This input-processing-output model is the basis of all
computing, yet students’ solutions frequently have
disconnects with control operating on nonexistent or
incorrect data, or with data having no corresponding
control. The relationships between data and control must
be clearly established before proceeding.

Project Example

AAR increase the altitude of the airplane

ACO activate the catapult as configured

ATC instruct to change the direction of the aircraft

FBW set the target deflection angle

HCE set the cylinder target extension distance

MTR transmit a radar pulse

RLM set the target engine speed

UAV set the attitude components

Table 5.3: Control

5.1.3 Behavior

Data and control are static in that they define the
existence and capabilities of components. Behavior, on
the other hand, is dynamic because it specifies how
components function with respect to an operational
context. For example, each action in Table 5.4 has a
purpose. It translates to the control level to manipulate the
data level. All levels must be bidirectionally consistent.

Acceleration, Altitude, AngleMath, AngleNav,
Attitude, AttitudePitch, AttitudeRoll,

AttitudeYaw, Azimuth, Bearing, Callsign,
CoordCartAbsolute, CoordCartRelative,

CoordPolarMath, CoordPolarNav, CoordPolarNav3D,
CoordWorld, CoordWorld3D, Course, Distance,
Drag, Elevation, FieldOfView, FieldOfRegard,

Heading, Identifier, Interval, Latitude, Lift,
Longitude, Percent, Power, Range, Rate, Speed,
Time, Thrust, Track, Vector, Velocity, Weight

Figure 5.1: Datatypes

Project Example

AAR climb to avoid terrain

ACO launch a fighter to defend the carrier

ATC change aircraft direction to avoid conflicting traffic

FBW deflect the rudder left to coordinate a turn

HCE extend a cylinder to dump the load bucket

MTR ping a target with radar to lock a missile

RLM reduce the engine speed to arrive at a station

UAV change the attitude to execute a landing maneuver

Table 5.4: Behavior

Figure 5.2 demonstrates two extended examples. In both
cases, the goal is to align an airplane with the runway at
point S. Depending on the arrival position and direction,
the actions to carry out differ. The top-level goal
decomposes into the lower-level steps a–g or a–f that
reference the corresponding control.

5.1.4 Decompositional Characteristics

Establishing other characteristics of components does not
exhibit the same ordered road map. Instead, it is up to the
students to decide what is relevant, as well as how and
why, and then to act accordingly on these decisions. This
section covers three of the main breakouts.

Table 5.5 distinguishes between independent and
dependent components. They generally align with the
definition of top-level agents versus lower-level
components, respectively, but often the world is not so
clear. For example, an airplane in project FBW is
independent because it operates on its own, whereas its
landing gear is always dependent on it because this
component would never be found separate from an
airplane. Similarly, in MTR, a (fire-and-forget) missile in
flight is on its own, but before launch, it was dependent
on the fighter carrying it. Finally, a fighter aboard a
carrier in ACO is initially dependent when parked. It
becomes both independent and dependent while taxiing.
Upon takeoff it becomes independent until landing.
Students must recognize and understand such dynamic
complexities in order to manage them properly.

Project Independent Dependent

AAR airplane flight data recorder

ACO carrier, tanker catapult, arresting wire

ATC airplane, airport radar station (in a network)

FBW airplane landing gear, engine

HCE chassis bulldozer blade

MTR missile in flight missile on fighter

RLM track layout engine and rail car

UAV airplane flight control surface

Table 5.5: Independent/Dependent Components

Table 5.6 distinguishes between static and dynamic
components, which are generally those that do not change
and those that do, respectively. In project FBW, for
example, the wing is merely an attachment point. It has
data defining its shape, but no control that allows it to do
anything with the data. On the other hand, the landing
gear can extend and retract, which changes its state over a
time interval.

Project Static Dynamic

AAR airport layout, terrain air traffic, weather

ACO parking area, taxiway refueling booms, tailhook

ATC taxiway, runway, airspace airplane, weather pattern

FBW fuselage, wing landing gear, engine

HCE chassis, support linkage, actuator

MTR sea floor and surface bomb, missile, torpedo

RLM straight and curved track switch track, drawbridge

UAV instrument panel background instrument needle

Table 5.6: Static/Dynamic Components

Dynamic components can change state in different ways.
Table 5.7 distinguishes between discrete events, which
happen instantaneously, and continuous ones, which are
relatively smooth transitions. In project FBW, switching
the landing light on or off is instantaneous, whereas the
landing gear takes time to change state. Students are
familiar with discrete events because ordinary
programming operates this way: calling a method
executes it immediately, and the program does not
proceed until execution is complete. Continuous events,
on the other hand, are much more difficult to manage,
especially in a controlled way for simulation purposes.

Figure 5.2: Landing Approaches

Project Discrete Continuous

AAR aircraft responds to radio call aircraft descends to altitude

ACO fighter reports position carrier changes direction

ATC engines start airplane taxis to runway

FBW landing light illuminates landing gear retracts

HCE hydraulic pump activates hydraulic cylinder extends

MTR radar pulse propagates torpedo tracks target

RLM switch track changes drawbridge goes up

UAV navigation aid turns on aircraft accelerates in a dive

Table 5.7: Discrete/Continuous Components

5.2 Simulation

Simulation is the realization of the operational context of
behavior in Section 5.1.3 with respect to the scientific
method in Section 3.2. It involves setting up and running
controlled experiments and collecting results for
visualization and analysis.

5.2.1 Simulation Framework

The simulation framework is based on a traditional
model-view-controller architecture. This model aligns
closely with the simulation model in Section 5.1, and the
view aligns with visualization in Section 5.3. The
controller plays two roles: to interact with the user and to
execute the simulation.

5.2.2 Domain-Specific Languages

All interaction with the user (except for simple mouse
manipulation of the views) is through text-based
commands, which can be typed directly from a command
line or read from a file. Each project has its own
application-specific language, as in Figure 5.3, which
plays three distinct roles based on well-established
software design patterns [20].

Creational commands play the role of defining separate
components at their lowest levels. The commands are
highly specific to the projects, but all are of the same
basic form:

CREATE something WITH arguments

For example, project MTR uses the following commands
to create two sensors as radar and depth fuzes with certain
characteristics:

DEFINE SENSOR RADAR fuze_radar1
 WITH FIELD OF VIEW 30 POWER 50 SENSITIVITY 10

DEFINE SENSOR DEPTH fuze_depth1
 WITH TRIGGER DEPTH -250

Structural commands combine the separate components
into higher-level components or top-level agents. For
example, the following command creates and assembles a
missile with a previously created radar sensor and
proximity fuze, plus it defines additional characteristics
like a minimum flyout distance before arming:

DEFINE MUNITION MISSILE munition_mission1
 WITH SENSOR sensor_radar1
 FUZE fuze_proximity1 ARMING DISTANCE 0.5

Behavioral commands control the behavior of
components. For example, the following commands
change the course of a fighter, make it descend, and arm
and fire its missile:

DO fighter1 CHANGE COURSE 315 DESCEND D-900

DO fighter1 ARM missile1

DO missile1 FIRE

Miscellaneous and metacommands control the simulation
itself. For example, the following commands change the
granularity of the simulation time steps and their
correspondence to wall-clock time, wait 500 milliseconds,
and then exit.

@CLOCK 100 20

@WAIT 500

@EXIT

One of the most useful metacommands is @RUN, which
reads commands from a file as a script. This capability is
extremely powerful for disciplined testing and evaluation
because it allows students to partition separate tests into
separate files. Instead of the usual approach of
manipulating their programs directly to set up and execute
tests and save the results, in which they generally undo or
corrupt previous tests, here everything remains
independent and more organized. Complex testing often
involves executing different behaviors on the same initial
configuration, which is easy to set up by having files call
other files. This approach instills a lot of discipline in
students, who would otherwise have no other practical
way of performing such actions.

5.2.3 Simulation Implementation

The architecture manages a continuous time-stepped
simulation. It maintains a collection of all components

Figure 5.3: Script Snippet

and periodically updates each according to a single
system clock such that every component performs its
relevant actions at that instant. For example, extending
landing gear in project FBW involves repeated updates to
the components of the gear assembly, each of which
advances the extension by a small amount. The end effect
is the impression of continuous, smooth movement over
time from the start of the physical interval (retracted) to
the end (extended).

5.3 Visualization

Visualization involves far more than just graphics. It is a
means of presenting complex data and information in
ways that convey the content, structure, and meaning
intuitively. No single way captures all aspects. At the
lowest level, the compositional nature of agents and
components lends itself to text output that indicates the
creational and structural elements, such as for a notional
fighter jet in Figure 5.4. Generating such output from an
object-oriented program is straightforward and
convenient. Moreover, doing so with a common data
interchange format like XML results in a great benefit
because other tools can do the tedious cosmetic work,
thereby freeing students to focus on more appropriate
tasks. For example, the Google Chrome web browser
manages the indentation and color-coding here.

Similarly, the value of Microsoft Excel is
underappreciated as a legitimate and surprisingly
powerful visualization tool. The architecture of these
simulations automatically generates a wealth of low-level
data about the states of the components and their
intercommunication, as in Figure 5.5. Almost everything
that occurs is captured somewhere in a structured text log
file that by design exports effortlessly to Excel.

While this presentation contains copious raw data, it is not
at all intuitive. Nobody can just look at the endless rows
and columns and truly see the big picture of what is
happening. However, still within Excel, judicious
selection of data fields easily generates a wealth of
graphs, such as in Figure 5.6, that convey information
about relationships, especially causes and effects. The eye
is naturally drawn to the visual form, and the brain sees
patterns. Anomalies and discontinuities are far more
apparent. Furthermore, this form can directly contribute to
test reports as a concise depiction wrapped by brief
English text for context. This approach greatly reduces the
effort of writing. Students do not generally consider
communication to be a significant part of computer
science, but in the real world, it is actually what
professionals often do the most.

For more complex interactions, especially for precisely
timed tests, manual annotation is worth the proverbial
thousand words. For example, Figure 5.7 depicts the
actions of a rudder actuator from project FBW from two
perspectives at the following key time points:

1. at initial position 0º neutral; command to 45º left
2. arrives; command to 45º right
3. arrives; command to 0º
4. arrives; command to 30º left
5. at 15º left preemptively command to 45º right
6. arrives

Figure 5.4: XML Representation

Figure 5.5: Excel Table Representations

Figure 5.6: Excel Graph Representations

Lower-level analysis using basic calculus computed
within Excel produces the velocity and acceleration
breakout in Figure 5.8.

As many components change position within a two or
three-dimensional world, plotting their tracks in freely
available Gnuplot over time produces a rich perspective
on their behavior. For example, the tracks in Figure 5.9
follow aircraft that were commanded to perform some
actions. Again, the eye is naturally drawn to any
disconnects. This high level does not provide enough
detail to determine specifically what may be wrong, but it
does help target any problem, which can then be
diagnosed by going back into the lower-level
visualizations above.

Although a major consideration in visualization is to
avoid investing costly, tangential effort into purpose-built
graphical tools, at some point this perspective often
becomes necessary because general-purpose tools have no
inherent relationship to the problem domain. In this case,
the author provides a three-dimensional visualizer written
in JOGL (Java OpenGL) that is used throughout many
courses, and indeed derives from similar needs in earlier
work in the defense industry [21]. Figure 5.10 depicts a
variety of cartoon-like, yet very informative, sequences of
actions and events.

The capability to integrate domain-specific visualization
is key. Metainformation, such as fields of view and
degrees of freedom in Figure 5.11, are invaluable for
making sense of otherwise hidden aspects of the world.

Finally, as many projects model components in the real
world with world coordinates (albeit simplified to flat
earth), their output in latitude, longitude, and altitude
directly exports to tools like Google Earth, which can
depict tracks overlaid onto actual terrain, as in Figure
5.12.

Figure 5.11: 3D Visualizer Augmentation

Figure 5.9: Gnuplot 2D Representations

Figure 5.12: Google Earth Visualization

Figure 5.10: 3D Visualizer

Figure 5.8: Excel Graph Representations

Figure 5.7: Annotated Events

5.4 Analysis

Analysis involves making sense of the results of
experiments. For subject-matter experts, simulation tools
provide insight into domain-specific problems. For
students within the context of an educational
environment, however, the goal of analysis is primarily to
establish that the software itself works appropriately.

To this end, students have to produce a professional-
looking test report based on a cross-section of roughly 40
experiments that demonstrate representative aspects of the
system. For consistency, since not every team’s own
solution was correct or functioned identically, they used
the author’s. Each experiment addressed eight
requirements, where 1–4 relate to planning, 5–6 to
execution, and 7–8 to presenting the results:

1. The rationale behind the test; i.e., what it was testing
and why it mattered.

2. A general English description of the initial conditions.

3. The commands for (2).

4. An English narrative of the expected results.

5. The actual results with at least one graph showing the
most representative view of the states.

6. A snippet of the actual results from the log file with a
supporting explanation, including statistics, metrics,
and graphs, as appropriate.

7. A discussion on how well the actual results agreed
with the expected results, or if they disagreed, a
hypothesis on why.

8. A suggestion for how to extend this test to address
related aspects of potential interest.

The experiments varied wildly from project to project.
The following is a subset from MTR:

• Fly an airplane on a constant course at a constant
altitude and speed.

• Fly an airplane in a 360-degree clockwise turn
approximated by an octagon in a climb where each leg
of the octagon is a separate climb. All legs should have
the same increase in altitude.

• Drop a bomb from a high-speed airplane at 8,000 feet
onto a ship.

• Drop a depth charge with an acoustic fuze near a
submarine, but miss.

• Fire a missile with a radar sensor and depth fuze from a
ship at an airplane, detonating near the airplane.

• Fire a missile with a radar sensor and time fuze from a
ship at an airplane, detonating near the airplane.

• Fire a torpedo with a sonar sensor and sonar fuze from
a submarine at a fast ship.

• Fire a missile with a radar sensor and radar fuze from
an airplane at a ship. Move the ship in such a way that
the radar signal reflectivity goes from maximum to
minimum and back as a function of aspect angle.

Snippets of the visualizations are invaluable for
supporting the argument that useful tests were conducted
correctly. For example, Figure 5.13 depicts dropping a
bomb from a low-speed airplane flying right at 5,000 feet
onto a ship. The bomb missed, but its (simplified) descent
profile was as expected.

Although these simulations are often cartoon-like in their
simplifications, they still reflect a relatively rich set of
behaviors to tease out. A small set of more complex
experiments always provides this interesting opportunity.

For example, Figure 5.14 depicts firing two torpedoes
from a submerged submarine at a ship that is broadside at
launch and tries to outrun them. As the torpedoes
converge on the ship, their active sonar sensors begin to
interfere with each other because they are on the same
frequency. The students needed to make an earnest
attempt at accounting for this observation. They are not
training to be subject-matter experts and thus are not held

Figure 5.13: Bomb Release, Side View

Figure 5.14: Torpedo Engagement, Top View

to that standard, but by this point in the course, they
should be able to articulate a reasonable hypothesis,
whether correct or not. In the DIKW hierarchy, this
aspects demonstrates knowledge and even hints of
wisdom.

6. Results

Each project was independent with a different group of
approximately 32 students. The papers cited for these
projects report on their particular results. However, the
shared framework for teaching this course generally relies
on a common set of measures, which generate a
substantial amount of quantitative and qualitative
feedback over 11 weeks:

• Anecdotal observation
• Eight individual assignments
• 10 anonymous weekly self-reflections
• 16 project status reports (both individual and team)
• Three team project deliverables
• Project evaluation
• Team evaluation
• Development reflection
• Course evaluation

In quantitative terms, on average 88% of the students
stated that the architecture permitted them to build
interesting and entertaining real-world systems that they
thought they would never have been able to do on their
own. Furthermore, 90% indicated that the test reports
directly contributed to a stronger understanding of what
the programmatic solution was actually doing, whereas
they otherwise would have had much less confidence in it.
Overall, the students rated the projects 4.6 out of 5
(excellent).

7. Future Work

Developing a new project for each of three quarters in an
academic year is taxing for the instructor. Although much
of this framework is reusable in principle, it is not a
simple and straightforward activity in practice. A
classroom aspect of future work will be to streamline this
process further. With an ever-growing set of complete
projects, hybrid projects that combine several, such as the
current aircraft accident reenactment simulator, are
becoming much more feasible.

A second aspect of future work relates to the breadth and
depth of domain coverage in these projects. Students
investigate a relatively small subset of the capabilities.
The author would not develop such large and complex
projects if this limited perspective were the only goal.
Rather, the dual-purpose intent is also to use them for
research. Although the underlying models tend to be gross

simplifications and thus do not adequately capture the
fidelity necessary to study the problem domain in intricate
detail, they do lend themselves nicely to other research
considerations. Sensitivity analysis, for example, is
important in determining appropriate or optimal
configurations of components. Monte Carlo methodology
is a powerful means of exercising the models in ways that
reflect real-world uncertainty without undue explicit
configuration. Finally, incorporation of machine learning
appears especially promising for countless aspects of the
problem and solution domains.

8. Conclusion

The eight projects showcased throughout this paper
demonstrate a rich breadth and depth of examples of
using modeling, simulation, visualization, and analysis in
support of teaching software systems engineering. The
underlying pedagogical foundation successfully helps
students to understand how to approach, carry out, and
verify the many confusing and error-prone steps of
analysis, design, implementation, testing, and evaluation
in a way that is educational, practical, and engaging.

References

[1] autsys.aalto.fi/en/research/mechatronics, last
accessed May 11, 2016.

[2] D. Tappan. “Experiencing Real-World Multidisci-
plinary Software Systems Engineering Through
Aircraft Carrier Simulation.” In Proc. of American
Association for Engineering Education Conference,
New Orleans, LA, June 26–29, 2016.

[3] M. Chemuturi. Mastering Software Quality Assur-
ance: Best Practices, Tools and Technique for Soft-
ware Developers. Page ix, J. Ross: Ft. Lauderdale,
FL, 2010.

[4] P. Johnson-Laird. Mental Models. Cambridge Univer-
sity Press: Cambridge, 1983.

[5] J. Van Gaasbeek and J. Martin. “Getting to Require-
ments: The W5H Challenge.” In Proc. of 11th Annual
Symposium of INCOSE, Melbourne, Australia, 2001.

[6] Adapted from thomas-robert.fr/en/loganalysis-open-
source-web-tool-for-geographic-business-
intelligence, last accessed May 11, 2016.

[7] J. Rowley. “The wisdom hierarchy: representations of
the DIKW hierarchy.” Journal of Information
Science, vol. 33, no. 2, 2007.

[8] B. Bloom. Taxonomy of Educational Objectives,
Handbook I: The Cognitive Domain. David McKay:
New York, 1956.

[9] P. Denning. “The Science in Computer Science.”
CACM, vol. 56, no. 5, May 2013.

[10] M. Waldrop. “Why we are teaching science wrong,
and how to make it right.” Nature, vol. 523, no.
7560, July 15, 2015.

[11] sciencebuddies.org, last accessed May 11, 2016.
[12] D. Tappan and M. Hempleman. “Toward Introspec-

tive Human Versus Machine Learning of Simulated
Airplane Flight Dynamics.” In Proc. of 25th Modern
Artificial Intelligence and Cognitive Science
Conference, Spokane, WA, Apr. 26, 2014.

[13] D. Tappan. “A Holistic Multidisciplinary Approach
to Teaching Software Engineering Through Air
Traffic Control.” Journal of Computing Sciences in
Colleges, vol. 30, no. 1, pp. 199–205, 2014.

[14] S. McConnell. Code Complete: A Practical Hand-
book of Software Construction, Microsoft,
Redmond, 2004.

[15] D. Tappan. “A Quasi-Network-Based Fly-by-Wire
Simulation Architecture for Teaching Software Engi-
neering.” In Proc. of 45th IEEE Frontiers in Educa-
tion Conference, El Paso, TX, Oct. 21–24, 2015.

[16] app.ntsb.gov/news/events/2010/clarence_center_ny/
animation.html, last accessed May 11, 2016.

[17] D. Tappan. “Multiagent Test Range: Fostering Disci-
plined Software Engineering Practices in Students
via Modeling, Simulation, Visualization, and
Analysis.” In Proc. of Alabama Modeling and
Simulation Council International Conference and
Exposition, Huntsville, AL, May 6–7, 2014.

[18] A. Hunt. Pragmatic Thinking and Learning:
Refactor Your Wetware. Pragmatic Bookshelf, 2008.

[19] A. Grosskopf, M. Weske, J. Edelman, M. Steinert,
and L. Leifer. “Design thinking implemented in
software engineering tools.” In Proc. of 8th Design
Thinking Research Symposium, Sydney, Australia,
2010.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-
Oriented Software. Indianapolis: Addison-Wesley,
1995.

[21] D. Tappan. “Pedagogy-Oriented Software Modeling
and Simulation of Component-Based Physical
Systems.” 21st Annual Conference on Software
Engineering and Knowledge Engineering, Boston,
MA, July 1–3, 2009.

Author Biography

DAN TAPPAN is an Associate Professor of Computer
Science at Eastern Washington University. He has been a
professor of computer science and engineering for 11
years, before which he spent a decade as a defense
contractor, mostly involved in the modeling and
simulation of weapon systems at White Sands Missile
Range and Aberdeen Proving Ground. His main research
areas are software and hardware systems engineering,
especially for aviation and military applications with
embedded systems and mechatronics; modeling,
simulation, visualization, and analysis; intelligent
systems/artificial intelligence (knowledge representation,
reasoning, machine learning); and computer science and
engineering education.

