
Abstract of Presentation at AlaSim 2014

Multiagent Test Range: Fostering Disciplined Software Engineering Practices
in Students via Modeling, Simulation, Visualization, and Analysis

Dan Tappan, Eastern Washington University, dtappan@ewu.edu

The testing strategy of typical undergraduate software engineering students is a shotgun 
approach of unfocused, nonrepeatable tests of questionable rigor and value. Testing is an ad hoc 
afterthought because they have no experience with developing a disciplined, rigorous test plan, a 
formal methodology to carry it out, and a persuasive means to demonstrate the results. This 
pedagogy-oriented system showcases the highly successful deployment of a richly extensible, 
student-friendly Java integrated modeling-and-test environment for discrete-event simulation of 
component-based agents within a virtual test range based on underlying models that are well 
defined, connected, executed, and evaluated in controlled experiments through scientific method.

Derived from the principal investigator’s role as lead systems engineer and software architect for 
accredited modeling and simulation projects at White Sands Missile Range, Aberdeen Proving 
Ground, Electronic Proving Ground, and elsewhere, this system provides an accessible, student-
friendly architecture for rigorously integrating continuous design, implementation, and testing of 
agent-based software with consideration toward verification, validation, and accreditation.

The model-view-controller architecture clearly separates its concerns: the model is what agents 
are and can do, the controller or simulation is the behavior of the model in operational scenarios 
of interest, and the view is real-time two- and three-dimensional visualization of the test range, 
as well as extensive logging of internal data for quantitative postanalysis. It capitalizes on 
familiar software design patterns. Specifically, the creational aspects address defining agents and 
their subcomponents; i.e., actors (ships, airplanes, and submarines), unguided and guided 
munitions (bombs, shells, depth charges, torpedoes, and missiles), and active and passive sensors 
and fuzes (radar, sonar, thermal, acoustic, depth, distance, and time), all with a variety of 
performance characteristics (maximum speed, acceleration, rate of turn, fields of view and 
regard, power, sensitivity, yield, blast radius, etc.). The structural aspects address hierarchically 
connecting them in an appropriate plug-and-play manner for the desired mission/experiment-
specific load-out. Finally, the behavioral aspects address directly controlling course, 
altitude/depth, and speed of the actors, as well as indirectly controlling the munitions to deploy 
whenever and however appropriate. Metacommands support defining and executing repeatable 
experiments and managing the breadth and depth of results.

Even this relatively small set of agents and properties leads to an intractable combinatorial 
explosion of test cases for both correctness of the model code and its performance within the test 
parameters of the battlespace. The mitigating approach closely aligns with concepts and practices 
of software quality assurance taught in parallel, especially critical thinking applied to 
compositional, functional, and integration tests that capture representative behaviors and 
combine in defensible ways to contribute to meaningful, persuasive test reports with annotated 
and narrated data and graphs that compare and contrast expected versus actual results. In 
addition, it provides practical grounding to many abstract concepts in the required discrete 
mathematics, probability, and statistics courses that students perceive to be mostly irrelevant to 
their major.


