
Paper Presented at AlaSim 2014

Multiagent Test Range: Fostering Disciplined Software Engineering Practices
in Students via Modeling, Simulation, Visualization, and Analysis

Dan Tappan
Department of Computer Science, Eastern Washington University, Cheney, WA, USA

dtappan@ewu.edu
Keywords: software engineering, experiment-based testing and evaluation, pedagogy

ABSTRACT: This pedagogy-oriented system complements modeling, simulation, visualization, and analysis with
software engineering and software quality assurance, as well as scientific method, to provide students a hands-on,
holistic experience of real-world software development and evaluation. It provides a highly extensible virtual test range
for designing, building, and evaluating a variety of military platforms — airplane, ships, and submarines — with rich
combinations of munitions, sensors, and fuzes.

1 Introduction

The testing strategy of typical undergraduate software
engineering students is a shotgun approach of unfocused,
nonrepeatable tests of questionable rigor and value.
Testing is an ad hoc afterthought because they have no
experience with developing a disciplined test plan, a
formal methodology to carry it out, and a persuasive
means to demonstrate the results. This pedagogy-oriented
system mitigates these problems through a richly
extensible, student-friendly Java integrated modeling-and-
test environment for discrete-event simulation of
component-based agents within a virtual test range. It
allows students to define, build, manipulate, and evaluate
simplified real-world platforms (airplanes, ships, and
submarines) with a wide variety of smart and dumb
munitions, tracking sensors, and triggering fuzes.

Computational modeling, simulation, visualization, and
analysis (MSVA) rely heavily on object-oriented
programming, design patterns, and software engineering,
but the converse is rarely the case. Software
engineering — at least at the undergraduate level — is
traditionally taught as practical top-down problem-
solving. For logistical reasons, the process is often linear
as mostly analysis, design, and especially implementation,
with some testing, but without much regard to the holistic
role the system is intended to play and how to establish
how well it does so. The advanced concepts of software
quality assurance are often relegated to the graduate level.
Many undergraduates thus have little exposure to the
critical end stages of verification, validation,
accreditation, and certification. Insight into them could
contribute to better understanding and more targeted
decisions in the earlier stages.

To this end, the primary goal of this system, as well as its
overarching pedagogical approach, is to integrate the
perspectives of both MSVA and software engineering in

such a way that students can learn to understand and
apply them to their own problems. It capitalizes on yet a
third perspective, which is required of students in their
studies but often considered irrelevant: the study and
application of science. Scientific method is the foundation
of modeling and simulation to determine the behavior of
virtual systems that correspond to counterparts in the real
world [1]. It should be equally useful for assessing
software quality and performance, if done strategically
[2]. Therefore, design and execution of controlled
experiments, sensitivity analysis, performance metrics,
and other formal techniques can be applied to software
development as a persuasive, defensible way to present
results and establish confidence in them.

2 Pedagogical Foundation

This work indirectly derives from the author’s decade of
experience as lead systems engineer and software
architect for accredited modeling and simulation projects
at the U.S. Army Materiel Systems Analysis Activity on
the Future Combat Systems program at Aberdeen Proving
Ground, Materiel Test Directorate and Systems Test and
Assessment Directorate at White Sands Missile Range,
Electronic Proving Ground at Fort Huachuca, and
elsewhere. These teams had predominantly young,
inexperienced members who found the guidance offered
by the precursors to this work to be very helpful.

The academic product here, based on almost two decades
of teaching computer science and engineering at the
university level, is targeted toward helping students
transition from the bottom-up “nuts and bolts” study of
computer science in lower-division coursework to the top-
down contextual problem-solving process of real-world,
practical software engineering at the upper-division and
graduate levels, as well as in professional work
environments.

2.1 Critical Thinking

Students often want to hit the keyboard running and start
coding a task upon first sight. Many think computer
science is coding, and software engineering is just coding
more. They generally resist with great effort the academic
notion of thinking before doing, or formal analysis and
design leading to implementation and evaluation.
Background research into the subject matter is often
regarded as “busy work,” when in fact this grounding is
critical to proper understanding and execution in software
engineering [3]. To this end, this system plays an ideal
role because students are expected to have no background
in the subject matter, or what they think they know is
likely wrong or misleading. Pushing them out of their
comfort zone forces them to embrace this formalized
approach instead of their own familiar, but limited, ad hoc
ones of dubious rigor and value. These skills will prepare
them to approach any new problem.

Problem-solving for any domain has been studied in
endless detail. The approach of multidisciplinary critical
systems thinking has long been effective in traditional
engineering, and has more recently become an emphasis
in software engineering [4,5]. This work considers a
multidimensional approach of forcing students to
decompose the pieces of a problem into what they are
(data), what they can do (control), and what they actually
do or have done to them (behavior) by critical analysis
with the W5H question words of who, what, when, where,
why, and how. This low-level analysis then combines to
form associative structures that connect the dots in a
DIKW network, as in Figure 1.1 [6]:

• D ata: raw values with no associativity or context
• I nformation: values in one context
• K nowledge: values in multiple contexts
• W isdom: creation of generalized principles by connect-

ing a network of contexts from different sources for
predictive, anticipatory, proactive understanding

Aspects of this approach overlap and complement the
classic Bloom’s Taxonomy of Educational Objectives,
which rank cognitive activities from low to high level:
remember, understand, apply, analyze, create, and
evaluate [7]. Building and testing a software system of
any complexity requires skillful manipulation of all these
levels. The education community debates the order of the
last two, but for the modeling-and-simulation community,
this one is the norm [1].

2.2 Software as Surrogate

The basis of using modeling and simulation for software
engineering is to build practical software components that
demonstrably correspond to their real-world counterparts.
There are two aspects: testing that the underlying code
works as specified, and evaluating how well it works
under various conditions of interest to learn from it. Both
are closely related in reality, but in the software
development process, they often radically diverge with
little warning.

The process of mapping from specifications — at least in
the form of coursework assignments — to programmatic
solutions is familiar to students even in beginning
courses. By and large they do a decent job, too. However,
the opposite direction is almost never a consideration,
even for experienced professionals: if someone
unaffiliated with the problem were asked to hypothesize
from its solution alone what the original problem space
looked like, the two would likely bear little resemblance.
In both directions, valuable details are lost or mangled,
and extraneous ones are picked up. In a simulation
environment where the program is a surrogate for the real
world under virtual study, any misalignment in mapping
may undermine the conclusions drawn from it [8]. It is
therefore critical to build and maintain strong
correspondences and be able to demonstrate them
convincingly. The argument here is that this premise also
holds true for software engineering in general.

To this end, software quality assurance should be a
consideration from the very start, not an afterthought as
testing at the end, as it is often practiced: design to build
and test simultaneously. This approach entails
determining what components can and cannot do, and
then building an architecture to enforce these constraints.
In fact, the mantra of the author’s teaching philosophy is:
does what it is supposed to do; does not do what it is not
supposed to do. The amount of code dedicated to
preventing, detecting, and handling errors often eclipses
what actually does the intended work [3].

2.3.1 Code Considerations

The low-level goal of testing that students’ code works as
specified is the realm of traditional object-oriented
programming and software engineering. This architecture
provides two complementary opportunities: analysis for
investigating how existing components function and
interact, and synthesis for adding new ones. The emphasis
in both cases is on clean, orthogonal solutions with well-
designed, inherently defensive structure. In other words,
with minimal effort, the architecture permits acceptable
actions and prohibits unacceptable ones. This goal is
critical in such a large, highly compositional, dynamic,
plug-and-play system like this one, with its 320 classes. If

Figure 1.1: DIKW Learning Associativity

Data Information Knowledge Wisdom

done well, students do not have to expend time coding
and testing for illegal combinations if they can show that
these cases cannot happen. Unfortunately, most students
work quite differently and love to hardcode uniquely for
every little perceived special case, which leads to code
that is bloated, brittle, and difficult to maintain. For
example, one student practically bragged that in his
development process, he “kept throwing more code at the
compiler until it shut up.” Section 4 discusses how the
pedagogical approach here helps instill better discipline.

2.3.2 Simulation Considerations

The high-level goal of evaluating and learning from how
well components work under various conditions is the
realm of traditional modeling and simulation. This
architecture explicitly supports scientific method as the
primary means of investigation. In particular, it expects
students to understand the nature of their problem space
well enough to state what the expected results of their
experiments should be before conducting them. It then
provides the opportunity afterwards to reflect on any
differences before proceeding to the next experiment. If
the results were wrong, then the next attempt should be in
a different direction; if they were correct, next should
come incremental refinement in the same general
direction.

Controlled experiments are the foundation. Students run a
baseline experiment and record the results. They then
intentionally perturb one — and only one — parameter and
rerun the experiment under the same conditions. Any
differences can then be directly attributed to this single
change, which helps elicit sound cause-and-effect
relationships. This strategy avoids the typical undisci-
plined student approach of indiscriminately changing a
whole bunch of things at once and then having no idea
what actually played a role, nor when, where, why, and
how.

3 Architecture

The software architecture combines traditional model-
view-controller modules that clearly separate the main
concerns of the system [9]. While they are still
interconnected, the dependencies are kept to a minimum
such that different versions of the modules may be
swapped in and out without undue burden. Such
flexibility allows the system to be extended into other
related domains, such as air traffic control, aircraft-carrier
operations, and aircraft fly-by-wire control systems,
which are recent adaptations investigated by students in
other offerings of the author’s software engineering
courses.

3.1 Model

The model defines what agents are in terms of their data
and control—what they are and are capable of doing,
respectively. In object-oriented programming, this
breakout maps directly to class member data and
methods.

3.1.1 Agents

Agents are any component of the simulation that may be
created, manipulated, and deleted dynamically. They
include the three types interacting within the
battlespace — actors, munitions, and sensors/fuzes — as
well as graphical views of it. Section 4 addresses the
acceptable combinations.

3.1.1.1 Actors

Actors populate the world. Their physical state is defined
by three-dimensional world coordinates (latitude,
longitude, and altitude or depth), course, and speed. They
are primary agents because the behavioral commands in
3.3.1.2 can directly control these properties. Actors also
contain an infinite supply of any appropriately defined
combination of munitions:

• Airplane: may carry bombs, depth charges, torpedoes,
and missiles.

• Ship: may carry main-gun shells, depth charges,
torpedoes, and missiles.

• Submarine: may carry only torpedoes.

Each actor also has performance characteristics for its
minimum and maximum speed, acceleration and
deceleration rates, rate of turn, crush depth, and so on.

3.1.1.2 Munitions

Munitions populate actors. Their physical state is also
defined by world coordinates, course, and speed, but they
are secondary agents because the behavioral commands
cannot directly control them.

The unguided munitions are dumb. After deployment,
their lifespan is dictated by ballistic trajectories that
cannot change.

• Shell: follows a parabolic arc based on the azimuth and
elevation specified in the firing command in 3.3.1.1
and terminates at sea level or upon hitting a ship or
surfaced submarine.

• Bomb: falls from the release altitude and also
terminates at sea level or upon hitting a ship or
surfaced submarine. The horizontal velocity of the
airplane is imparted on the trajectory.

• Depth charge: if dropped from an airplane, falls from
the release altitude with the imparted horizontal
velocity until reaching sea level, where it then behaves
as if it had been released from a ship. The depth charge
then sinks straight down at a slower rate until
detonating based on its fuze or reaching the sea floor. It
cannot detonate at sea level, even if dropped onto a
ship or surfaced submarine.

The guided munitions are smart fire-and-forget weapons.
Their trajectories depend on the performance of their
sensor and fuze and on the actions of the target.

• Missile: uses its sensor to track targets and its fuze to
detonate only after exceeding a specified travel
distance.

• Torpedo: uses its sensor to track targets and its fuze to
detonate only after exceeding a specified arming time.
If dropped from an airplane, it falls like a depth charge.

Each munition has performance characteristics for its
minimum and maximum speed, acceleration rate, rate of
turn, blast radius and yield, and so on.

3.1.1.3 Sensors and Fuzes

Sensors and fuzes populate munitions. They are
functionally identical, except in their role: the former
tracks a target, whereas the latter decides when to
detonate its host munition.

Passive sensors receive energy only. They have a
sensitivity property that allows them to determine a
distance or bearing to a target and whether the energy
exceeds a threshold.

• Acoustic: operates based on sound energy, which is a
function of the speed of a primary agent.

• Sonar: operates based on reflected sound energy from
an active sonar source provided separately.

• Thermal: operates based on thermal energy, which is a
function of the speed of a primary agent.

• Depth: operates based on depth below sea level.

• Distance: operates based on elapsed distance traveled.

• Time: operates based on elapsed time traveled.

Active sensors are passive sensors that also emit energy.
All emitters of the same type use the same notional
frequency, so receivers can detect reflections from
multiple emitters, for better or worse.

• Radar: operates by emitting a radio signal and
receiving its reflection.

• Sonar: operates like radar, but with a sound signal.

Radar and thermal sensors have a conical field of view
(FOV) that limits where they can see. The FOV may be
fixed along the forward-facing longitudinal axis of a
munition, or it may sweep horizontally over a field of
regard (FOR) at a set rate. The latter requires the
configuration of a movable mount.

For simplicity and consistency, power and sensitivity are
based on percentages, not on real-world units like
decibels. Attenuation in air and water is a function of
distance. Radar reflectivity is also based on the rough
characteristic dimension of the target: a target in profile
(broadside) produces a stronger signal than head on.

3.1.2 Datatypes

Anecdotal evidence shows that students have a huge
problem with abstracting, maintaining, and manipulating
data properly. Java primitives are appropriate in earlier
low-level courses, but at the project level, they lead to a
proliferation of problems. For example, units and
magnitudes are not applied consistently, error handling is
almost nonexistent, and code bloats from haphazard
attempts at reimplementing similar solutions in multiple
places.

To mitigate this situation, the architecture provides a rich
set of self-contained concrete datatypes for every kind of
relevant data; e.g., Airspeed, Altitude, Attenuation,
Azimuth, WorldCoordinate, Course, Depth, Distance,
FieldOfRegard, FieldOfView, Groundspeed, Heading,
Identifier, Latitude, Longitude, Percent, Pitch,
Power, Sensitivity, Time, Yaw, and many dozens more
not directly in play in this paper. Each maintains its own
error checking and helper methods for manipulating and
converting it appropriately. This approach lends itself to
convenient unit testing in isolation. It also reduces the
burden of documentation; e.g., avoiding having to state
everywhere that horizontal angles are in navigational
degrees because Azimuth always use this form.

Another incessant problem students have is with
indiscriminate coupling and undisciplined, unprotected
sharing of objects. Changing a mutable object in one
place may have countless unexpected consequences
throughout an entire system. To mitigate this problem,
datatypes employ a functional paradigm, which makes
them immutable. Any mutable action on them produces a
new object via copy-on-write semantics [10].

3.2 View

The view module of the architecture manages how the
user sees the output. While not considered agents in the
traditional simulation sense, view windows are actually
treated as such because they can be created, manipulated,

and deleted dynamically through six commands. They
play an integral role in testing and evaluation, so they are
part of the world. For simplicity, it is a flat-earth model.
The plug-and-play nature of the view allows any
visualizer to connect to the architecture, provided that it
follows the specified protocols.

3.2.1 Two-Dimensional Visualization

The three-dimensional world is presented as any number
and combination of two-dimensional views from different
top, front, and side perspectives, as in Figure 3.1. The
position, size, scale, and grid-line configuration of each is
independent. Agents are represented by various glyphs,
which include explicit state information like identifier,
speed, heading, and altitude, as well as metadata like track
and predicted impact point. The display can be zoomed,
dragged, resized, and locked onto an agent, among other
useful features for evaluation.

The user may also insert himself or herself into the world
as a nonparticipating agent any number of times as fixed
reference points for meta-analysis. This feature allows the
user to narrate the execution of a test plan from a specific
vantage; e.g., looking northeast from the southwest corner
of the world 10 kilometers from the ship, the missile
passed from right to left at low altitude.

3.2.2 Three-Dimensional Visualization

Three-dimensional visualization, both for dynamic
runtime analysis and static postanalysis, is also available
through a Java 3D plug-in. Figure 3.2 shows visualiza-
tions for a variety of views on a test world. It also
includes depictions of otherwise unseen aspects like fields
of view and regard. This visualizer has seen extensive use
in the author’s artificial intelligence courses, related peda-
gogical research, and industry work as a general-purpose

world viewer [11,12,13]. Gnuplot is also supported as an
export format, but for postanalysis only.

3.2.3 Logging

Visualization is informative for observing qualitative
behavior in real time at runtime, or playing it back later,
but more detailed quantitative postanalysis requires the
underlying data. The logging system records over two
dozen parameters for every event, which export directly
to Excel.

3.3 Controller

The controller module of the architecture manages how
the user defines and controls the model and simulation,
and as well as how the simulation itself executes. This
paper addresses only the first part.

3.3.1 Input

All user input (except view manipulation via the mouse)
is entirely from the command line. This text form is very
convenient for adding or modifying commands as
programming exercises. The plug-and-play nature, based
on the Command and Interpreter design patterns and
implemented as a context-free grammar with JavaCC,
also accommodates any input form that could produce the
communication protocols that the controller processes [9].
This approach decouples the input from the processing in
the same way that the output is decoupled from it, thereby
reducing the temptation to hack solutions.

Figure 3.2: Three-Dimensional Perspectives

Figure 3.1: Two-Dimensional Top Perspective

3.3.1.1 Creational and Structural Commands

Creational commands specify the agents in the model.
They partition the process into the separate stages of first
defining agent families, then declaring agent instances
from them. In the object-oriented sense, the
corresponding process is defining classes and then
instantiating objects, which students often conflate into
the same actions. By keeping these concerns separate, it
becomes clear that definitions address data and control
(potential for work), whereas declarations address
behavior (actual work). As definitions may contain, or be
contained by, other definitions, these commands are also
considered structural [9].

In order of dependency, sensor and fuze families are
defined first because they contain no agents. In the
structural sense, they are leaves in a compositional tree.
The typical form of these 14 commands is:

define sensor radar id with field of view fov
 power power sensitivity sensitivity

where the italicized fields translate directly into the
datatypes in 3.1.2.

Munition families are defined next because they may
contain sensor and fuze agents. The typical form of these
11 commands is:

define munition missile id1 with sensor id2

 fuze id3 arming distance distance

 Finally, the actors are defined with munitions:

define ship id1 with munition[s] idn+

The declaration process is limited to two actions that
either create an actor:

create actor id1 from id2 at coordinates with
 course course speed speed

where id1 is the actor instance and id2 is the actor family,
or create a munition:

load munition id1 from id2

At this point, the munition instance is listed on the
activity scoreboard as ready to fire. If it is a smart
munition, its entry continuously updates its sensor state to
determine whether a target is within its launch acceptance
region for tracking.

The second action deploys the munition accordingly:

deploy munition id
deploy munition id at azimuth azimuth
 elevation elevation

where the latter variant is for shells fired from main guns.

3.3.1.2 Behavioral Commands

Behavioral commands instruct actors to assume a new
state gradually according to their performance
characteristics (e.g., acceleration, rate of turn or climb):

set id course course
set id speed speed
set id altitude altitude
set id depth depth

3.3.1.3 Miscellaneous Commands

Miscellaneous commands allow specialized control over
the controller and model to facilitate repeatable
experiments. They pause, resume, wait, and change the
clock speed. They also load scripted commands of any
type from text files and define maneuvers that may be
executed on a parameterized agent; e.g.,

execute maneuver climb_left on my_fighter

where maneuver climb_left would have been defined
earlier as a sequence of behavioral commands to climb
and change course by 90 degrees counterclockwise.

Finally, it is possible to force any agent to assume
coordinates, course, or speed instantaneously to establish
test conditions outside the normal legal channels:

set id state at coordinates with course course
 speed speed

4 Preliminary Results

Ironically, this test-and-evaluation framework does not
lend itself to convenient test and evaluation with its
student subjects. It was not feasible to set up a controlled
experiment that compared a test group to a control group
because the entire class of 33 students had to do the same
project the same way. As a result, these preliminary
results are informal. They are based on anecdotal
observation, eight individual assignments, 10 anonymous
weekly assessments of course content, 16 project status
reports (individual and team), a final project evaluation,
and a course evaluation.

Although the project was already complete in advance,
the students had to go through the analysis and design
stages without access to it, as if they themselves were in
charge of its outcome. Background research got everyone
up to speed on the subject matter. It also provided
valuable insight into their generally limited critical-
thinking skills. For example, the entire class
misinterpreted which horizontal direction on a map
increasing longitude corresponds to in North America,
despite several obvious opportunities to crosscheck their
understanding. Many students expressed that it was a
shocking reality check demonstrating the importance of

connecting the dots and actually understanding what the
connections mean. Such cases are so common that a
related exercise with potential “gotchas” has become part
of every project.

Students next had to apply the multidimensional slicing
and dicing of the problem space from Section 2 to tease
out relationships among the agents in a bottom-up
manner. The first step entailed building the compatibility
matrix in Table 4.1 to show which munitions may use
which sensors and fuzes. A significant number of students
misunderstood these constraints and acknowledged that
they would have implemented an incorrect solution.

Sensor

Munition

A
coustic

D
epth

D
istance

R
adar

S
onar, passive

S
onar, active

T
herm

al

T
im

e

Bomb

Depth Charge

Missile

Shell

Torpedo

Table 4.1: Compatibility Matrix

Similarly, the next level up entailed the applicability
matrix in Table 4.2 to show which actors could deploy
which munitions against other actors under which
conditions (where A and B for submarines designate above
and below water, respectively, and the other letters
correspond to the munitions in Table 4.1).

Target

Source

A
irplane

S
hip

S
ubm

arine (A
)

S
ubm

arine (B
)

Airplane M B,M,T B,T D,T

Ship M,S,T S,T D,T

Submarine (A) M,T T T

Submarine (B) T T T

Table 4.2: Applicability Matrix

From this point, students transitioned to the solution
domain through traditional object-oriented analysis on
composition, inheritance, and communication
relationships expressed in UML. Their subsequent
programmatic solutions were plug-in components to the
architecture, which required them to learn how to
understand and use it from an earlier analysis assignment.

Their components replaced the existing ones in the
provided solution.

Section 2.2 discussed the goals of testing that students’
code works and then evaluating how well. The
architecture itself facilitated the former because it kept
their component solutions independent. Even this
relatively small set of agents and properties would have
led to a combinatorial explosion of testing requirements if
students had been permitted to hack their solutions
together with molecular-level coupling as usual. Most
recognized the value of this partitioning in their low-level
unit and functional (white and black-box) testing, mid-
level compositional testing, and high-level integration
testing [14].

Evaluating model performance was the final aspect of the
project. It was a predominantly superficial exercise in
design and execution because the purpose was to expose
students to the process. They used the author’s solution
instead of their own for consistency. The task was to
execute 18 required experiments, and then to select from
several sets of options, with a rationale for the choices.
Each of the 32 total experiments addressed a
representative set of metrics of interest, such as which
munition was most effective against which target type, or
what the maximum effective range of a missile was. One
set of options addressed sensitivity analysis to establish
reasonably optimal low-level performance characteristics
like sweep rate of the field of view over the field of regard
on a missile radar sensor.

The project supported no explicit countermeasures, but
certain tactical maneuvers were tested to try to outwit
smart munitions by causing them to exceed their
performance limitations. One test even had a torpedo
acquire and destroy its own firing submarine. Students
said they had a lot of fun.

4.1 Test Report

The final deliverable was a formal report describing the
test plan and its results. Each experiment addressed eight
points, where 1–4 related to planning, 5–6 to execution,
and 7–8 to presenting the results:

1. The rationale behind the test; i.e., what it was testing
and why it mattered.

2. A general English description of the initial conditions
of the test.

3. The commands for (2).
4. An English narrative of the expected results of

executing the test.
5. The actual results with at least one screenshot of the

most representative view.

6. A snippet of the actual results from the log file with a
supporting explanation, including statistics, metrics,
and charts.

7. A brief discussion on how the actual results agreed with
the expected results, or if they disagreed, a hypothesis
of why.

8. A suggestion for how to extend this test to address
related aspects of potential interest.

4.2 Examples

Point 5 was the most informative aspect of each
discussion. The flexibility of the world viewer allowed the
students to select the most representative perspectives to
support the rest of their discussion. For example, Figure
4.1 illustrates the side view of dropping a bomb from an
airplane flying to the right. Note the horizontal velocity
imparted on the bomb.

Figure 4.2 presents a top view of two torpedoes fired from
a submarine that then track a ship trying to outrun them.

5 Future Work

This virtual test range accommodates a wide variety of
plug-and-play components. At the low level, there are
endless options for extending it to other actor platforms
and weapon systems with different technologies. At the
high level, more advanced strategic and tactical scenarios
like acquisition, lethality, survivability, and engagement
could be investigated.

Although designed for a stochastic methodology to
determine ranges of performance experimentally, the
current system does not take advantage of it. This
technique could support rich sensitivity analysis to tease
out countless aspects of component behaviors. It could
also allow students to apply their knowledge of discrete
mathematics, statistics, and probability, which all are
required to study, but most mistakenly consider to be
irrelevant to their degree. Practical application of these
otherwise abstract concepts could enlighten their views on
quantitatively demonstrating performance and showing
confidence in the results.

6 Conclusion

Modeling, simulation, visualization, and analysis are
inherently at the heart of most processes in software
engineering and software quality assurance, yet these
subjects are not traditionally taught together from a
unified perspective. Not only did this work consolidate so
many of their essential elements into a digestible package
delivered over a fast-paced 10-week academic quarter, but
the students overwhelmingly loved it. The average course
evaluation was 4.7 out of 5 (outstanding). Furthermore,
the many laudatory comments have since contributed to
refining both this system and how the course is delivered.

References

[1] Sokoloski, J. and Banks, C.: Principles of Modeling
and Simulation, Wiley, Hoboken, 2009.

[2] Denning, P.: “The Science in Computer Science”
Communications of the ACM, Vol. 56, No. 5, May
2013.

[3] McConnell, S.: Code Complete: A Practical
Handbook of Software Construction, Microsoft,
Redmond, 2004.

[4] Sommerville, I.: Software Engineering, Addison-
Wesley, Boston, 2011.

[5] Irish, R.: “Engineering Thinking: Using Benjamin
Bloom and William Perry to Design Assignments”
Language and Learning Across the Disciplines
3(2):83–102, 1999.

[6] Rowley, J.: “The wisdom hierarchy: representations
of the DIKW hierarchy” Journal of Information
Science 33(2):163–180, 2007.

Figure 4.1: Bomb Release

Figure 4.2: Torpedo Tracking

[7] Bloom, B.: Taxonomy of Educational Objectives,
Handbook I: The Cognitive Domain. David McKay,
New York, 1956.

[8] Zeigler, B., Praehofer, H., and Kim, T. G.: Theory of
Modeling and Simulation, Academic Press, San
Diego, 2000.

[9] Gamma, E., Helm, R., Johnson, R., and Vlissides, J.:
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Upper Saddle
River, 1994.

[10] Okasaki, C.: Purely Functional Data Structures,
Cambridge University Press, New York, 1999.

[11] Tappan, D.: “A Pedagogical Framework for Modeling
and Simulating Intelligent Agents and Control
Systems” Technical Report WS-08-02, AAAI Press,
2008.

[12] Tappan, D.: “A Pedagogy-Oriented Modeling-and-
Simulation Environment for AI Scenarios” in Proc. of
WorldComp International Conference on Artificial
Intelligence, Las Vegas, NV, 2009.

[13] Tappan, D.: “Student-Friendly Java-Based Multiagent
Event Handling” in Proc. of Association for the
Advancement of Artificial Intelligence, Bellevue,
WA, 2013.

[14] Pressman, R.: Software Engineering: A Practitioner’s
Approach, McGraw-Hill, 2009.

Author Biography

DAN TAPPAN is an Assistant Professor of Computer
Science at Eastern Washington University. He has been a
professor for nine years, before which he spent a decade
as a defense contractor, mostly involved in the modeling
and simulation of weapon systems at White Sands Missile
Range and Aberdeen Proving Ground. His other main
research areas are artificial intelligence, especially natural
language processing, as well as intelligent systems,
aviation, and STEM education.

