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ABSTRACT:  This  pedagogy-oriented  system complements  modeling,  simulation,  visualization,  and  analysis  with  
software engineering and software quality assurance, as well as scientific method, to provide students a hands-on,  
holistic experience of real-world software development and evaluation. It provides a highly extensible virtual test range  
for designing, building, and evaluating a variety of military platforms  — airplane, ships, and submarines — with rich  
combinations of munitions, sensors, and fuzes.

1  Introduction

The  testing  strategy  of  typical  undergraduate  software 
engineering students is a shotgun approach of unfocused, 
nonrepeatable  tests  of  questionable  rigor  and  value. 
Testing is an ad hoc afterthought because they have no 
experience  with  developing  a  disciplined  test  plan,  a 
formal  methodology  to  carry  it  out,  and  a  persuasive 
means to demonstrate the results. This pedagogy-oriented 
system  mitigates  these  problems  through  a  richly 
extensible, student-friendly Java integrated modeling-and-
test  environment  for  discrete-event  simulation  of 
component-based  agents  within  a  virtual  test  range.  It 
allows students to define, build, manipulate, and evaluate 
simplified  real-world  platforms  (airplanes,  ships,  and 
submarines)  with  a  wide  variety  of  smart  and  dumb 
munitions, tracking sensors, and triggering fuzes.

Computational  modeling,  simulation,  visualization,  and 
analysis  (MSVA)  rely  heavily  on  object-oriented 
programming, design patterns, and software engineering, 
but  the  converse  is  rarely  the  case.  Software 
engineering — at  least  at  the  undergraduate  level — is 
traditionally  taught  as  practical  top-down  problem-
solving. For logistical reasons, the process is often linear 
as mostly analysis, design, and especially implementation, 
with some testing, but without much regard to the holistic 
role the system is intended to play and how to establish 
how well it does so. The advanced concepts of software 
quality assurance are often relegated to the graduate level. 
Many  undergraduates  thus  have  little  exposure  to  the 
critical  end  stages  of  verification,  validation, 
accreditation,  and  certification.  Insight  into  them could 
contribute  to  better  understanding  and  more  targeted 
decisions in the earlier stages.

To this end, the primary goal of this system, as well as its 
overarching  pedagogical  approach,  is  to  integrate  the 
perspectives of both MSVA and software engineering in 

such  a  way  that  students  can  learn  to  understand  and 
apply them to their own problems. It capitalizes on yet a 
third perspective,  which is  required of  students  in  their 
studies  but  often  considered  irrelevant:  the  study  and 
application of science. Scientific method is the foundation 
of modeling and simulation to determine the behavior of 
virtual systems that correspond to counterparts in the real 
world  [1].  It  should  be  equally  useful  for  assessing 
software  quality  and  performance,  if  done  strategically 
[2].  Therefore,  design  and  execution  of  controlled 
experiments,  sensitivity  analysis,  performance  metrics, 
and other  formal techniques can be applied to software 
development as a persuasive,  defensible way to present 
results and establish confidence in them.

2  Pedagogical Foundation

This work indirectly derives from the author’s decade of 
experience  as  lead  systems  engineer  and  software 
architect for accredited modeling and simulation projects 
at the U.S. Army Materiel Systems Analysis Activity on 
the Future Combat Systems program at Aberdeen Proving 
Ground, Materiel Test Directorate and Systems Test and 
Assessment  Directorate  at  White  Sands  Missile  Range, 
Electronic  Proving  Ground  at  Fort  Huachuca,  and 
elsewhere.  These  teams  had  predominantly  young, 
inexperienced members who found the guidance offered 
by the precursors to this work to be very helpful.

The academic product here, based on almost two decades 
of  teaching  computer  science  and  engineering  at  the 
university  level,  is  targeted  toward  helping  students 
transition from the bottom-up “nuts and bolts” study of 
computer science in lower-division coursework to the top-
down contextual  problem-solving process  of real-world, 
practical  software engineering at  the upper-division and 
graduate  levels,  as  well  as  in  professional  work 
environments.



2.1  Critical Thinking

Students often want to hit the keyboard running and start 
coding  a  task  upon  first  sight.  Many  think  computer 
science is coding, and software engineering is just coding 
more. They generally resist with great effort the academic 
notion of thinking before doing, or formal analysis and 
design  leading  to  implementation  and  evaluation. 
Background  research  into  the  subject  matter  is  often 
regarded as “busy work,” when in fact this grounding is 
critical to proper understanding and execution in software 
engineering [3].  To this end,  this system plays an ideal 
role because students are expected to have no background 
in the  subject  matter,  or  what  they think  they know is 
likely  wrong  or  misleading.  Pushing  them out  of  their 
comfort  zone  forces  them  to  embrace  this  formalized 
approach instead of their own familiar, but limited, ad hoc 
ones of dubious rigor and value. These skills will prepare 
them to approach any new problem.

Problem-solving  for  any  domain  has  been  studied  in 
endless detail. The approach of multidisciplinary critical 
systems  thinking  has  long  been  effective  in  traditional 
engineering, and has more recently become an emphasis 
in  software  engineering  [4,5].  This  work  considers  a 
multidimensional  approach  of  forcing  students  to 
decompose  the pieces  of  a  problem into what  they are 
(data), what they can do (control), and what they actually 
do or have done to them (behavior) by critical  analysis 
with the W5H question words of who, what, when, where, 
why, and  how. This low-level analysis then combines to 
form  associative  structures  that  connect  the  dots  in  a 
DIKW network, as in Figure 1.1 [6]:

• D ata: raw values with no associativity or context
• I nformation: values in one context
• K nowledge: values in multiple contexts
• W isdom: creation of generalized principles by connect-

ing  a  network  of  contexts  from different  sources  for 
predictive, anticipatory, proactive understanding

Aspects  of  this  approach  overlap  and  complement  the 
classic  Bloom’s  Taxonomy  of  Educational  Objectives, 
which rank  cognitive activities  from low to high  level: 
remember,  understand,  apply,  analyze,  create,  and 
evaluate [7].  Building and testing a software system of 
any complexity requires skillful manipulation of all these 
levels. The education community debates the order of the 
last two, but for the modeling-and-simulation community, 
this one is the norm [1].

2.2  Software as Surrogate

The basis of using modeling and simulation for software 
engineering is to build practical software components that 
demonstrably correspond to their real-world counterparts. 
There are two aspects:  testing that  the underlying code 
works  as  specified,  and  evaluating  how  well  it  works 
under various conditions of interest to learn from it. Both 
are  closely  related  in  reality,  but  in  the  software 
development  process,  they  often  radically  diverge  with 
little warning.

The process of mapping from specifications  — at least in 
the form of coursework assignments — to programmatic 
solutions  is  familiar  to  students  even  in  beginning 
courses. By and large they do a decent job, too. However, 
the  opposite  direction  is  almost  never  a  consideration, 
even  for  experienced  professionals:  if  someone 
unaffiliated with the problem were asked to hypothesize 
from its solution alone what the original problem space 
looked like, the two would likely bear little resemblance. 
In  both directions,  valuable details are lost or mangled, 
and  extraneous  ones  are  picked  up.  In  a  simulation 
environment where the program is a surrogate for the real 
world under virtual study, any misalignment in mapping 
may undermine the conclusions drawn from it [8]. It  is 
therefore  critical  to  build  and  maintain  strong 
correspondences  and  be  able  to  demonstrate  them 
convincingly. The argument here is that this premise also 
holds true for software engineering in general.

To  this  end,  software  quality  assurance  should  be  a 
consideration from the very start, not an afterthought as 
testing at the end, as it is often practiced: design to build 
and  test  simultaneously.  This  approach  entails 
determining  what  components  can  and  cannot  do,  and 
then building an architecture to enforce these constraints. 
In fact, the mantra of the author’s teaching philosophy is: 
does what it is supposed to do; does not do what it is not  
supposed  to  do.  The  amount  of  code  dedicated  to 
preventing, detecting, and handling errors often eclipses 
what actually does the intended work [3].

2.3.1  Code Considerations

The low-level goal of testing that students’ code works as 
specified  is  the  realm  of  traditional  object-oriented 
programming and software engineering. This architecture 
provides  two complementary opportunities:  analysis  for 
investigating  how  existing  components  function  and 
interact, and synthesis for adding new ones. The emphasis 
in both cases is on clean, orthogonal solutions with well-
designed, inherently defensive structure. In other words, 
with minimal  effort,  the architecture permits acceptable 
actions  and  prohibits  unacceptable  ones.  This  goal  is 
critical  in  such a  large,  highly compositional,  dynamic, 
plug-and-play system like this one, with its 320 classes. If 
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done well,  students do not have to expend time coding 
and testing for illegal combinations if they can show that 
these cases cannot happen. Unfortunately,  most students 
work quite differently and love to hardcode uniquely for 
every little  perceived special  case,  which leads to code 
that  is  bloated,  brittle,  and  difficult  to  maintain.  For 
example,  one  student  practically  bragged  that  in  his 
development process, he “kept throwing more code at the 
compiler until  it  shut up.” Section 4 discusses  how the 
pedagogical approach here helps instill better discipline.

2.3.2  Simulation Considerations

The high-level goal of evaluating and learning from how 
well  components  work  under  various  conditions  is  the 
realm  of  traditional  modeling  and  simulation.  This 
architecture  explicitly  supports  scientific  method as  the 
primary means of investigation. In  particular,  it  expects 
students to understand the nature of their problem space 
well  enough to state  what  the expected results  of  their 
experiments  should  be  before  conducting them.  It  then 
provides  the  opportunity  afterwards  to  reflect  on  any 
differences before proceeding to the next experiment. If 
the results were wrong, then the next attempt should be in 
a  different  direction;  if  they  were  correct,  next  should 
come  incremental  refinement  in  the  same  general 
direction.

Controlled experiments are the foundation. Students run a 
baseline  experiment  and  record  the  results.  They  then 
intentionally perturb one — and only one — parameter and 
rerun  the  experiment  under  the  same  conditions.  Any 
differences can then be directly attributed to this single 
change,  which  helps  elicit  sound  cause-and-effect 
relationships.  This  strategy  avoids  the  typical  undisci-
plined  student  approach  of  indiscriminately  changing  a 
whole bunch of things at once and then having no idea 
what actually played a role, nor when, where, why, and 
how. 

3  Architecture

The  software  architecture  combines  traditional  model-
view-controller  modules  that  clearly  separate  the  main 
concerns  of  the  system  [9].  While  they  are  still 
interconnected, the dependencies are kept to a minimum 
such  that  different  versions  of  the  modules  may  be 
swapped  in  and  out  without  undue  burden.  Such 
flexibility  allows  the  system to  be  extended  into  other 
related domains, such as air traffic control, aircraft-carrier 
operations,  and  aircraft  fly-by-wire  control  systems, 
which are recent adaptations investigated by students in 
other  offerings  of  the  author’s  software  engineering 
courses.

3.1  Model

The model defines what agents are in terms of their data 
and  control—what  they  are  and  are  capable  of  doing, 
respectively.  In  object-oriented  programming,  this 
breakout  maps  directly  to  class  member  data  and 
methods.

3.1.1  Agents

Agents are any component of the simulation that may be 
created,  manipulated,  and  deleted  dynamically.  They 
include  the  three  types  interacting  within  the 
battlespace — actors,  munitions,  and  sensors/fuzes — as 
well  as  graphical  views  of  it.  Section  4  addresses  the 
acceptable combinations.

3.1.1.1  Actors

Actors populate the world. Their physical state is defined 
by  three-dimensional  world  coordinates  (latitude, 
longitude, and altitude or depth), course, and speed. They 
are primary agents because the behavioral commands in 
3.3.1.2 can directly control these properties. Actors also 
contain  an  infinite  supply of  any appropriately defined 
combination of munitions:

• Airplane:  may carry bombs, depth charges,  torpedoes, 
and missiles.

• Ship:  may  carry  main-gun  shells,  depth  charges, 
torpedoes, and missiles.

• Submarine: may carry only torpedoes.

Each  actor  also  has  performance  characteristics  for  its 
minimum  and  maximum  speed,  acceleration  and 
deceleration rates, rate of turn, crush depth, and so on.

3.1.1.2  Munitions

Munitions  populate  actors.  Their  physical  state  is  also 
defined by world coordinates, course, and speed, but they 
are secondary agents because the behavioral  commands 
cannot directly control them.

The  unguided  munitions  are  dumb.  After  deployment, 
their  lifespan  is  dictated  by  ballistic  trajectories  that 
cannot change.

• Shell: follows a parabolic arc based on the azimuth and 
elevation  specified  in  the  firing  command  in  3.3.1.1 
and terminates at  sea level  or  upon hitting a ship or 
surfaced submarine.

• Bomb:  falls  from  the  release  altitude  and  also 
terminates  at  sea  level  or  upon  hitting  a  ship  or 
surfaced  submarine.  The  horizontal  velocity  of  the 
airplane is imparted on the trajectory.



• Depth charge: if dropped from an airplane, falls from 
the  release  altitude  with  the  imparted  horizontal 
velocity until reaching sea level, where it then behaves 
as if it had been released from a ship. The depth charge 
then  sinks  straight  down  at  a  slower  rate  until 
detonating based on its fuze or reaching the sea floor. It 
cannot  detonate at  sea level,  even if  dropped onto a 
ship or surfaced submarine.

The guided munitions are smart fire-and-forget weapons. 
Their  trajectories  depend  on  the  performance  of  their 
sensor and fuze and on the actions of the target.

• Missile: uses its sensor to track targets and its fuze to 
detonate  only  after  exceeding  a  specified  travel 
distance.

• Torpedo: uses its sensor to track targets and its fuze to 
detonate only after exceeding a specified arming time. 
If dropped from an airplane, it falls like a depth charge.

Each  munition  has  performance  characteristics  for  its 
minimum and maximum speed, acceleration rate, rate of 
turn, blast radius and yield, and so on.

3.1.1.3  Sensors and Fuzes

Sensors  and  fuzes  populate  munitions.  They  are 
functionally  identical,  except  in  their  role:  the  former 
tracks  a  target,  whereas  the  latter  decides  when  to 
detonate its host munition. 

Passive  sensors  receive  energy  only.  They  have  a 
sensitivity  property  that  allows  them  to  determine  a 
distance  or  bearing to  a  target  and  whether  the  energy 
exceeds a threshold.

• Acoustic: operates based on sound energy, which is a 
function of the speed of a primary agent.

• Sonar: operates based on reflected sound energy from 
an active sonar source provided separately. 

• Thermal: operates based on thermal energy, which is a 
function of the speed of a primary agent.

• Depth: operates based on depth below sea level.

• Distance: operates based on elapsed distance traveled.

• Time: operates based on elapsed time traveled.

Active sensors are passive sensors that also emit energy. 
All  emitters  of  the  same  type  use  the  same  notional 
frequency,  so  receivers  can  detect  reflections  from 
multiple emitters, for better or worse.

• Radar:  operates  by  emitting  a  radio  signal  and 
receiving its reflection.

• Sonar: operates like radar, but with a sound signal.

Radar and thermal sensors have a conical field of view 
(FOV) that limits where they can see. The FOV may be 
fixed  along  the  forward-facing  longitudinal  axis  of  a 
munition,  or  it  may sweep horizontally over  a  field  of 
regard  (FOR)  at  a  set  rate.  The  latter  requires  the 
configuration of a movable mount.

For simplicity and consistency, power and sensitivity are 
based  on  percentages,  not  on  real-world  units  like 
decibels.  Attenuation  in  air  and  water  is  a  function  of 
distance.  Radar  reflectivity  is  also  based  on  the  rough 
characteristic dimension of the target: a target in profile 
(broadside) produces a stronger signal than head on.

3.1.2  Datatypes

Anecdotal  evidence  shows  that  students  have  a  huge 
problem with abstracting, maintaining, and manipulating 
data  properly.  Java  primitives  are  appropriate  in  earlier 
low-level courses, but at the project level, they lead to a 
proliferation  of  problems.  For  example,  units  and 
magnitudes are not applied consistently, error handling is 
almost  nonexistent,  and  code  bloats  from  haphazard 
attempts at reimplementing similar solutions in multiple 
places.

To mitigate this situation, the architecture provides a rich 
set of self-contained concrete datatypes for every kind of 
relevant  data;  e.g.,  Airspeed,  Altitude,  Attenuation, 
Azimuth,  WorldCoordinate,  Course,  Depth,  Distance, 
FieldOfRegard,  FieldOfView,  Groundspeed,  Heading, 
Identifier,  Latitude,  Longitude,  Percent,  Pitch, 
Power,  Sensitivity,  Time,  Yaw, and many dozens more 
not directly in play in this paper. Each maintains its own 
error checking and helper methods for manipulating and 
converting it appropriately. This approach lends itself to 
convenient  unit  testing  in  isolation.  It  also  reduces  the 
burden of documentation; e.g.,  avoiding having to state 
everywhere  that  horizontal  angles  are  in  navigational 
degrees because Azimuth always use this form.

Another  incessant  problem  students  have  is  with 
indiscriminate  coupling  and  undisciplined,  unprotected 
sharing  of  objects.  Changing  a  mutable  object  in  one 
place  may  have  countless  unexpected  consequences 
throughout  an  entire  system.  To  mitigate  this  problem, 
datatypes  employ a  functional  paradigm,  which  makes 
them immutable. Any mutable action on them produces a 
new object via copy-on-write semantics [10].

3.2  View

The view module  of  the  architecture  manages  how the 
user sees the output. While not considered agents in the 
traditional  simulation sense,  view windows are actually 
treated as such because they can be created, manipulated, 



and  deleted  dynamically  through  six  commands.  They 
play an integral role in testing and evaluation, so they are 
part of the world. For simplicity, it is a flat-earth model. 
The  plug-and-play  nature  of  the  view  allows  any 
visualizer to connect to the architecture, provided that it 
follows the specified protocols.

3.2.1  Two-Dimensional Visualization

The three-dimensional world is presented as any number 
and combination of two-dimensional views from different 
top,  front,  and  side  perspectives,  as  in  Figure  3.1.  The 
position, size, scale, and grid-line configuration of each is 
independent.  Agents  are  represented  by various  glyphs, 
which  include  explicit  state  information  like  identifier, 
speed, heading, and altitude, as well as metadata like track 
and predicted impact point. The display can be zoomed, 
dragged, resized, and locked onto an agent, among other 
useful features for evaluation.

The user may also insert himself or herself into the world 
as a nonparticipating agent any number of times as fixed 
reference points for meta-analysis. This feature allows the 
user to narrate the execution of a test plan from a specific 
vantage; e.g., looking northeast from the southwest corner 
of  the  world  10  kilometers  from  the  ship,  the  missile 
passed from right to left at low altitude.

3.2.2  Three-Dimensional Visualization

Three-dimensional  visualization,  both  for  dynamic 
runtime analysis and static postanalysis, is also available 
through a Java 3D plug-in.  Figure 3.2 shows visualiza-
tions  for  a  variety  of  views  on  a  test  world.  It  also 
includes depictions of otherwise unseen aspects like fields 
of view and regard. This visualizer has seen extensive use 
in the author’s artificial intelligence courses, related peda-
gogical research, and industry work as a general-purpose 

world viewer [11,12,13]. Gnuplot is also supported as an 
export format, but for postanalysis only.

3.2.3  Logging

Visualization  is  informative  for  observing  qualitative 
behavior in real time at runtime, or playing it back later, 
but  more  detailed  quantitative  postanalysis  requires  the 
underlying  data.  The  logging  system records  over  two 
dozen parameters for every event, which export directly 
to Excel.

3.3  Controller

The controller module of the architecture manages how 
the user defines and controls the model and simulation, 
and as well  as  how the simulation itself  executes.  This 
paper addresses only the first part.

3.3.1  Input

All user input (except view manipulation via the mouse) 
is entirely from the command line. This text form is very 
convenient  for  adding  or  modifying  commands  as 
programming exercises. The plug-and-play nature, based 
on  the  Command  and  Interpreter  design  patterns  and 
implemented  as  a  context-free  grammar  with  JavaCC, 
also accommodates any input form that could produce the 
communication protocols that the controller processes [9]. 
This approach decouples the input from the processing in 
the same way that the output is decoupled from it, thereby 
reducing the temptation to hack solutions.

Figure 3.2: Three-Dimensional Perspectives

Figure 3.1: Two-Dimensional Top Perspective



3.3.1.1  Creational and Structural Commands

Creational  commands  specify  the  agents  in  the  model. 
They partition the process into the separate stages of first 
defining  agent  families,  then  declaring  agent  instances 
from  them.  In  the  object-oriented  sense,  the 
corresponding  process  is  defining  classes  and  then 
instantiating objects,  which  students  often  conflate  into 
the same actions. By keeping these concerns separate, it 
becomes  clear  that  definitions address  data  and  control 
(potential  for  work),  whereas  declarations  address 
behavior (actual work). As definitions may contain, or be 
contained by, other definitions, these commands are also 
considered structural [9].

In  order  of  dependency,  sensor  and  fuze  families  are 
defined  first  because  they  contain  no  agents.  In  the 
structural sense, they are leaves in a compositional tree. 
The typical form of these 14 commands is:

define sensor radar id with field of view fov
 power power sensitivity sensitivity

where  the  italicized  fields  translate  directly  into  the 
datatypes in 3.1.2. 

Munition  families  are  defined  next  because  they  may 
contain sensor and fuze agents. The typical form of these 
11 commands is:

define munition missile id1 with sensor id2

 fuze id3 arming distance distance

 Finally, the actors are defined with munitions:

define ship id1 with munition[s] idn+

The  declaration  process  is  limited  to  two  actions  that 
either create an actor:

create actor id1 from id2 at coordinates with
 course course speed speed

where id1 is the actor instance and id2 is the actor family, 
or create a munition:

load munition id1 from id2

At  this  point,  the  munition  instance  is  listed  on  the 
activity  scoreboard  as  ready  to  fire.  If  it  is  a  smart 
munition, its entry continuously updates its sensor state to 
determine whether a target is within its launch acceptance 
region for tracking.

The second action deploys the munition accordingly:

deploy munition id
deploy munition id at azimuth azimuth 
 elevation elevation

where the latter variant is for shells fired from main guns.

3.3.1.2  Behavioral Commands

Behavioral  commands  instruct  actors  to  assume a  new 
state  gradually  according  to  their  performance 
characteristics (e.g., acceleration, rate of turn or climb):

set id course course
set id speed speed
set id altitude altitude
set id depth depth

3.3.1.3  Miscellaneous Commands

Miscellaneous commands allow specialized control over 
the  controller  and  model  to  facilitate  repeatable 
experiments.  They pause,  resume,  wait,  and change the 
clock speed.  They also load scripted commands of any 
type  from text  files  and define  maneuvers  that  may be 
executed on a parameterized agent; e.g., 

execute maneuver climb_left on my_fighter

where  maneuver  climb_left would  have  been  defined 
earlier as  a sequence of behavioral  commands to climb 
and change course by 90 degrees counterclockwise.

Finally,  it  is  possible  to  force  any  agent  to  assume 
coordinates, course, or speed instantaneously to establish 
test conditions outside the normal legal channels:

set id state at coordinates with course course 
 speed speed

4  Preliminary Results

Ironically,  this  test-and-evaluation  framework  does  not 
lend  itself  to  convenient  test  and  evaluation  with  its 
student subjects. It was not feasible to set up a controlled 
experiment that compared a test group to a control group 
because the entire class of 33 students had to do the same 
project  the  same  way.  As  a  result,  these  preliminary 
results  are  informal.  They  are  based  on  anecdotal 
observation, eight individual assignments, 10 anonymous 
weekly assessments of course content, 16 project  status 
reports (individual and team), a final project evaluation, 
and a course evaluation.

Although the  project  was already complete in  advance, 
the students  had to  go  through the analysis  and  design 
stages without access to it, as if they themselves were in 
charge of its outcome. Background research got everyone 
up  to  speed  on  the  subject  matter.  It  also  provided 
valuable  insight  into  their  generally  limited  critical-
thinking  skills.  For  example,  the  entire  class 
misinterpreted  which  horizontal  direction  on  a  map 
increasing  longitude  corresponds  to  in  North  America, 
despite several obvious opportunities to crosscheck their 
understanding.  Many  students  expressed  that  it  was  a 
shocking reality check demonstrating the importance of 



connecting the dots and actually understanding what the 
connections  mean.  Such  cases  are  so  common  that  a 
related exercise with potential “gotchas” has become part 
of every project.

Students next had to apply the multidimensional slicing 
and dicing of the problem space from Section 2 to tease 
out  relationships  among  the  agents  in  a  bottom-up 
manner. The first step entailed building the compatibility 
matrix  in  Table  4.1 to  show which  munitions  may use 
which sensors and fuzes. A significant number of students 
misunderstood  these  constraints  and  acknowledged  that 
they would have implemented an incorrect solution.

Sensor

Munition

A
coustic

D
epth

D
istance

R
adar

S
onar, passive

S
onar, active

T
herm

al

T
im

e

Bomb

Depth Charge      

Missile    

Shell 

Torpedo       

Table 4.1: Compatibility Matrix

Similarly,  the  next  level  up  entailed  the  applicability 
matrix  in Table 4.2 to show which actors  could deploy 
which  munitions  against  other  actors  under  which 
conditions (where A and B for submarines designate above 
and  below  water,  respectively,  and  the  other  letters 
correspond to the munitions in Table 4.1).

Target

Source

A
irplane

S
hip

S
ubm

arine (A
)

S
ubm

arine (B
)

Airplane M B,M,T B,T D,T

Ship M,S,T S,T D,T

Submarine (A) M,T T T

Submarine (B) T T T

Table 4.2: Applicability Matrix

From  this  point,  students  transitioned  to  the  solution 
domain  through  traditional  object-oriented  analysis  on 
composition,  inheritance,  and  communication 
relationships  expressed  in  UML.  Their  subsequent 
programmatic solutions were plug-in components to the 
architecture,  which  required  them  to  learn  how  to 
understand and use it from an earlier analysis assignment. 

Their  components  replaced  the  existing  ones  in  the 
provided solution.

Section 2.2 discussed the goals of testing that  students’ 
code  works  and  then  evaluating  how  well.  The 
architecture  itself  facilitated  the  former  because  it  kept 
their  component  solutions  independent.  Even  this 
relatively small set of agents and properties would have 
led to a combinatorial explosion of testing requirements if 
students  had  been  permitted  to  hack  their  solutions 
together  with  molecular-level  coupling  as  usual.  Most 
recognized the value of this partitioning in their low-level 
unit  and functional  (white  and black-box) testing,  mid-
level  compositional  testing,  and  high-level  integration 
testing [14].

Evaluating model performance was the final aspect of the 
project.  It  was  a  predominantly  superficial  exercise  in 
design and execution because the purpose was to expose 
students to the process. They used the author’s solution 
instead  of  their  own  for  consistency.  The  task  was  to 
execute 18 required experiments, and then to select from 
several sets of options, with a rationale for the choices. 
Each  of  the  32  total  experiments  addressed  a 
representative  set  of  metrics  of  interest,  such  as  which 
munition was most effective against which target type, or 
what the maximum effective range of a missile was. One 
set of options addressed sensitivity analysis to establish 
reasonably optimal low-level performance characteristics 
like sweep rate of the field of view over the field of regard 
on a missile radar sensor.

The  project  supported  no  explicit  countermeasures,  but 
certain  tactical  maneuvers  were  tested  to  try  to  outwit 
smart  munitions  by  causing  them  to  exceed  their 
performance  limitations.  One  test  even  had  a  torpedo 
acquire  and  destroy its  own firing submarine.  Students 
said they had a lot of fun.

4.1  Test Report

The final deliverable was a formal report describing the 
test plan and its results. Each experiment addressed eight 
points, where  1–4 related to planning, 5–6 to execution, 
and 7–8 to presenting the results:

1. The rationale behind the test; i.e., what it was testing 
and why it mattered.

2. A general English description of the initial conditions 
of the test.

3. The commands for (2).
4. An  English  narrative  of  the  expected  results  of 

executing the test.
5. The actual  results with at  least  one screenshot of the 

most representative view.



6. A snippet of the actual results from the log file with a 
supporting  explanation,  including  statistics,  metrics, 
and charts.

7. A brief discussion on how the actual results agreed with 
the expected results, or if they disagreed, a hypothesis 
of why.

8. A suggestion  for  how  to  extend  this  test  to  address 
related aspects of potential interest.

4.2  Examples

Point  5  was  the  most  informative  aspect  of  each 
discussion. The flexibility of the world viewer allowed the 
students to select the most representative perspectives to 
support the rest of their discussion. For example, Figure 
4.1 illustrates the side view of dropping a bomb from an 
airplane flying to the right. Note the horizontal velocity 
imparted on the bomb.

Figure 4.2 presents a top view of two torpedoes fired from 
a submarine that then track a ship trying to outrun them.

5  Future Work

This virtual  test  range accommodates  a wide variety of 
plug-and-play  components.  At  the  low  level,  there  are 
endless options for extending it to other actor platforms 
and weapon systems with different technologies.  At the 
high level, more advanced strategic and tactical scenarios 
like  acquisition,  lethality,  survivability,  and engagement 
could be investigated.

Although  designed  for  a  stochastic  methodology  to 
determine  ranges  of  performance  experimentally,  the 
current  system  does  not  take  advantage  of  it.  This 
technique could support rich sensitivity analysis to tease 
out  countless  aspects  of  component  behaviors.  It  could 
also allow students to apply their knowledge of discrete 
mathematics,  statistics,  and  probability,  which  all  are 
required  to  study,  but  most  mistakenly  consider  to  be 
irrelevant  to  their  degree.  Practical  application of  these 
otherwise abstract concepts could enlighten their views on 
quantitatively  demonstrating  performance  and  showing 
confidence in the results.

6  Conclusion

Modeling,  simulation,  visualization,  and  analysis  are 
inherently  at  the  heart  of  most  processes  in  software 
engineering  and  software  quality  assurance,  yet  these 
subjects  are  not  traditionally  taught  together  from  a 
unified perspective. Not only did this work consolidate so 
many of their essential elements into a digestible package 
delivered over a fast-paced 10-week academic quarter, but 
the students overwhelmingly loved it. The average course 
evaluation was 4.7 out of 5 (outstanding).  Furthermore, 
the many laudatory comments have since contributed to 
refining both this system and how the course is delivered.
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