

x

z

y

roll

pitch

yaw

x

z

y

elevation
azimuth

Student-Friendly Java-Based Multiagent Event Handling

Dan Tappan
Department of Computer Science, Eastern Washington University

Introduction

Java is the AI programming language at EWU
because of its familiarity. Students are not, how-
ever, prepared from previous experience to ap-
ply it effectively to the modeling, simulation, vi-
sualization, and analysis tasks that are the back-
bone of the AI course.

This work provides a student-friendly API for de-
signing, implementing, testing, and evaluating
diverse physical agents, with emphasis on disci-
plined real-time, concurrent event handling.

The API supports a traditional model-view-con-
troller architecture that takes advantage of sound
software-engineering practices implemented
through common design patterns. The student
emphasis is on the model.

Model

The model defines an agent as a class structure
combining the common API elements and the
student's own contributions.

Data

Data is what an agent is. The API maintains its
identifier, position (arbitrary [x, y, z] or world-
based [longitude, latitude, altitude]), attitude
(two degrees of freedom [azimuth, elevation] or
three [yaw, pitch, roll]), and velocity.

Attitude and velocity are also defined in terms of
how they change. Each has a minimum and
maximum value, as well as acceleration and
deceleration as a scalar value (e.g., meters per
second squared), a mathematical function (m/s2
as a function of altitude), an arbitrary lookup
table, or arbitrary code.

Students provide whatever data is appropriate to
define their contributions, such as how far an
agent can see and how precise its vision is.

Controller / Simulation

Behavior is what an agent actually does in an
operational context being studied. The controller
manages this aspect through a shared clock in a
discrete-event simulation that updates all agents
periodically to execute the API and student code
in the models.

An example is landing an unmanned aircraft,
which flies to the circle and then, depending on
the approach angle, executes one of three series
of maneuvers to intercept the runway.

The simulation also manages logging agent
states for controlled scientific experiments as a
stochastic Monte Carlo methodology that pro-
motes formal evaluation of model performance.

View

Visual inspection is often the most intuitive way
to assess the performance of a model in terms
of realism and consistency with real-world
expectations. The API provides multiple forms.

The native two-dimensional viewer presents real-
time top, front, and side views. For example, the
turning radius of an aircraft varies according to
its speed, and altitude changes show a constant
rate of climb with smooth transitions.

Although physics is not explicitly modeled, many
realistic expectations are naturally captured by
the event system. For example, a bomb dropped
from an aircraft has both downward and forward
movement. Similarly, the reaction of torpedoes
chasing a ship lags due to their defined
processing delay and turning capabilities as the
ship makes evasive maneuvers. They also
momentarily confuse each other as targets.

An external Java 3D viewer provides richer
post-execution visualization [3]. For example,
differences in student solutions of an aircraft
attempting a climbing turn are apparent.

View

The 3D viewer also accommodates a variety of
metainformation about agent execution. The
breadcrumb track here shows not only the
aircraft path, but the dots indicate the discrete-
event positions it was actually calculated to be at.

The same position information can be exported
to Gnuplot for post-execution viewing and
manipulation with its rich processing features.
Here is an aircraft holding pattern.

Finally, all API event data, as well as selected
student data, can be exported to Excel in
comma-delimited format for presentation in
chart form.

References
[1] Bourg, D. 2002. Physics for Game

Developers. O'Reilly, Sebastopol: CA.

[2] Bourg, D. and Seemann, G. 2004. AI for
Game Developers. O'Reilly, Sebastopol: CA.

[3] Tappan, D. 2008. A Pedagogical Framework
for Modeling and Simulating Intelligent
Agents and Control Systems. Technical
Report, WS-08-02, AAAI Press.

dtappan@ewu.edu

Model

Modeling real-world processes often involves
looking up complex performance data [2]. The
API supports multidimensional lookup tables
with linear interpolation, such as curves for coef-
ficient of lift and drag in a flight model as a func-
tion of angle of attack and speed [1].

Control

Control is what an agent can do. The API
provides corresponding methods for all its data
in multiple helpful forms (e.g., changing speed,
course, altitude, and attitude) and updates agent
states accordingly. Students provide the code for
their own purposes.

runway runway

runway

(top view)

(top view)

angle of attack

co
ef

fic
ie

nt

lift

drag

speed

dr
ag

parasitic drag

induced drag

total drag

(side view)

(side view)

