

Student-Friendly Java-Based Multiagent Event Handling

Dan Tappan

Department of Computer Science
Eastern Washington University

dtappan@ewu.edu

Abstract

This work describes a student-friendly, pedagogy-oriented
event-handling system for managing multiagent AI
simulations in a classroom environment.

Problem

The primary intent of senior-level and graduate AI

programming assignments at Eastern Washington

University is to survey a breadth and depth of relevant

concepts and practices. Students do not have a working

knowledge of AI programming languages already, and it is

not within the scope of the course to investigate them in

enough detail for practical use. The only reasonable

solution is to use the primary programming language of the

curriculum: Java.

 Despite substantial background in Java programming,

very little of this experience translates into the type of

programs that are the foundation of modeling and

simulating mobile intelligent agents. As a result, students

tend to solve assignments in a very haphazard manner,

with more time spent hacking the programmatic details

than addressing the underlying AI aspects of interest.

 In particular, real-time event handling is a major hurdle.

Something as conceptually simple as moving an agent

realistically from one point to another at a certain speed or

over a certain amount of time is actually non-trivial.

Students either have no concept of how to approach such a

problem and rapidly become frustrated and distracted, or

they attempt to misapply the closest familiar approach of

threading. Both traditionally result in unmanageable

solutions that undermine the strategy of controlled

experiments for formal analysis.

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Solution

This work in progress introduces an expressive Java API

with a reasonable learning curve for handling the types of

concurrent events among multiple agents that are common

in AI assignments (Bourg 2002; Bourg and Seemann

2004).

Pedagogical Framework

The API is based on a pedagogical framework for

designing, implementing, testing, and evaluating agents. It

emphasizes forethought in the development process, which

can be critiqued before students actually start coding. In

particular, it partitions a solution into model and

simulation.

The model defines the data and control elements of the

agents. Data is what the agent is, based on the properties

that appropriately describe it; e.g., size and speed. Control

is what it can do, based on the actions that are expected of

it; e.g., move and shoot. This framework directly

corresponds to the familiar principles in object-oriented

programming.

The simulation is what is actually done with the model.

It establishes an operational context for executing and

evaluating the model under controlled conditions; e.g.,

agents of different sizes and speeds moving and shooting at

each other over multiple runs, with presumably the most

effective agent configuration statistically being the one that

wins most often.

An agent’s process of deciding what to do, as well as

when, where, why, and how, is based on the familiar

concept of finite-state diagrams, which translate at the

architecture level into the interagent communication and

event-handling protocols provided by the API.

Architecture

The architecture is a standard model-view-controller

structure. The model belongs to the students. Almost any

view can be accommodated in a plug-and-play manner

(e.g., gnuplot), but a three-dimensional visualizer from

related work is provided by default (Tappan 2008). The

controller is the event-handling framework discussed here.

The implementation makes heavy use of established

software design patterns, especially the Strategy,

Command, and Observer patterns, which are familiar to the

students (Gamma et al. 1995). In particular, it allows them

to register their agents for context-sensitive callbacks,

thereby delegating the simulation-level event coordination

to the architecture side and the model-level event

processing to their side. An added benefit is that the

architecture can log events for later detailed analysis of

how the model executed.

The currently supported event categories are designed to

control typical physical actions in three-dimensional space

(Russell and Norvig 2009). Most have both a simple form,

such as moving between two points at a constant speed, as

well as advanced forms for aspects like acceleration and

deceleration. There are usually multiple ways to request

the same behavior, which allows students to choose the

most intuitive one based on the context of their solution.

This approach facilitates translating their design into an

implementation in a disciplined manner.

Example

Landing an autonomous aircraft in Figure 1 demonstrates

the handling of the most common event categories.

 The aircraft initially flies to the approach fix, designated

as the circle. Depending on the approach angle, one of

three entry procedures, A, B, or C, is conditionally

executed to align the aircraft with the runway. In the

process, its speed and altitude also decrease.

 The events to schedule for Entry C, for example, are as

follows:

1. Fly to the fix at an initial altitude.
2. Turn left 135 degrees relative to the landing course

while slowing to approach speed.
3. Fly for 45 seconds.
4. Turn right to the landing course.
5. Fly to the fix at the approach altitude.
6. Fly to the runway at the landing altitude while slowing

to landing speed.
7. Slow to taxi speed.

Evaluation and Future Work

Piecemeal proof-of-concept versions of this work were

fielded over two semesters of an undergraduate AI course

with very favorable anecdotal feedback. The current work

is intended to unify many of the loose ends and simplify

the process. The solutions to earlier assignments are being

revamped to take advantage of the current version, which

will be fielded in two upcoming classes. Example concepts

like flocking, following, chasing, and evading were

investigated in assignments for bats hunting insects

through echolocation, bees communicating to locate

flowers, dogs chasing a ball and a laser-pointer dot, aircraft

executing maneuvers, and many others. Once stable, the

API and assignments will be freely available to the AI-

education community at shelby.ewu.edu.

References

Bourg, D. 2002. Physics for Game Developers. O'Reilly,
Sebastopol: CA.

Bourg, D. and Seemann, G. 2004. AI for Game Developers.
O’Reilly, Sebastopol: CA.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Indianapolis: IN.

Russell, S. and Norvig, P. 2009. Artificial Intelligence: A Modern
Approach. Prentice Hall, Upper Saddle River: NJ.

Tappan, D. 2008. A Pedagogical Framework for Modeling and
Simulating Intelligent Agents and Control Systems, Technical
Report, WS-08-02, AAAI Press.

Figure 1: Approach Patterns

