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Abstract - Programming  assignments  are  an  effective  way  for 
students  to  investigate  many important and fun aspects of AI. 
However,  for  any  task  of  reasonable  breadth  and  depth, 
especially involving complex, compositional agents, actions, and 
graphics,  most  of  the programming effort  goes into mundane, 
tedious, time-consuming, and error-prone administrative aspects. 
Moreover, time constraints usually result in designs that are not 
extensible or reusable for subsequent assignments, which repeat 
this overhead throughout the semester.  This pedagogy-oriented 
modeling-and-simulation  framework  provides  convenient  sup-
port capabilities to get students quickly playing with a wealth of 
agent-based AI content.  It contains extensive,  highly configur-
able, yet user-friendly, engineering, physics, and communication 
models for arbitrary components and task environments.  These 
components  are  managed  automatically  in  a  stochastic  Monte 
Carlo simulation that allows students to define, test, and evaluate 
their  quantitative  performance  for a  wide  range  of  controlled 
experiments.

INTRODUCTION

Student projects in AI can be fun, exciting, and educational. 
However, most programming tasks involve a disproportionate 
amount  of  time-consuming,  error-prone  administrative  code 
that  distracts students from the true focus.   This pedagogy-
oriented  modeling-and-simulation  system  provides  a 
comprehensive  framework  of  highly  extensible  support 
functionality to investigate many concepts and strategies in AI 
and  intelligent  control  systems.   In  particular,  it  facilitates 
building,  manipulating,  and  observing  arbitrary  intelligent 
agents in a broad range of operational contexts.  It also helps 
foster an understanding of proper methodology in designing, 
executing, and evaluating controlled experiments [1,2].  Most 
class projects are heavy skewed toward producing a solution, 
at  the  expense  of  understanding  how it  works,  how well  it 
works, how it might be improved, and so on [3].  This system 
tries  to  balance  this  synthesis  aspect  with  corresponding 
analysis  that  formally  and  quantitatively  demonstrates 
performance.  Learning is an iterative process, but without the 
analysis aspect, an integral part of the feedback mechanism is 
missing [4].

BACKGROUND

Toolkits,  application  programming  interfaces,  software 
development  kits,  game engines,  and  other  variants  are not 
new to AI.  This system does not claim to be a revolutionary 
advancement on existing systems, but it does strive to unify 

many of their essential aspects into a pedagogical framework 
that forces students to focus primarily on the AI content, and 
not so much on the support programming.  It is also heavily 
oriented  toward  careful  rigor  and  discipline  in  design, 
implementation, testing, and evaluation.  Ultimately, it is the 
students who provide the intelligence to their solutions.  They 
must therefore truly understand what their solutions can and 
cannot do, and what they are asking them to do.  Hacking—
the basis of most programming assignments—does not result 
in good code, good agents, or good learning [5].

The  pedigree  of  this  system attests  to  the  success  of  its 
philosophy.   It  derives—as  a  complete  redesign  and 
reimplementation—from two versions of a large-scale, agent-
based modeling-and-simulation system developed for the U.S. 
Army in support of its Future Combat Systems program [6,7]. 
In  the  first  version,  the  inexperienced  team  produced  a 
monumental  (yet  admittedly  successful)  hack.   The  second 
version, built within this rigorous framework and philosophy, 
resulted in multiple awards and the first accreditation of such 
an analysis tool by the Army in over 20 years.  The code was 
good, the agents were good, and the team learned about how 
and why they succeeded.

There are many related systems with varied backgrounds 
and goals.  Gaming applications, for instance, have embraced 
the powerful role of AI in realistically driving the behaviors of 
computer-controlled  characters.   Autodesk  Kynapse,  AI 
Framework,  and  the  FEAR  software  development  kit,  for 
example, integrate with game and graphics engines for a rich, 
multimedia experience.  In a classroom-oriented pedagogical 
role,  however,  their  learning  curve  can  be  overwhelming. 
Other work like AIspace, AI Toolkit, Prometheus, OpenSteer, 
Game::AI++,  Soar,  the  InExIn  library,  and  Agent  Develop-
ment  Kit  provide  implementations  for  a  wealth  of  AI 
approaches at a lower, somewhat standalone level.  This work 
plays an intermediate role like breve, MASON, NetLogo, and 
Swarm.  In particular, its emphasis is to provide a packaged, 
student-oriented  environment  in  which  to  design,  test,  and 
evaluate agent-based systems, as well as to facilitate discip-
lined software design in AI systems.  Sloman [8]  discusses 
many related considerations that  were incorporated into this 
work.

This system is entirely Java-based.  Java 3D provides the 
visualization,  and  JavaCC parses  the  support  files,  most  of 
which  are  defined  as  XML.   This  organization  supports 



consistency and portability in deployment and interaction with 
other  tools.   The  design  is  also  meant  to  be  reasonably 
lightweight to support the older, less powerful computers that 
many  students  have.   This  consideration  is  especially 
important  for  use  in  public  schools,  which  tend  to  be 
significantly behind the hardware upgrade curve.

MODELING

Within  the  context  of  this  system,  modeling  refers  to 
defining the composition and behavior of the agents and their 
environment.   It  encourages  disciplined  forethought  in  this 
organization, which the system later strictly enforces to ensure 
that everything plays by the rules.

A.  Environment
The virtual  world  in  which  agents  operate  is  currently  a 

simple, passive element with no interaction between it and the 
agents.   It  is  designed  primarily  for  open-field,  outdoor 
scenarios of arbitrary scale in either two or three dimensions. 
It  supports  only  flat-earth  topography,  although  variable 
terrain will be available in later versions.

B.  Agents
Agents are the core of the model.  The system uniformly 

accommodates both natural and artificial variants, like animals 
and machines, respectively.  They may play active or passive 
roles  to  interact  individually  or  collectively with respect  to 
cooperation, competition, and so on.  The underlying behavior 
and its implementation are entirely the choice of the student 
designer.  In support of these choices, the system provides a 
rich set of elements to reduce the workload.  In particular, it 
takes advantage of well-established design patterns that divide 
agents into their structural, behavioral, and creational elements 
[9].   It  also provides  a  wealth  of  miscellaneous  supporting 
functionality.

Structural elements define the composition of agents.  They 
address  physical  realities  of  assembly,  as  well  as  virtual 
aspects  that  help  the  designer  observe  and  interpret 
performance.

Physical  components  are  literally  the  recursive  building 
blocks of an agent.   Each is  a rectilinear  box defined by a 
unique  identifier  and  width,  depth,  and  height  dimensions. 
Fig. 1 (a) shows a simple tank decomposed into a hull, turret, 
barrel, and sensor.  A component also has various appearance 
attributes  like  color,  transparency,  texture,  and  wireframe 
representations.   Transparency  is  especially  useful  for 
representing both actual and believed position and attitude in 
belief-desire-intention (BDI) models [10,11].

The  box  may  also  be  rendered  as  an  externally  defined 
three-dimensional  model  with  arbitrarily  complex  polygons, 
such  as  the  elephant  with  three  attached  “sensors”  in 
Fig. 1 (b).  Many models in the supported Wavefront™ and 
3D Studio™ formats are freely available on the web.  Google 
also provides a substantial library of compatible models for its 
SketchUp™ software, which is available for free evaluation. 
Regardless  of  the  model,  the  underlying  geometry  is  still 
crudely bounded as a box.

The  compositional  structure  of  an  agent  is  based  on 
engineering  gimbals.   This  mechanism  requires  that  each 
component have a single female socket positioned somewhere 
relative to its origin.   The socket may have constraints that 
define  and  limit  its  degrees  of  freedom (DOF),  as  well  as 
advanced properties like latency, speed, and acceleration.  The 
socket  allows  another  component  (the  supercomponent)  to 
mount this component (as its subcomponent) to itself through 
a  male  ball,  which  is  relative  to  the  origin  of  the 
supercomponent.  A component can have an unlimited number 
of balls, allowing for unbounded compositionality and degrees 
of freedom.

Managing  these  essential  physicalities  invariably  causes 
students  tremendous  grief.   Any  practical  implementation 
(such as the quaternions used here) is decidedly nontrivial and 
far beyond the scope of most class projects.  To mitigate this 
problem,  a  separate  DOF  manager  for  each  component 
provides numerous features, for which students merely need to 
define the constraints.  This declarative approach frees them to 
focus on what the agent is supposed to do, and not so much on 
how their  code  needs  to  make  it  happen.   This  manager 
supports  the  two  common  DOF  systems  in  Fig. 2,  which 
reflect how most natural and artificial real-world components 
articulate.

The  5-DOF  system  (a)  uses  azimuth  and  elevation  for 
components  like a  gun barrel,  whereas  the  6-DOF (b)  uses 
yaw, pitch, and roll for components like an airplane.  In both 
cases, the three degrees of freedom for position (x,  y, and  z) 
are  identical.   The  choice  of  system  is  important  because 
student  code  needs  to  know  how  to  manipulate  its 
commutativity  properly.   In  the  5-DOF  system,  the  two 
degrees of attitude freedom are independent of each other, and 
either update order results in the same configuration.  In the 6-
DOF system, however, there are six possible orders, each of 
which may result in a different configuration.  Students are not 

Fig. 2:  Degree-of-Freedom Systems
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likely to be aware of such design considerations for a physical 
agent, but this approach makes them apparent.

The  gimbals  recursively  account  for  any  physical 
interconnections  and  dependencies  between  components. 
Each agent has a required base component, such as the hull of 
the tank in Fig. 1 (a), as well as optional subcomponents, like 
the turret on the hull, which in turn has sensors and actuators 
(i.e.,  the  gun  barrel).   Changing  the  configuration  of  any 
degree  of  freedom  on  any  component  automatically 
propagates  the  corresponding  changes  throughout  all 
subcomponents and satisfies any dependencies.  As a reality 
check,  this  process  also  verifies  that  student  code  does  not 
force  the  mechanical  system  into  an  invalid  configuration, 
which is common when students do not truly understand what 
they are modeling and why.

Sensors  play  a  key  role  in  acquiring  percepts  from  the 
environment  in  most  agent-based  systems  [11].   Sensor 
components can be fixed, where they only move dependently 
with respect to their supercomponents, or they can also move 
independently.   In  either  case,  they  support  a  horizontal, 
vertical,  or  combined  field  of  view  (FOV),  which,  in  the 
simplest  form,  helps  determine  whether  another  agent  (or 
component) is within an angular wedge (for two dimensions) 
or a pyramidal frustum (for three dimensions) [12].  Movable 
sensors can adjust the FOV within the angular limits of a field 
of regard (FOR) to support scanning; e.g., moving a head back 
and forth.   The timing service,  to be discussed shortly,  can 
automatically  manage  this  movement,  or  student  code  can 
perform it manually.

Optional, advanced sensor functionality accounts for noise, 
performance degradation over range, or as Fig. 3 illustrates, 
probabilistic preferences for central versus peripheral vision in 
an FOV.  The probability of false positives and negatives is 
also configurable.  Ultimately, student code needs to decide 
how to process these percepts, of course, but the system makes 
it relatively easy to acquire them in ideal or degraded forms.

Unlike physical components, which play an active role as 
the backbone of an agent, virtual components do effectively 
nothing.  Their role is to provide passive metainformation that 
supports  a  simulation,  but  that  the model  itself  cannot  use. 
These  components  can  be  connected  to  any  physical 
component  through  fixed  gimbals.   They  do  not  allow 
recursive decomposition.

There are currently three types  of  virtual  components,  as 
illustrated with bees in Fig. 4:  two-dimensional triangles (a) 
or three-dimensional  frustums are typically used to render a 

translucent FOV so students can see where a sensor is looking; 
polylines  (b)  serve  as  reference  markers  for  imaginary 
boundaries, and so on; and labels (c) identify agents and their 
components.

Behavioral  elements overlay  the  compositional  structure, 
such that students must first define what an agent is, then how 
the agent functions within these constraints.  This philosophy 
enforces a prescribed chain of responsibility for delegating the 
execution of requests to the appropriate components within an 
agent and between agents.  It also discourages undisciplined 
programmatic  “cheating,” where the model uses information 
or  performs  actions  that  it  rightfully  should  not  be  able  to 
access.  For example, a sensor usually relies on percepts to 
determine where another agent is based on defined limitations 
like acuity.  Unfortunately, its code can easily access another 
programmatic  object  (intentionally  or  not)  through  direct 
method calls  to  get  the actual  data  it  needs,  as  opposed to 
indirectly deriving the believed data.  Such a tempting shortcut 
undermines the purpose of modeling the sensor, though, and it 
probably skews the results of the simulation, as well.

Behavioral  elements  cannot  prevent  students  from 
implementing  such  dubious  solutions,  but  at  least  they  can 
make  such  approaches  more  apparent  for  grading  and 
discussion.  The overarching design philosophy of this system 
is to build agents that faithfully model the real world and map 
back  to  it.   The  expectation  is  that  there  is  bidirectional 
correspondence between code and its real-world counterparts; 
therefore,  discrepancies  need  to  be  examined  and  justified 
carefully.  Students need to learn firsthand how to recognize 
these  cases,  and  then  how  to  justify  them  persuasively, 
because most design decisions in computer science are open-
ended, subjective, and often controversial [13,11].

Behavioral  elements  are a  conglomeration of  at  least  the 
composite,  strategy,  chain of  responsibility,  mediator,  state, 
observer,  command, and interpreter design patterns [9].  The 
code  itself  also  serves  as  a  strong  metaexample  of  a 
disciplined design and architecture.  The primary behavioral 
element is a communication network with protocols for intra- 
and  inter-agent  message  transfer.   These  protocols  greatly 
reduce  the  complexity  of  managing  intercommunication, 
while also reducing the temptation for programmatic cheating 
and outright hacking at a solution.

A message is typically an event, a request for data or action, 
or  a  response.   It  consists  of  the  sender  and  recipient 
identifiers and an optional, arbitrary payload.  Recipients can 
be  individual  components,  classes  of  components  (e.g.,  all 
agents  on  a  team),  or  unrestricted  broadcasts  to  all 

Fig. 3:  Field-of-View Preference Distribution
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components.  A message allows itself to be handled in various 
ways (abridged here) depending on the recipient and its state:

• IGNORED:  a recipient determines that a message (usually 
a broadcast) is not intended for it  or is  irrelevant,  so it 
silently discards it.

• ACCEPTED_PROCEED:  a  recipient  determines that  it  can 
immediately act on a message and return any result.  The 
sender can proceed after receiving it.

• ACCEPTED_WAIT:  a  recipient  determines that  it  can act 
on a message, but the result will be forthcoming after an 
indeterminate delay.  A confirmation of this condition is 
returned in the interim so the sender knows to expect the 
result eventually, and it can proceed with other activities 
(if possible) until then.  It can also cancel the message and 
reissue it elsewhere.

• REJECTED_DISCARD_INFORM:  the recipient  would oth-
erwise be able to act on a message, but it cannot at the 
moment.  This condition is returned to the sender, which 
can then decide how to handle it.   A  REJECTED_DIS-
CARD_SILENT variant omits the return, which is similar 
to instructing the post office to abandon a package that 
cannot be delivered to avoid the return postage.

• REJECTED_RESUBMIT_INFORM:  the recipient would oth-
erwise be able to act on a message as described above.  It 
will  inform  the  sender  when  it  is  free  to  accept  the 
message  again,  at  which  time  the  sender  must  decide 
whether  to  reissue  it.   In  the  meantime,  it  could  also 
reissue the message elsewhere.

• REJECTED_RESUBMIT_AUTO:  the recipient would other-
wise be able to act on a message as described above.  It 
holds onto the message until it can process it, at which 
time  it  informs  the  sender  of  either  ACCEPTED state 
above.

Timing  and  synchronization  of  events,  especially  in 
stochastic,  multiagent  simulations,  can  be  overwhelming 
programming tasks for students.  Another behavioral element 
allows  components  and  their  managers  to  subscribe  to 
arbitrary  updates.   It  conveniently  supports  fine-grained 
actions that would otherwise be difficult to coordinate.  For 
example, slewing the azimuth of a sensor from 0 to 90 degrees 
over  10  seconds  would  require  substantial  student  code  to 
manage reasonably  smooth  movement.   Typical  approaches 
are inconsistent and often lead to bizarre “relativistic” effects 
where multiple agents operate under different  time systems. 
As time is a shared phenomenon, it is best handled globally by 
this service, not locally by agents.  In this case, the operational 
approach to slewing must also be carefully considered.  If the 
code simply increments the angle by 90 degrees after a 10-
second  wait,  then  the  sensor  never  passes  through  any 
intermediate angles, and it may not perform as expected.  This 
service  allows subscribers  to  specify in  intuitive ways how 
they want to be updated; for instance:

• n times over s seconds
• every s seconds over t seconds
• every s seconds n times
• every s seconds continuously until canceled
• one time for s seconds, then self-cancels

The  sensor  could  subscribe  to  be  uniformly  updated  six 
times over 10 seconds, and at each update, it would increment 
its  azimuth  by  15  degrees.   Timing  behavior  is  thus 
appropriately delegated to the system, while sensor behavior 
rightfully  belongs  to  the  sensor  itself.   Such  disciplined 
responsibility,  cohesion,  and  coupling  are  key  to  effective, 
understandable  software  [13].   Typical,  ad  hoc attempts  at 
localized time management can be a nightmare to debug and 
maintain.   Not  only  do  they  undermine  the  goal  of  a 
simulation, but they frustrate students and may turn them off 
to the subject matter.

Other  built-in  services  manage specialized  processes  like 
collision  detection  and  localized  gravity  (for  outer-space 
scenarios).  They are expensive and usually unnecessary, so 
only  components  that  need  to  participate  should  subscribe. 
Finally,  the  plug-and-play  structure  of  the  system  allows 
students to implement other services as needed.

Creational  elements manage  the  creation,  assembly, 
disassembly, and destruction of agents and their components. 
They use prototype, flyweight, factory, and builder patterns to 
simplify this process so students simply request a new agent as 
necessary  [9].   The  underlying  XML  definition  of  its 
composition is analogous to the data definition of a class in 
object-oriented  programming,  and  an  agent  is  likewise  an 
instance of it.  Agents can be permanent, such as walls, semi-
permanent, such as players that can be killed, or temporary, 
such as projectiles that fly out and expire after a collision or a 
certain  range  or  time  (which  is  managed  by  a  behavioral 
service).  Instantiation is mostly a rubber-stamp process with 
minor variation, such as assigning unique identifiers.

Support  elements provide  a  variety  of  miscellaneous 
functionality.   Their  code  is  not  necessarily  difficult  to 
implement, but it can be tedious, time-consuming, and error-
prone [14,12].  From overwhelming anecdotal evidence, it is 
clear that students spend an inordinate amount of time on such 
peripheral  aspects  of  their  projects,  at  the  expense  of  the 
intended content.

These  elements  derive  from  a  common  data  type  that 
mitigates  many  of  the  typical  problems  students  encounter 
with units, magnitudes, conversions, and so on.  The algebraic 
validity of many results can also be verified.  Most elements 
fall into the following categories:

• Situational awareness:  absolute  and relative  coordinates 
as  (x, y, z) and (longitude, latitude, altitude); absolute and 
relative attitudes as (azimuth, elevation) and (yaw, pitch, 
roll); coordinate collections for lines, planes, and boxes.

• Differential awareness:  static bearings (angle and range) 
and dynamic bearings (with velocity) from one agent to 
another.

• Motion:  speed, velocity (horizontal, vertical, combined), 
time, acceleration, drag.



• Vision:  rays for line-of-sight determination; atmospheric 
attenuation.

• Path-following:  smooth,  connected  lines  with  spline 
interpolations and attitude correspondence.

• Engineering and physics:  frequency,  wavelength,  duty 
cycle, intensity, reflectivity, cross-section, response curve, 
noise, signal-to-noise ratio, false-alarm rate, attenuation, 
temperature.

• Coordinates:  conversions between mathematical, naviga-
tional,  and  graphical  coordinate  systems,  which  cause 
students endless trouble.

• Miscellaneous:  up/down  counters  with  trigger  sub-
scribers; probability.

SIMULATION

Within  the  context  of  this  system,  simulation  refers  to 
putting  the  model  into  operational  scenarios  within  the 
environment  to  observe  and  measure  its  performance  with 
respect to well-defined tasks.  The simulation facilitates rapid, 
iterative refinement  of  approaches,  where students  run their 
code,  observe  how  it  performs,  and  improve  it.   The 
simulation framework is based on a Monte Carlo methodology 
for controlled experiments that can convincingly demonstrate 
the value of improvements and overall performance [15].

A.  Control Simulation
The control simulation establishes a baseline performance 

measure against which to compare the results of subsequent 
changes in the test simulation.  This step mitigates one of the 
most common problems with projects:  most student effort is 
spent on the synthesis of a solution, and any analysis of it is 
minimal.  In fact, anecdotal evidence shows that most students 
subjectively  decide  to  stop  when  their  solution  appears  to 
work  at  all,  and there is  rarely an  objective measure of  its 
performance.   Consequently,  students  may  not  develop  the 
skills to recognize what needs improvement, and then how to 
test how well their improvements actually work.

B.  Test Simulation
The  test  simulation  measures  differences  in  performance 

with respect to the control simulation.  For instance, the task 
of an agent might be to locate something with its sensor.  The 
control simulation, using one type of sensor, has an inherent 
quantitative performance, but no benchmark against which to 
assess its meaning or significance.  The test simulation, using 
a different type of sensor, and differing  only in this respect, 
likely produces different results.  The difference between the 
two can be attributed directly to this one and only change.  If 
the  change  was  an  improvement  in  performance,  then  it 
suggests a promising trajectory toward further improvements. 
Likewise,  a  negative  or  inconsequential  change  suggests 
trying  another  approach.   Such  iterative  refinement  allows 
students  to  see  the  cause-and-effect  relationships  of  their 
decisions.

Components are carefully controlled within the simulation 
to ensure that modifications to them have no side effects, or at 
very least, the side effects are known.  This stochastic stability 

is critical because having more than one simultaneous change 
may confound the analysis and undermine any conclusions.  It 
is unreasonable to expect that students could manage this task 
themselves due to its complexity.

VISUALIZATION AND ANALYSIS

Agent  behavior  is  usually  entertaining  to  watch. 
Observation  is  also  a  useful,  qualitative  measure  of 
performance, as students can often immediately see whether 
their choices lead to the expected results.  To this end, a three-
dimensional  visualizer provides  graphical  rendering  of  the 
execution of a simulation.  It functions in two modes.  As a 
standalone application, it does not need to be tied to the rest of 
the  system.   In  fact,  the  source  of  the  data  to  render  is 
irrelevant, provided that it is in a text file in the correct format. 
This feature allows other applications in other languages to 
generate  data.   As an  integrated  application,  interaction  is 
possible.   Students  can  modify  (to  a  limited  degree)  the 
configuration of  the world while  the simulation is  running; 
e.g., push a cube in front of an obstacle-avoiding robot.  A 
variety  of  metainformation  can  be  depicted,  such  as 
identifiers,  positions,  attitudes,  vectors,  distances  between 
agents, paths followed, and propagation of rays.  Fig. 5, for 
instance,  shows  the  “breadcrumb”  tracks  of  an  unmanned 
aerial  vehicle  as  it  moves  through  the  world.   Superficial 
inspection of such output is often sufficient for grading.

In either mode, the simulation can be played like a movie, 
but dynamically from any vantage point.  Such visualization 
capabilities  allow  instructors  and  students  to  demonstrate 
solutions in the classroom, where everyone can contribute to 
the evaluation and comparative grading.  In addition, written 
reports  and  small  presentations  with  representative  screen 
shots  that  address  how  problems  were  solved  can  help 
improve  students’  communication  skills.   Finally,  the 
visualization  serves  as  an  appealing  demonstration  tool  for 
recruitment  events  in  computer  science,  which  often  lack  a 
“coolness” factor to attract interest [16].

In addition to visualization, nearly all internal data can be 
exported  to  applications  like  Excel™,  MATLAB™,  and 

Fig. 5:  Visualization



gnuplot for external quantitative analysis.  Determining which 
data  to  capture,  and  their  significance,  is  the  student’s 
responsibility as part of the learning process.

EVALUATION

Formally  evaluating  a  modeling-and-simulation,  test-
and-evaluation  system like  this  one  is  a  somewhat  circular 
process.  A reasonable measure of success is how well it has 
integrated  into  a  number  of  undergraduate  courses.   In 
particular, it has been the core software for two offerings of an 
upper-division  AI  course,  with  a  total  of  16  programming 
assignments.  It also supported static and dynamic examples in 
many lectures.   Some nature-inspired examples are herding, 
flocking,  swarming,  chasing,  collision  avoidance, 
communication,  vision,  echolocation,  and  predator-prey 
scenarios;  some  engineering-oriented  ones  are  autonomous 
vehicle navigation, robotic-arm manipulation, and game-based 
detection, tracking, prediction, and engagement.

Under a different guise (downplaying the AI aspects), it 
has also contributed to several offerings of two lower-division 
courses in advanced object-oriented design, as well as played 
a  supporting  role  in  an  upper-division  software-engineering 
course by demonstrating how the system itself is designed.

Ultimately,  however,  it  is  the  students  who  decide 
whether  any  software  helps  or  hinders  their  educational 
experience.   In  this  case,  anecdotal  evidence  and  formal 
course evaluations suggest that it has been received well.  A 
significant  amount  of  work  is  still  needed  to  polish  it  for 
widespread  distribution  and  support.   Nevertheless,  it  has 
shown itself to be a worthwhile contribution to design-related 
pedagogy, whether AI-oriented or not.

FUTURE WORK

There  are  two  facets  to  future  work  with  this  system. 
Within  the  existing  framework,  a  graphical  user  interface, 
possibly  in  the  form  of  an  integrated  development 
environment,  is  necessary  to  unify  the  various,  disjoint 
components of the system.  For example, the complex XML 
files for data and configuration are currently onerous to create 
and  modify.   This  limitation  conflicts  with  the  goal  of  a 
friendly  rapid-prototyping  system.   Another  extension  is  to 
add  triangles  to  the  current  rectilinear  definition  of 
components.  Triangles will support higher-fidelity abstraction 
of  three-dimensional  models,  as  well  as  variable  terrain. 
Many AI problems, especially for practical,  real-world ones 
like variants of the DARPA Grand Challenge, need a richer, 
non-flat environment [17].

Beyond  the  existing  framework  are  potential  spin-off 
applications.  The current system is targeted to the university 
level.  Younger audiences could also benefit from it, however, 
because they tend to show great interest in robotics [16].  It 
would be excessively complicated and overwhelming for them 
to use, however, so one spin-off is a simplified facade around 
the system, such that the basics of defining and running simple 
agents  are  easily  accessible.   The  focus  would  be  fun  and 
logical thought, not formal evaluation.  For advanced children, 
especially those participating in competitions like the FIRST 

Lego  League  robotics  challenges,  some  analysis  could  be 
practical,  though.   For  example,  there  are  many options  to 
consider when designing a robot.  Teams tend to fixate on one 
idea only.   With some analysis appropriate to their level  of 
understanding,  multiple  designs  could  be  investigated  and 
evaluated before committing to any construction.

CONCLUSION

This system provides an extensive, freely available software 
environment  with  a  large  set  of  commonly  needed  support 
features for designing, implementing, testing, and evaluating 
models for AI and related engineering problems.  Its goal is to 
mitigate much of the mundane, tedious, time-consuming, and 
error-prone administrative overhead involved in programming 
AI solutions, so students can focus more on the AI and less on 
the  support  code.   It  executes  student-defined  models  in  a 
Monte Carlo simulation that generates and records stochastic 
data for offline analysis.  In various incarnations, it has been 
received well over several semesters for courses in AI, object-
oriented design, and software engineering.
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