
A Pedagogy-Oriented Modeling-and-Simulation
Environment for AI Scenarios

Dan Tappan
Department of Computer Science

Idaho State University
921 S. 8th Ave., Stop 8060
Pocatello, ID, 83209-8060

Abstract - Programming assignments are an effective way for
students to investigate many important and fun aspects of AI.
However, for any task of reasonable breadth and depth,
especially involving complex, compositional agents, actions, and
graphics, most of the programming effort goes into mundane,
tedious, time-consuming, and error-prone administrative aspects.
Moreover, time constraints usually result in designs that are not
extensible or reusable for subsequent assignments, which repeat
this overhead throughout the semester. This pedagogy-oriented
modeling-and-simulation framework provides convenient sup-
port capabilities to get students quickly playing with a wealth of
agent-based AI content. It contains extensive, highly configur-
able, yet user-friendly, engineering, physics, and communication
models for arbitrary components and task environments. These
components are managed automatically in a stochastic Monte
Carlo simulation that allows students to define, test, and evaluate
their quantitative performance for a wide range of controlled
experiments.

INTRODUCTION

Student projects in AI can be fun, exciting, and educational.
However, most programming tasks involve a disproportionate
amount of time-consuming, error-prone administrative code
that distracts students from the true focus. This pedagogy-
oriented modeling-and-simulation system provides a
comprehensive framework of highly extensible support
functionality to investigate many concepts and strategies in AI
and intelligent control systems. In particular, it facilitates
building, manipulating, and observing arbitrary intelligent
agents in a broad range of operational contexts. It also helps
foster an understanding of proper methodology in designing,
executing, and evaluating controlled experiments [1,2]. Most
class projects are heavy skewed toward producing a solution,
at the expense of understanding how it works, how well it
works, how it might be improved, and so on [3]. This system
tries to balance this synthesis aspect with corresponding
analysis that formally and quantitatively demonstrates
performance. Learning is an iterative process, but without the
analysis aspect, an integral part of the feedback mechanism is
missing [4].

BACKGROUND

Toolkits, application programming interfaces, software
development kits, game engines, and other variants are not
new to AI. This system does not claim to be a revolutionary
advancement on existing systems, but it does strive to unify

many of their essential aspects into a pedagogical framework
that forces students to focus primarily on the AI content, and
not so much on the support programming. It is also heavily
oriented toward careful rigor and discipline in design,
implementation, testing, and evaluation. Ultimately, it is the
students who provide the intelligence to their solutions. They
must therefore truly understand what their solutions can and
cannot do, and what they are asking them to do. Hacking—
the basis of most programming assignments—does not result
in good code, good agents, or good learning [5].

The pedigree of this system attests to the success of its
philosophy. It derives—as a complete redesign and
reimplementation—from two versions of a large-scale, agent-
based modeling-and-simulation system developed for the U.S.
Army in support of its Future Combat Systems program [6,7].
In the first version, the inexperienced team produced a
monumental (yet admittedly successful) hack. The second
version, built within this rigorous framework and philosophy,
resulted in multiple awards and the first accreditation of such
an analysis tool by the Army in over 20 years. The code was
good, the agents were good, and the team learned about how
and why they succeeded.

There are many related systems with varied backgrounds
and goals. Gaming applications, for instance, have embraced
the powerful role of AI in realistically driving the behaviors of
computer-controlled characters. Autodesk Kynapse, AI
Framework, and the FEAR software development kit, for
example, integrate with game and graphics engines for a rich,
multimedia experience. In a classroom-oriented pedagogical
role, however, their learning curve can be overwhelming.
Other work like AIspace, AI Toolkit, Prometheus, OpenSteer,
Game::AI++, Soar, the InExIn library, and Agent Develop-
ment Kit provide implementations for a wealth of AI
approaches at a lower, somewhat standalone level. This work
plays an intermediate role like breve, MASON, NetLogo, and
Swarm. In particular, its emphasis is to provide a packaged,
student-oriented environment in which to design, test, and
evaluate agent-based systems, as well as to facilitate discip-
lined software design in AI systems. Sloman [8] discusses
many related considerations that were incorporated into this
work.

This system is entirely Java-based. Java 3D provides the
visualization, and JavaCC parses the support files, most of
which are defined as XML. This organization supports

consistency and portability in deployment and interaction with
other tools. The design is also meant to be reasonably
lightweight to support the older, less powerful computers that
many students have. This consideration is especially
important for use in public schools, which tend to be
significantly behind the hardware upgrade curve.

MODELING

Within the context of this system, modeling refers to
defining the composition and behavior of the agents and their
environment. It encourages disciplined forethought in this
organization, which the system later strictly enforces to ensure
that everything plays by the rules.

A. Environment
The virtual world in which agents operate is currently a

simple, passive element with no interaction between it and the
agents. It is designed primarily for open-field, outdoor
scenarios of arbitrary scale in either two or three dimensions.
It supports only flat-earth topography, although variable
terrain will be available in later versions.

B. Agents
Agents are the core of the model. The system uniformly

accommodates both natural and artificial variants, like animals
and machines, respectively. They may play active or passive
roles to interact individually or collectively with respect to
cooperation, competition, and so on. The underlying behavior
and its implementation are entirely the choice of the student
designer. In support of these choices, the system provides a
rich set of elements to reduce the workload. In particular, it
takes advantage of well-established design patterns that divide
agents into their structural, behavioral, and creational elements
[9]. It also provides a wealth of miscellaneous supporting
functionality.

Structural elements define the composition of agents. They
address physical realities of assembly, as well as virtual
aspects that help the designer observe and interpret
performance.

Physical components are literally the recursive building
blocks of an agent. Each is a rectilinear box defined by a
unique identifier and width, depth, and height dimensions.
Fig. 1 (a) shows a simple tank decomposed into a hull, turret,
barrel, and sensor. A component also has various appearance
attributes like color, transparency, texture, and wireframe
representations. Transparency is especially useful for
representing both actual and believed position and attitude in
belief-desire-intention (BDI) models [10,11].

The box may also be rendered as an externally defined
three-dimensional model with arbitrarily complex polygons,
such as the elephant with three attached “sensors” in
Fig. 1 (b). Many models in the supported Wavefront™ and
3D Studio™ formats are freely available on the web. Google
also provides a substantial library of compatible models for its
SketchUp™ software, which is available for free evaluation.
Regardless of the model, the underlying geometry is still
crudely bounded as a box.

The compositional structure of an agent is based on
engineering gimbals. This mechanism requires that each
component have a single female socket positioned somewhere
relative to its origin. The socket may have constraints that
define and limit its degrees of freedom (DOF), as well as
advanced properties like latency, speed, and acceleration. The
socket allows another component (the supercomponent) to
mount this component (as its subcomponent) to itself through
a male ball, which is relative to the origin of the
supercomponent. A component can have an unlimited number
of balls, allowing for unbounded compositionality and degrees
of freedom.

Managing these essential physicalities invariably causes
students tremendous grief. Any practical implementation
(such as the quaternions used here) is decidedly nontrivial and
far beyond the scope of most class projects. To mitigate this
problem, a separate DOF manager for each component
provides numerous features, for which students merely need to
define the constraints. This declarative approach frees them to
focus on what the agent is supposed to do, and not so much on
how their code needs to make it happen. This manager
supports the two common DOF systems in Fig. 2, which
reflect how most natural and artificial real-world components
articulate.

The 5-DOF system (a) uses azimuth and elevation for
components like a gun barrel, whereas the 6-DOF (b) uses
yaw, pitch, and roll for components like an airplane. In both
cases, the three degrees of freedom for position (x, y, and z)
are identical. The choice of system is important because
student code needs to know how to manipulate its
commutativity properly. In the 5-DOF system, the two
degrees of attitude freedom are independent of each other, and
either update order results in the same configuration. In the 6-
DOF system, however, there are six possible orders, each of
which may result in a different configuration. Students are not

Fig. 2: Degree-of-Freedom Systems

x

z

y

roll

pitch

yaw

b

x

z

y

elevation

azimuth

a

Fig. 1: Compositional Agents

ba

likely to be aware of such design considerations for a physical
agent, but this approach makes them apparent.

The gimbals recursively account for any physical
interconnections and dependencies between components.
Each agent has a required base component, such as the hull of
the tank in Fig. 1 (a), as well as optional subcomponents, like
the turret on the hull, which in turn has sensors and actuators
(i.e., the gun barrel). Changing the configuration of any
degree of freedom on any component automatically
propagates the corresponding changes throughout all
subcomponents and satisfies any dependencies. As a reality
check, this process also verifies that student code does not
force the mechanical system into an invalid configuration,
which is common when students do not truly understand what
they are modeling and why.

Sensors play a key role in acquiring percepts from the
environment in most agent-based systems [11]. Sensor
components can be fixed, where they only move dependently
with respect to their supercomponents, or they can also move
independently. In either case, they support a horizontal,
vertical, or combined field of view (FOV), which, in the
simplest form, helps determine whether another agent (or
component) is within an angular wedge (for two dimensions)
or a pyramidal frustum (for three dimensions) [12]. Movable
sensors can adjust the FOV within the angular limits of a field
of regard (FOR) to support scanning; e.g., moving a head back
and forth. The timing service, to be discussed shortly, can
automatically manage this movement, or student code can
perform it manually.

Optional, advanced sensor functionality accounts for noise,
performance degradation over range, or as Fig. 3 illustrates,
probabilistic preferences for central versus peripheral vision in
an FOV. The probability of false positives and negatives is
also configurable. Ultimately, student code needs to decide
how to process these percepts, of course, but the system makes
it relatively easy to acquire them in ideal or degraded forms.

Unlike physical components, which play an active role as
the backbone of an agent, virtual components do effectively
nothing. Their role is to provide passive metainformation that
supports a simulation, but that the model itself cannot use.
These components can be connected to any physical
component through fixed gimbals. They do not allow
recursive decomposition.

There are currently three types of virtual components, as
illustrated with bees in Fig. 4: two-dimensional triangles (a)
or three-dimensional frustums are typically used to render a

translucent FOV so students can see where a sensor is looking;
polylines (b) serve as reference markers for imaginary
boundaries, and so on; and labels (c) identify agents and their
components.

Behavioral elements overlay the compositional structure,
such that students must first define what an agent is, then how
the agent functions within these constraints. This philosophy
enforces a prescribed chain of responsibility for delegating the
execution of requests to the appropriate components within an
agent and between agents. It also discourages undisciplined
programmatic “cheating,” where the model uses information
or performs actions that it rightfully should not be able to
access. For example, a sensor usually relies on percepts to
determine where another agent is based on defined limitations
like acuity. Unfortunately, its code can easily access another
programmatic object (intentionally or not) through direct
method calls to get the actual data it needs, as opposed to
indirectly deriving the believed data. Such a tempting shortcut
undermines the purpose of modeling the sensor, though, and it
probably skews the results of the simulation, as well.

Behavioral elements cannot prevent students from
implementing such dubious solutions, but at least they can
make such approaches more apparent for grading and
discussion. The overarching design philosophy of this system
is to build agents that faithfully model the real world and map
back to it. The expectation is that there is bidirectional
correspondence between code and its real-world counterparts;
therefore, discrepancies need to be examined and justified
carefully. Students need to learn firsthand how to recognize
these cases, and then how to justify them persuasively,
because most design decisions in computer science are open-
ended, subjective, and often controversial [13,11].

Behavioral elements are a conglomeration of at least the
composite, strategy, chain of responsibility, mediator, state,
observer, command, and interpreter design patterns [9]. The
code itself also serves as a strong metaexample of a
disciplined design and architecture. The primary behavioral
element is a communication network with protocols for intra-
and inter-agent message transfer. These protocols greatly
reduce the complexity of managing intercommunication,
while also reducing the temptation for programmatic cheating
and outright hacking at a solution.

A message is typically an event, a request for data or action,
or a response. It consists of the sender and recipient
identifiers and an optional, arbitrary payload. Recipients can
be individual components, classes of components (e.g., all
agents on a team), or unrestricted broadcasts to all

Fig. 3: Field-of-View Preference Distribution

Fig. 4: Virtual Components

components. A message allows itself to be handled in various
ways (abridged here) depending on the recipient and its state:

• IGNORED: a recipient determines that a message (usually
a broadcast) is not intended for it or is irrelevant, so it
silently discards it.

• ACCEPTED_PROCEED: a recipient determines that it can
immediately act on a message and return any result. The
sender can proceed after receiving it.

• ACCEPTED_WAIT: a recipient determines that it can act
on a message, but the result will be forthcoming after an
indeterminate delay. A confirmation of this condition is
returned in the interim so the sender knows to expect the
result eventually, and it can proceed with other activities
(if possible) until then. It can also cancel the message and
reissue it elsewhere.

• REJECTED_DISCARD_INFORM: the recipient would oth-
erwise be able to act on a message, but it cannot at the
moment. This condition is returned to the sender, which
can then decide how to handle it. A REJECTED_DIS-
CARD_SILENT variant omits the return, which is similar
to instructing the post office to abandon a package that
cannot be delivered to avoid the return postage.

• REJECTED_RESUBMIT_INFORM: the recipient would oth-
erwise be able to act on a message as described above. It
will inform the sender when it is free to accept the
message again, at which time the sender must decide
whether to reissue it. In the meantime, it could also
reissue the message elsewhere.

• REJECTED_RESUBMIT_AUTO: the recipient would other-
wise be able to act on a message as described above. It
holds onto the message until it can process it, at which
time it informs the sender of either ACCEPTED state
above.

Timing and synchronization of events, especially in
stochastic, multiagent simulations, can be overwhelming
programming tasks for students. Another behavioral element
allows components and their managers to subscribe to
arbitrary updates. It conveniently supports fine-grained
actions that would otherwise be difficult to coordinate. For
example, slewing the azimuth of a sensor from 0 to 90 degrees
over 10 seconds would require substantial student code to
manage reasonably smooth movement. Typical approaches
are inconsistent and often lead to bizarre “relativistic” effects
where multiple agents operate under different time systems.
As time is a shared phenomenon, it is best handled globally by
this service, not locally by agents. In this case, the operational
approach to slewing must also be carefully considered. If the
code simply increments the angle by 90 degrees after a 10-
second wait, then the sensor never passes through any
intermediate angles, and it may not perform as expected. This
service allows subscribers to specify in intuitive ways how
they want to be updated; for instance:

• n times over s seconds
• every s seconds over t seconds
• every s seconds n times
• every s seconds continuously until canceled
• one time for s seconds, then self-cancels

The sensor could subscribe to be uniformly updated six
times over 10 seconds, and at each update, it would increment
its azimuth by 15 degrees. Timing behavior is thus
appropriately delegated to the system, while sensor behavior
rightfully belongs to the sensor itself. Such disciplined
responsibility, cohesion, and coupling are key to effective,
understandable software [13]. Typical, ad hoc attempts at
localized time management can be a nightmare to debug and
maintain. Not only do they undermine the goal of a
simulation, but they frustrate students and may turn them off
to the subject matter.

Other built-in services manage specialized processes like
collision detection and localized gravity (for outer-space
scenarios). They are expensive and usually unnecessary, so
only components that need to participate should subscribe.
Finally, the plug-and-play structure of the system allows
students to implement other services as needed.

Creational elements manage the creation, assembly,
disassembly, and destruction of agents and their components.
They use prototype, flyweight, factory, and builder patterns to
simplify this process so students simply request a new agent as
necessary [9]. The underlying XML definition of its
composition is analogous to the data definition of a class in
object-oriented programming, and an agent is likewise an
instance of it. Agents can be permanent, such as walls, semi-
permanent, such as players that can be killed, or temporary,
such as projectiles that fly out and expire after a collision or a
certain range or time (which is managed by a behavioral
service). Instantiation is mostly a rubber-stamp process with
minor variation, such as assigning unique identifiers.

Support elements provide a variety of miscellaneous
functionality. Their code is not necessarily difficult to
implement, but it can be tedious, time-consuming, and error-
prone [14,12]. From overwhelming anecdotal evidence, it is
clear that students spend an inordinate amount of time on such
peripheral aspects of their projects, at the expense of the
intended content.

These elements derive from a common data type that
mitigates many of the typical problems students encounter
with units, magnitudes, conversions, and so on. The algebraic
validity of many results can also be verified. Most elements
fall into the following categories:

• Situational awareness: absolute and relative coordinates
as (x, y, z) and (longitude, latitude, altitude); absolute and
relative attitudes as (azimuth, elevation) and (yaw, pitch,
roll); coordinate collections for lines, planes, and boxes.

• Differential awareness: static bearings (angle and range)
and dynamic bearings (with velocity) from one agent to
another.

• Motion: speed, velocity (horizontal, vertical, combined),
time, acceleration, drag.

• Vision: rays for line-of-sight determination; atmospheric
attenuation.

• Path-following: smooth, connected lines with spline
interpolations and attitude correspondence.

• Engineering and physics: frequency, wavelength, duty
cycle, intensity, reflectivity, cross-section, response curve,
noise, signal-to-noise ratio, false-alarm rate, attenuation,
temperature.

• Coordinates: conversions between mathematical, naviga-
tional, and graphical coordinate systems, which cause
students endless trouble.

• Miscellaneous: up/down counters with trigger sub-
scribers; probability.

SIMULATION

Within the context of this system, simulation refers to
putting the model into operational scenarios within the
environment to observe and measure its performance with
respect to well-defined tasks. The simulation facilitates rapid,
iterative refinement of approaches, where students run their
code, observe how it performs, and improve it. The
simulation framework is based on a Monte Carlo methodology
for controlled experiments that can convincingly demonstrate
the value of improvements and overall performance [15].

A. Control Simulation
The control simulation establishes a baseline performance

measure against which to compare the results of subsequent
changes in the test simulation. This step mitigates one of the
most common problems with projects: most student effort is
spent on the synthesis of a solution, and any analysis of it is
minimal. In fact, anecdotal evidence shows that most students
subjectively decide to stop when their solution appears to
work at all, and there is rarely an objective measure of its
performance. Consequently, students may not develop the
skills to recognize what needs improvement, and then how to
test how well their improvements actually work.

B. Test Simulation
The test simulation measures differences in performance

with respect to the control simulation. For instance, the task
of an agent might be to locate something with its sensor. The
control simulation, using one type of sensor, has an inherent
quantitative performance, but no benchmark against which to
assess its meaning or significance. The test simulation, using
a different type of sensor, and differing only in this respect,
likely produces different results. The difference between the
two can be attributed directly to this one and only change. If
the change was an improvement in performance, then it
suggests a promising trajectory toward further improvements.
Likewise, a negative or inconsequential change suggests
trying another approach. Such iterative refinement allows
students to see the cause-and-effect relationships of their
decisions.

Components are carefully controlled within the simulation
to ensure that modifications to them have no side effects, or at
very least, the side effects are known. This stochastic stability

is critical because having more than one simultaneous change
may confound the analysis and undermine any conclusions. It
is unreasonable to expect that students could manage this task
themselves due to its complexity.

VISUALIZATION AND ANALYSIS

Agent behavior is usually entertaining to watch.
Observation is also a useful, qualitative measure of
performance, as students can often immediately see whether
their choices lead to the expected results. To this end, a three-
dimensional visualizer provides graphical rendering of the
execution of a simulation. It functions in two modes. As a
standalone application, it does not need to be tied to the rest of
the system. In fact, the source of the data to render is
irrelevant, provided that it is in a text file in the correct format.
This feature allows other applications in other languages to
generate data. As an integrated application, interaction is
possible. Students can modify (to a limited degree) the
configuration of the world while the simulation is running;
e.g., push a cube in front of an obstacle-avoiding robot. A
variety of metainformation can be depicted, such as
identifiers, positions, attitudes, vectors, distances between
agents, paths followed, and propagation of rays. Fig. 5, for
instance, shows the “breadcrumb” tracks of an unmanned
aerial vehicle as it moves through the world. Superficial
inspection of such output is often sufficient for grading.

In either mode, the simulation can be played like a movie,
but dynamically from any vantage point. Such visualization
capabilities allow instructors and students to demonstrate
solutions in the classroom, where everyone can contribute to
the evaluation and comparative grading. In addition, written
reports and small presentations with representative screen
shots that address how problems were solved can help
improve students’ communication skills. Finally, the
visualization serves as an appealing demonstration tool for
recruitment events in computer science, which often lack a
“coolness” factor to attract interest [16].

In addition to visualization, nearly all internal data can be
exported to applications like Excel™, MATLAB™, and

Fig. 5: Visualization

gnuplot for external quantitative analysis. Determining which
data to capture, and their significance, is the student’s
responsibility as part of the learning process.

EVALUATION

Formally evaluating a modeling-and-simulation, test-
and-evaluation system like this one is a somewhat circular
process. A reasonable measure of success is how well it has
integrated into a number of undergraduate courses. In
particular, it has been the core software for two offerings of an
upper-division AI course, with a total of 16 programming
assignments. It also supported static and dynamic examples in
many lectures. Some nature-inspired examples are herding,
flocking, swarming, chasing, collision avoidance,
communication, vision, echolocation, and predator-prey
scenarios; some engineering-oriented ones are autonomous
vehicle navigation, robotic-arm manipulation, and game-based
detection, tracking, prediction, and engagement.

Under a different guise (downplaying the AI aspects), it
has also contributed to several offerings of two lower-division
courses in advanced object-oriented design, as well as played
a supporting role in an upper-division software-engineering
course by demonstrating how the system itself is designed.

Ultimately, however, it is the students who decide
whether any software helps or hinders their educational
experience. In this case, anecdotal evidence and formal
course evaluations suggest that it has been received well. A
significant amount of work is still needed to polish it for
widespread distribution and support. Nevertheless, it has
shown itself to be a worthwhile contribution to design-related
pedagogy, whether AI-oriented or not.

FUTURE WORK

There are two facets to future work with this system.
Within the existing framework, a graphical user interface,
possibly in the form of an integrated development
environment, is necessary to unify the various, disjoint
components of the system. For example, the complex XML
files for data and configuration are currently onerous to create
and modify. This limitation conflicts with the goal of a
friendly rapid-prototyping system. Another extension is to
add triangles to the current rectilinear definition of
components. Triangles will support higher-fidelity abstraction
of three-dimensional models, as well as variable terrain.
Many AI problems, especially for practical, real-world ones
like variants of the DARPA Grand Challenge, need a richer,
non-flat environment [17].

Beyond the existing framework are potential spin-off
applications. The current system is targeted to the university
level. Younger audiences could also benefit from it, however,
because they tend to show great interest in robotics [16]. It
would be excessively complicated and overwhelming for them
to use, however, so one spin-off is a simplified facade around
the system, such that the basics of defining and running simple
agents are easily accessible. The focus would be fun and
logical thought, not formal evaluation. For advanced children,
especially those participating in competitions like the FIRST

Lego League robotics challenges, some analysis could be
practical, though. For example, there are many options to
consider when designing a robot. Teams tend to fixate on one
idea only. With some analysis appropriate to their level of
understanding, multiple designs could be investigated and
evaluated before committing to any construction.

CONCLUSION

This system provides an extensive, freely available software
environment with a large set of commonly needed support
features for designing, implementing, testing, and evaluating
models for AI and related engineering problems. Its goal is to
mitigate much of the mundane, tedious, time-consuming, and
error-prone administrative overhead involved in programming
AI solutions, so students can focus more on the AI and less on
the support code. It executes student-defined models in a
Monte Carlo simulation that generates and records stochastic
data for offline analysis. In various incarnations, it has been
received well over several semesters for courses in AI, object-
oriented design, and software engineering.

REFERENCES

[1] Z. Dilli, N. Goldsman, J. Schmidt, L. Harper, and S.
Marcus. “A New Pedagogy in Electrical and Computer
Engineering: An experiential and conceptual approach”:
in Proceedings of Frontiers in Education, pp. T2C37,
Boston, MA, 2002.

[2] T. Wiesner and W. Lan. “Comparison of Student Learn-
ing in Physical and Simulated Unit Operations Experi-
ments”, Journal of Engineering Education, Vol. 93, No.
3, pp. 223–231, 2004.

[3] D. Tappan. “ShelbySim: A Transparent, Pedagogy-Ori-
ented Simulator for Computer-Based Systems”, Interna-
tional Journal of Engineering Education, in press.

[4] R. Irish. “Engineering Thinking: Using Benjamin
Bloom and William Perry to Design Assignments, Lan-
guage and Learning Across the Disciplines”, Vol. 3, No.
2, pp. 83-102, 1999.

[5] L. Tong. “Identifying essential learning skills in stu-
dents’ engineering education”: in Proceedings of
HERDSA 2003, Canterbury, New Zealand, 2003.

[6] J. Engle. “AMSAA’s SURVIVE Model plays key role”.
RDECOM Magazine, August 2005.

[7] D. Tappan and J. Engle. “The AMSAA SURVIVE Mod-
el”: in Proceedings of U.S. Army 16th Annual Ground
Vehicle Survivability Symposium, Monterey, CA, 2005.

[8] A. Sloman. “What’s an AI Toolkit For?” AAAI Tech-
nical Report WS-98-10, 1998.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
“Design Patterns: Elements of Reusable Object-Oriented
Software”. Addison-Wesley, 1995.

[10] M. Jones. “Artificial Intelligence: A Systems
Approach”. Infinity Science, 2008.

[11] S. Russell and P. Norvig. “Artificial Intelligence: A
Modern Approach”. Pearson, 2003.

[12] D. Bourg and G. Seemann. “AI for Game Developers”.
O’Reilly, 2004.

[13] R. Pressman. “Software Engineering: A Practitioner’s
Approach”. McGraw-Hill, 2010.

[14] D. Bourg. “Physics for Game Developers”. O’Reilly,
2002.

[15] G. Fishman. “Monte Carlo: Concepts, Algorithms, and
Applications”. Springer, 1995.

[16] P. Jonsson. “Can competitions raise ‘cool’ factor of
math, science?” Christian Science Monitor, 17 May
2008.

[17] M. Montemerlo, S. Thrun, H. Dahlkamp, D. Stavens, and
S. Strohband. “Winning the DARPA Grand Challenge
with an AI Robot”: in Proceedings of American Associ-
ation of Artificial Intelligence, Boston, MA, 2006.

