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Abstract

The  work  takes  static  spatial  configurations  defined  by 
quantitative,  graphical  data  like  the  positions  and 
orientations of nature-related objects and infers basic, high-
level, pragmatic meaning of the scenario from a small set of 
semantic actions; e.g., the wolves are chasing the sheep.  It 
uses  an  inheritance-based  knowledge  base  to  define 
contextually  appropriate,  case-based  roles,  and  geometric 
constraint  satisfaction  to  recognize  spatial  dependencies. 
This  successful  pilot  study  elicits  semantic  features  of 
interest for follow-on investigation.  It uses a quantitative 
survey  methodology  to  compare  the  performance  of  the 
system  against  human  subjects  based  on  the  standard 
information-retrieval measures of precision and recall.

Introduction 

A static spatial configuration, such as in Figure 1, contains 
low-level,  quantitative  knowledge  about  its  objects  and 
their positions and orientations.  These details are sufficient 
to render the image, but they do not directly provide any 
insight  into  the  higher-level  composition  of  the  scene, 
namely what the objects might be doing individually and 
collectively,  and  why.   For  example,  the  wolves  are 
arguably chasing the sheep.

Figure 1:  Sample Configuration
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The goal  of  this  work  is  to  infer  from a  small  set  of 
spatially  relevant  semantic  actions  the  superficial 
pragmatics characterizing a variety of simple predator-prey 
scenarios  with  wolves,  sheep,  and  several  supporting 
objects.   It  uses an inheritance-based knowledge base of 
concepts,  attributes,  and  declarative  rules  to  define  the 
contextually  appropriate  spatial  interpretation  of  many 
contexts.   The  underlying  reasoning  mechanism is  non-
deductive geometric constraint satisfaction.

This  paper  addresses  a  pilot  study  to  determine  the 
feasibility  of  follow-on  work  and  to  discover  general 
semantic  features  it  could  investigate.   It  was  formally 
evaluated through a quantitative survey methodology that 
compared  the  computer  performance  against  human 
performance.  Specifically, it used the standard measures of 
precision and recall from the field in information retrieval.

Related Work

This  work  extends  the  base  system  by  Tappan  (2004a, 
2004b, 2008b), which generates and renders configurations 
from natural-language  descriptions,  and  Tappan  (2008a), 
which infers spatial relations from existing configurations. 
The approach to inferring spatial knowledge loosely draws 
upon other work by Neumann (1989), Walter et al. (1998), 
Koller  et  al.  (1992),  and  Tsotsos  (1985)  for  scene 
interpretation.   Tversky  (2000)  covers  in  comprehensive 
detail  many  of  the  spatial  issues  that  complicate  the 
problem.   Several  works  (Herskovits  1986;  Claus  et  al. 
1988; and Olivier and Tsujii 1994), in particular, form the 
basis  for  defining  and  interpreting  spatial  frames  of 
reference.   Most  early  approaches  to  spatial  analysis 
adopted  purely  geometric  solutions  and  did  not  take 
advantage of spatial knowledge relevant to the objects (Xu 
2002;  Yamada  1993).   More  recent  work,  especially  in 
Geographic Information Systems, attempts to account for 
such  contextual  information  (Peters  and  Shrobe  2003; 
Davis  1990;  Egenhofer  and Franzosa 1991; Frank 1992; 
Frank 1996;  Hernández et al. 1995; Randell et al. 1992). 
This  work  follows  the  latter  approach.   Additional 
inspiration  derives  from  recent  work  in  spatial-intent 
recognition, case-based plan recognition, and recognition 
of  natural  scene  categories  (Kiefer  and  Schlieder  2007; 
Cheng and Thawonmas 2004; Lazebnik et al. 2006).



Methodology

For space reasons,  the description of the system and the 
methodology of the study running on it are intertwined.

Spatial Configurations

A spatial configuration consists of objects in a static, two-
dimensional,  tabletop  zoo  environment.   The  system 
currently supports over 120 non-articulated objects, mostly 
animals  and  plants,  selected  because  they  exhibit  great 
variety in their  spatial  characteristics and interpretations. 
The static aspect eliminates the effects of movement, time 
dependencies, and the frame problem, among others, which 
are  indeed  relevant  to  this  work,  but  beyond  its  scope 
(Adorni 1984; Sowa 1991; Srihari 1994; Coyne and Sproat 
2001).

The  underlying  representation  of  a  configuration  is  a 
simple  semantic  network,  which is  particularly  suited  to 
this task for three reasons (Sowa 1991).  First, its primary 
components, nodes and directional arcs, map directly to the 
objects,  properties,  and relations in a configuration.  For 
example, Figure 2 is a semantic network that describes a 
wolf  looking  north  at  a  sheep  a  little  northeast  of  it. 
Second, as a straightforward computational data structure, 
standard  graph  algorithms  can  operate  on  it  natively. 
Third, as a well-studied and commonly used formalism for 
artificial intelligence, it facilitates transferring knowledge 
representations to and from other applications (Russell and 
Norvig 1995; Sowa 2000).

Figure 2:  Semantic Network

The semantic networks derive from two sources.  The 
first is manual specification of where the objects are and 
are  facing.   This  approach  is  necessary  to  guarantee 
adequate coverage of particular, nuanced scenarios to test, 
but it is tedious for large data sets.  The second source is 
automated  scenes  derived  from  rudimentary  natural-
language descriptions.  It is described in detail in Tappan 
(2004a).   The  basis  of  its  input  is  small,  descriptive 
statements, such as:1

There are two wolves and four sheep.  The wolves are south 
of  the  sheep,  near  each  other,  facing  the  sheep,  and 
midrange from the sheep.  The sheep are near each other 
and facing away from the wolves.

Figure 1 renders one possible interpretation.  Any number 
can be generated stochastically, which greatly reduces the 
amount of time needed to create tests.

1 Paraphrased somewhat for brevity and easier reading.  The parser does 
not actually support plural nouns, irregular plurals, or comma-delimited 
clauses.

Annotation

A total of 20 manual and automated configurations were 
tagged  by  humans  to  indicate  their  plausible  spatial 
interpretations;  e.g.,  wolves  chasing  sheep.   Open-ended 
interpretation is not the goal, so the set of tags is limited to 
the following perceived actions.  More than one is possible 
per configuration.

Unary actions involve only one active object type, such 
as wolves.  Other object  types may be present, but  they 
play  a  passive  role.   Each  tag  (in  monospace  font)  is 
characterized in English here; the actual formalism of their 
definition will be covered shortly.  The only unary actions 
currently supported are simple, collective sheep behavior:

migrate sheep grouped and oriented similarly

graze sheep grouped and oriented dissimilarly

drink sheep positioned around (passive) water object 
like pond, lake, or pool

Binary actions involve two active object types.  The first 
group reflects tactical enclosure interpretations:

flank sheep grouped; 3+ wolves at base and to either 
side of group, likely facing it

surround sheep grouped; 3+ wolves around perimeter of 
group, likely facing it

The next group reflects linear attack interpretations:

conceal (passive) view-blocking object, like tree or 
rock, between wolf and sheep; wolf facing 
sheep, near and likely at edge of  view-
blocking object

stalk sheep facing away from wolf; wolf facing 
sheep, far from sheep

chase sheep facing away from wolf; wolf facing 
sheep, close to sheep

The final group reflects situational awareness:

aware at least one sheep facing wolf

unaware no sheep facing wolf

anticipate all sheep facing wolf

There is also an unknown tag for scenarios that cannot be 
assessed as any of the above.

Tagging used a straightforward survey methodology:  9 
computer-science  undergraduates  each  annotated  the  20 
configurations  with any combination of  these tags.   The 
images  were  available  online,  in  color,  from  three 
consistent, fixed vantage points.  For this pilot study, the 
surveys were not anonymous.

Manual Scenario Extraction

This  initial  tagging  serves  as  manual  training  data  to 
extract common spatial semantic features between similar 
configurations.  To be effective, there  must be reasonable 
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agreement  between  taggers  on  the  interpretations.   A 
formal  statistical  measure  like  Kappa  correlation  is 
commonly  used  to  measure  intercoder  reliability  (Fleiss 
1971).  However, for simplicity, and to align with parallel 
work (in progress) that tries to weight the various choices, 
this work calculates a straightforward percentage based on 
the  number  of  participants  who  selected  a  tag.   This 
consensus-based  approach  stipulates  that  a  tag  with 
agreement below an empirically  determined threshold of 
65% is discarded as too ambiguous and therefore probably 
not computable.

Analysis  of  the discards  suggests  that  disagreement  is 
due primarily to two factors.  One is the lack of articulation 
in the objects.  For example, the states of sitting, standing, 
walking, running, and even sleeping all appear the same, 
but  they  can  have  profoundly  different  effects  on  the 
overall  interpretation.  The  other  is  the  lack  of  temporal 
cues  in  a  single  snapshot  of  a  dynamic  scene.   For 
example,  a  wolf  facing  away  from  a  sheep  could  be 
walking away, or it could be merely turning around.

The  goal  of  scenario  extraction  is  to  characterize  the 
kinds of details that contribute to different interpretations. 
They are informally organized into three categories.

Constraint Satisfaction  The  underlying  reasoning  form-
alism,  to  be  discussed  shortly,  uses  geometric  constraint 
satisfaction.  Some features of interest map directly to it:

• visibility:  can the wolf see the sheep, based on field of 
view, range, and visual acuity (possible degradation over 
range)?

• accessibility:  can the wolf get to the sheep it sees?

• boundary conditions:  when  do  states  apply  and  not 
apply, and what kind of transition is there between the 
two?  For example, is going from not visible to visible 
abrupt or smooth?

• scale and range:  behavior  may  be  based  on  size  or 
scope; e.g., wolves far from sheep may be more cautious 
than those close to them, so as not to alert the sheep.

Behavioral Roles  High-level  interpretation  of  objects  in 
concert requires an understanding of their case-based roles 
(Turner 1998; Cheng and Thawonmas 2004):

• disabler:  an object  that  hinders  an interpretation;  e.g., 
an uncrossable stream between the wolf and the sheep.

• enabler:  an  object  that  helps  an interpretation;  e.g.,  a 
bridge over the stream, or a tree for concealment.

• neutral:  an object that either party can use, but it favors 
neither; e.g., a wall for hiding.

• inert:  an  object  that  plays  no  discernible  role;  e.g., 
clouds.

• outward action:  what  an  object  can  and  cannot  do  to 
other objects; e.g., a wolf can attack sheep but cannot 
attack more than one simultaneously.

• inward action:  what an object can and cannot have done 
to  it  by  other  objects;  e.g.,  sheep  can  be  attacked  by 
more than one wolf simultaneously, but not by another 
sheep.

Superficial Planning  There is not enough information to 
do substantial planning currently, but some elements seem 
promising:

• necessary and sufficient conditions:  how objects initiate 
the trajectory for a chain of events; e.g., a wolf shows 
up, then the sheep flee.   They do not flee without the 
wolf.   Thus,  to  tag a  configuration without  a  wolf  as 
chase makes no sense.

• utility:  what the objects  value;  e.g.,  a wolf  “wins” by 
killing sheep, and sheep  “win” by not  being killed by 
wolves.

• Individual vs.  collective outcomes:  how interpretations 
differ according to scope; e.g., killing one sheep is bad 
for  the  individual,  but  it  may allow others  to  escape, 
which is good for the collective.

Knowledge-Base Augmentation

This informal characterization of semantic features is not 
adequate for an automated computational approach.  The 
algorithm needs  to  be  able  to  infer  substantial  unstated 
details  about  objects  from  commonsense  background 
knowledge.  A knowledge base provides this support.

Existing Knowledge Base  The  system  that  this  work 
extends  generates  a  set  of  plausible  images  from  a 
restricted class of English sentences describing zoo-related 
scenes.   It  employs  an  inheritance-based,  declarative 
knowledge  base  of  over  120  physical  concepts,  each  of 
which  either  inherits  its  attributes  and  rules  for  spatial 
interpretation  from  its  ancestors,  or  it  defines/overrides 
them itself.   Figure 3 is  a  highly simplified  abstraction, 
which Tappan (2004a) formally defines in detail.

Figure 3:  Simplified Knowledge Base

An  attribute  defines  whether  a  concept  exhibits  a 
particular spatial behavior;  e.g.,  whether a concept has a 
canonical front, which generally corresponds to its having 
a face or eyes.  As objects and concepts are not articulated, 
any head is always fixed in line with the orientation of the 
body.  This simplification eliminates the need to determine 
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the configuration of body parts; e.g., the body of the dog is 
oriented north, but it is looking east. 

A rule specifies when a particular spatial relation, like 
near,  applies  from  one  object  to  another.   It  uses  a 
formalism of geometric fields that describe a collection of 
cells  in  a  two-dimensional,  top-view,  polar  projection 
centered around the object (Yamada et al. 1992; Yamada 
1993; Gapp 1994; Olivier and Tsujii 1994; Freska 1992). 
Experimentation  suggests  that  32  sectors  and  100  rings 
similar to Figure 4 are sufficient for the current domain of 
concepts and relations.  Each cell defines a small subregion 
of the projection that can be conditionally inspected for the 
presence of other objects.

Figure 4:  Available Fields

Any  combination  of  selected  cells  among  the  3,200 
available is valid, but in practice,  only variations of two 
types define all spatial relations:  wedges for position and 
orientation  relations,  and  rings for  distance  relations. 
Figures  5a  and  5b  show  respective  examples  of  the 
relations  front-of and far-from for object  c, which is 
facing the direction of the arrows.

Figure 5:  Sample Wedge and Ring Fields

Each concept in the knowledge base has access to the 
attributes  and  rules  for  its  spatial  interpretation.   These 
rules  define  the  42  distance,  orientation,  and  position 
relations  in  Tables 1  through 3,  respectively.   For  space 
reasons,  Tables 2  and  3 omit  35 other  relations  prefixed 
with  direct,  which  specifies  a  narrower  interpretation 
with the same general meaning; e.g.,  direct-front-of 
would  fan  out  less  to  the  sides.   The  interpretation  of 
appropriateness depends on certain  ad hoc generalities of 
the concept.  For example, the relation  near is closer (in 
absolute terms) for a mouse than it is for an elephant due to 
their  differences  in  magnitude  (Hernández  1994;  Olivier 
and Tsujii 1994; Stevens and Coupe 1978).

Many relations  in  Table 3  have  both  local  and  global 
forms, which respectively apply in the intrinsic (or object-
centered)  and  deictic  (or  viewer-centered)  frames  of 
reference  (Herskovits  1986).   For  example,  the  intrinsic 
relationship in front of the dog specifies a region outward 
from the dog’s face, but the deictic relationship in front of  
the tree specifies  a  region  outward  from the  tree  to  the 
position of the viewer, which is not stated.

inside midrange-from

outside far-from

adjacent-to at-fringe-of

near

Table 1:  Distance Relations

facing facing-west

facing-away-from facing-northeast

facing-north facing-northwest

facing-south facing-southeast

facing-east facing-southwest

Table 2:  Primary Orientation Relations

local-front-of global-front-right-of

local-back-of global-back-left-of

local-left-of global-back-right-of

local-right-of between

local-front-left-of north-of

local-front-right-of south-of

local-back-left-of east-of

local-back-right-of west-of

global-front-of northeast-of

global-back-of northwest-of

global-left-of southeast-of

global-right-of southwest-of

global-front-left-of

Table 3:  Primary Position Relations

Each concept has access to its  contextually applicable 
rules  that  map  fields  to  relations.   For  example,  this 
(slightly abridged) rule returns the set  of all  objects that 
have  an  object  (instance)  of  this  concept  in  their  near 
field:

(RELATION near 
 (FIELD-MUST-CONTAIN ?b.field-near ?self)) 

This rule returns the set of all objects that are in the front 
field of this object, if it has a canonical front:

(RELATION facing 
 (TRUE ?self.has-canonical-front 
  (FIELD-MUST-CONTAIN ?self.field-front ?b)))

And this rule,

(RELATION in-back-of 
 (OR
  (TRUE ?b.has-canonical-front 
   (FIELD-MUST-CONTAIN ?b.field-back ?self)) 
  (FALSE ?b.has-canonical-front 
   (FIELD-MUST-CONTAIN ?b.field-north ?self))))

c

a

c

b



returns  the  set  of  all  objects  subject  to  the  following 
criteria:

• the other object has a canonical front (e.g.,  WOLF) and 
this object is in its back field; or,

• the other  object  does  not  have a canonical  front  (e.g., 
TREE) and this object is in its north field.

These  conditional  cases  account  for  the  deictic  and 
extrinsic frames of reference, respectively (Tappan 2004b; 
Herskovits 1986).  The latter extends the intrinsic frame by 
fixing the position of the viewer; e.g.,  in front of the tree 
(as seen from the north).

The final element of this stage combines the explicitly 
stated  knowledge  from  the  semantic  network  with  the 
implicitly  inferred  background  knowledge  from  the 
knowledge base.  Figure 6 depicts a simplified example of 
this process:  objects wolf and tree link to concepts SHEEP 
and WOLF, respectively.  Thus, wolf has access to the rules 
about itself and,  through inheritance,  also to its  ancestor 
concepts CANINE,  CARNIVORE,  ANIMAL, and THING.  The 
same process holds for  sheep.  It is important to note the 
distinction between an object, which is a unique instance in 
the configuration, and a  concept, which is a shared set of 
attributes  and rules  that  all  instances  of  it  must  have in 
common.   For  clarity,  this  distinction  is  rendered 
typographically  through italics  and  capitalized monotype 
font, respectively.

Figure 6:  Semantic Network Linked to Knowledge Base

Extended Knowledge Base  The  knowledge  base  in  the 
base version of this system targets how one object relates 
to  another  on  an  individual,  one-to-one  basis.   The 
scenarios to be classified in this work are on a collective 
basis,  which  requires  one-to-many,  many-to-one,  and 
many-to-many relationships.  For some semantic features, 
this  extension  requires  merely  adding  additional  spatial 
relations.  For example, this rule,

(RELATION migrating-with
 (AND
  (IS-CONCEPT ?self collective-animal)
  (IS-CONCEPT ?b    collective-animal)
  (FIELD-MUST-CONTAIN 
   (RANGE ?b field-adjacent field-midrange) ?self)
  (FIELD-MUST-CONTAIN 
   (RANGE ?self field-adjacent field-midrange) ?b)
  (SIMILARITY ?b.azimuth ?self.azimuth 0.7)))

returns  the  set  of  all  objects  subject  to  the  following 
criteria:

• this object and the other object are both descendants of 
COLLECTIVE-ANIMAL in the knowledge base; and,

• this object  and the other object  are in any range field 
from adjacent to midrange of each other; and,

• this object and the other object are facing generally in 
the same direction.

Defining  collective  concepts  is  also  straightforward: 
through  the  existing  restricted  multiple  inheritance  (no 
conflicts  allowed),  SHEEP and  WOLF in  Figures 3  and  6 
now  additionally  inherit  from  the  new  COLLECTIVE-
ANIMAL,  which maintains  this  new,  shared  migrating-
with rule.

Not all the manually identified semantic features would 
be so straightforward to incorporate, of course.  For the 12 
tags in this study, however, extending the knowledge base 
is relatively easy.

Automatic Classification

The knowledge base provides the contextually appropriate, 
computable background knowledge to identify which of its 
relations apply between which objects in a configuration. 
This geometric inference process is documented throughly 
in  Tappan  (2004b,  2008a).   It  generates  a  substantial 
number of inferences, which correspond to unstated spatial 
dependencies.  For example, Figure 7 shows experimental 
results from Tappan (2008a) for related work, where this 
number ranged from 27 inferences for 3 objects to 602 for 
10 objects.

Figure 7:  Inferred Relations

Defining  relations  for  pragmatic  spatial  features  is  an 
iterative,  experimental  process.   For  each  change,  the 
original  20  tagged  configurations  were  run  against  the 
updated knowledge base to determine the effectiveness at 
inferring any of the tags.  If these results unsatisfactorily 
deviated from expectation, as defined in the next section, 
the  knowledge  base  was  manually  tweaked,  and  the 
process  was  repeated.   This  approach  constitutes 
supervised learning in machine-learning terms (Harter and 
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Hert 1997).  The goal is to tailor the knowledge base by 
hand to perform well on data it has already seen, referred 
to as the training set.

Experiments

Distilling the essence of semantic features through manual 
training  is  admittedly  subjective,  arbitrary,  and  ad  hoc. 
The true test of effectiveness is actually in how well the 
approach performs on data it has never seen, referred to as 
the  test set.  To this end, an additional 20 configurations 
were generated as described earlier.

These  new  configurations  were  combined  with  the 
original  ones  and  randomly  shuffled.   The  original 
participants then tagged this set as described earlier.  The 
time  between  the  original  and  subsequent  tagging  was 
three weeks to control for any residual familiarity with the 
originals.

Results and Discussion

For  both  the  training  and  test  sets,  performance  was 
evaluated according to the agreement between the results 
from the human taggers and the computational approach. 
For this approach to be effective, variation in the human 
performance must be considered because not every human 
tagged  the  same configurations  the  same way.   Thus,  if 
humans cannot determine a consistent answer, it might be 
unfair to expect a computer to do so.

Controlling  for  human  inconsistency  was  a  two-
dimensional  process.   Lateral  agreement,  which  was 
already discussed for  the training set,  is  defined as  how 
closely  the  tags  for  each  configuration  within  either  set 
agree among all the participants.

Longitudinal  agreement  is  defined  as  how  consistent 
each participant was between the original and subsequent 
tagging  of  the  same  configurations.   This  measure  was 
intended  to  verify  that  the  participants—students  who 
knew there are no true right or wrong answers—took the 
task  seriously  and  gave  consistent  answers.   It  also 
moderately controlled  for  possible  survey  fatigue,  where 
participants grow tired of answering questions and put less 
effort into later ones (Porter et al. 2004).  The system does 
not  use  this  measure,  but  it  appears  to  be  helpful  in 
informally interpreting the salience of the results.

The tags produced by the computational approach and 
the human participants can agree or disagree in four ways, 
as indicated in Table 4.

Type Computer Human

true positive (TP) present present

true negative (TN) absent absent

false positive (FP) present absent

false negative (FN) absent present

Table 4:  Possible Tag Agreements

The ultimate performance measure is based on the standard 
approach for information retrieval (Harter and Hert 1997):

• precision is the accuracy or relevance of the classifica-
tions;  i.e.,  the  probability  that  a  configuration  will  be 
classified with a correct tag.  It is defined as the number 
of true positives divided by the sum of the true and false 
positives.

• recall is the completeness or coverage of the classifica-
tions; i.e., the probability that all the relevant configura-
tions  will  be  found given  a  tag.   It  is  defined  as  the 
number of true positives divided by the sum of the true 
positives and false negatives.

Training Set

As Table 5 shows, overall agreement on the 20 configura-
tions  in  the training set  is  perfect:   100% precision and 
100% recall for all tags.  These results are not surprising, 
however,  because the knowledge base was painstakingly 
tailored  to  match  these  configurations  precisely.   This 
decision  may  have  actually  overfitted  the  data  and 
degraded the results of the subsequent test set (Tetko et al. 
1995).

Table 5:  Training Results

Test Set

The test  set  evaluates  the computational  performance on 
the unseen configurations.  The previously seen configura-
tions were removed because there is no point in retesting 
them,  and  they  would  skew  the  results  in  the  positive 
direction.  As Table 6 shows, overall agreement on the 20 
remaining new configurations in the test set is respectable: 
70% precision and 70% recall.  Although these results are 
not  statistically  significant  given  the  small  sample  size, 
they  do  suggest  that  this  proof-of-concept  work  has 
promise.

Tag TP TN FP FN Precision Recall
migrate 3 17 0 0 1.0 1.0
graze 4 16 0 0 1.0 1.0
drink 2 18 0 0 1.0 1.0
flank 3 17 0 0 1.0 1.0
surround 5 15 0 0 1.0 1.0
conceal 6 14 0 0 1.0 1.0
stalk 7 13 0 0 1.0 1.0
chase 13 7 0 0 1.0 1.0
aware 11 9 0 0 1.0 1.0
unaware 5 15 0 0 1.0 1.0
anticipate 2 18 0 0 1.0 1.0
unknown 0 20 0 0 n/a n/a

sum 61 179 0 0
average 1.0 1.0



Table 6:  Test Results

Discussion

Even  for  this  small  tag  set,  many  independent  and 
dependent  relationships  are  apparent.   Some  tags  are 
disjoint.   For  example,  graze and  migrate are  not 
compatible given the small number of sheep.  For a larger 
number,  it  is  conceivable  that  one  subgroup  could  be 
grazing while the other is migrating, but the configurations 
were not set up this way.  Other tags may have overlaps. 
For  example,  graze and  drink are  compatible,  as  are 
flank and  surround.   Others  may  exhibit  logical 
entailment.  For example,  stalk implies that the wolves 
are aware of the sheep, but the sheep are unaware of the 
wolves.   Some have real-world semantic inconsistencies. 
For  example,  chase implies  that  each  group  should  be 
aware of the other, but aware requires at least one sheep to 
be facing the wolves.  In practice, fleeing sheep will not 
behave this way.  Feature rules based on orientation appear 
to be more effective than those based on range, possibly 
because it is difficult to specify how distance affects their 
applicability.   Finally,  follow-up analysis  with  the  parti-
cipants  suggests  that  false  positives  appear  to  be  more 
plausible than false negatives, perhaps because it may be 
easier to justify the possible presence of a semantic action 
than to claim its complete absence.

Future Work

This pilot study is intended to direct a more detailed study. 
A number of extensions are under consideration:

• Incorporating a stronger statistical  definition of agree-
ment.

• Weighting the computational results to reflect the human 
results  so  multiple  interpretations  can  be  ranked  by 
preference.

• Including some degree of articulation in the objects.

• Supporting  more  than  one  configuration  snapshot  to 
provide  some  degree  of  temporal  progression  in  a 
scenario.

• Adding  more  breadth  and  depth  to  the  objects  and 
relations under study.

• Considering  deeper  plan  extraction,  namely  strategic, 
tactical,  and  operational  elements,  for  a  top-down 
decomposition from  what the objects are doing to  how 
they are doing it (Azarewicz et al. 1989).

• Running simulations to determine empirical values for 
some  of  the  ad  hoc choices  in  the  knowledge  base 
(Tappan 2008c).

• Performing sensitivity analysis to determine how certain 
properties transition from one value to another.

• Allowing the participants to control the vantage points 
dynamically.   The  rendering  engine  allows  complete 
control over the perspective, but this functionality is not 
available online.  It may facilitate additional interpreta-
tions.

Conclusion

This pilot study considered the feasibility of adding higher-
level,  collective  pragmatic  analysis  of  objects  to  the 
existing lower-level, individual analysis in the base system. 
It  showed  respectable  results  within  a  tightly  confined 
environment.  These results are not statistically significant 
due to the small sample size, but they are promising.  A full 
study  would  undoubtedly  uncover  many  more  implicit 
semantic and pragmatic dependencies.
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