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Abstract
Classroom assignments are an effective way for students 
to  investigate  many  important  (and  fun)  aspects  of 
artificial  intelligence.   However,  for  any  project  of 
reasonable  breadth  and  depth,  especially  involving 
multiple agents and graphics, most of the programming 
goes  into  tedious,  error-prone  administrative  tasks. 
Moreover, time constraints usually preclude an extensible 
and  reusable  design,  so  this  overhead  repeats  itself 
throughout  the  semester.   This  pedagogy-oriented 
modeling-and-simulation  framework  provides  all  the 
necessary support capabilities to get students up to speed 
quickly on playing with AI content.  It contains extensive, 
highly  configurable,  yet  user-friendly,  engineering, 
physics,  and  communication  models  for  arbitrary 
components within a definable task environment.  These 
components  are  managed  automatically  in  a  stochastic 
simulation  that  allows  students  to  define,  test,  and 
evaluate  their  performance  over  a  wide  range  of 
controlled experiments.

Introduction and Background  

Student   assignments   and   experiments   in  artificial 
intelligence can be fun, exciting,  and educational.    Most 
programming   assignments,   however,   involve   a 
disproportionate amount of mundane, administrative code 
that distracts students from the AI focus.   This pedagogy
oriented  system provides a straightforward framework of 
highly   extensible   components   and   functionality   to 
investigate   many   concepts   and   strategies   in   AI   and 
intelligent   control   systems   (Russell  and  Norvig  2003, 
Bourg  and  Seemann  2004).     It   also   helps   foster   an 
understanding   of   proper   methodology   in   the   design, 
implementation,   testing,   and   evaluation   of   formal 
experiments.

This system is a lightweight version derived from a full
scale,  accredited simulator developed for  the Department 
of  Defense   to  evaluate  components   for   the  U.S.  Army's 
Future Combat Systems program (withheld, Engle 2005). 
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Another derivative has also been used successfully in AI 
for   interpreting   spatial   relations   in   natural   language 
processing   (withheld).     For   portability,   the   system   is 
written entirely in Java, with Java 3D as the display engine.

Modeling

Within the framework of this system,  modeling refers to 
defining what the entities to study are and what they can 
do.   The  simulation counterpart  then  puts  them  into 
operational contexts for formal evaluation.

Environment

The environment is a three-dimensional world of arbitrary 
scale.  As fancy graphics are not the focus, the working 
area is normally depicted as the tabletop in Figure 1.  The 
viewer  may  interactively  move  to  any  vantage  point 
throughout  a  simulation,  as  well  as  click  on  entities  to 
query  them  about  their  underlying  details.   The  terrain 
model currently supports only this flat surface, but vertical 
relief may eventually be incorporated.  The default physics 
model provides basic, global support for naive kinematics 
like  velocity,  acceleration,  and  gravity  (Bourg  2002). 
Students can configure it in various ways or substitute their 
own plug-and-play models.

Figure 1:  The World
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Components

Components  are  hierarchical  building  blocks.   Static 
components passively occupy space.  They typically serve 
as immobile obstacles to navigation or visibility.  Dynamic 
components interact with the world by generating and/or 
responding to events.  A component is physically a three-
dimensional box, with height, width, and depth properties, 
that  may  recursively  connect  to  any  number  of 
subcomponents  through  one  of  two  interconnection 
models:

• The 6-DOF model in Figure 2 provides six degrees of 
freedom (DOF):  x,  y,  z coordinates for position, and 
yaw, pitch, and roll angles for the three attitude axes.  It 
is the preferred model for most components because it 
provides  the  most  flexibility  to  move  and  face 
anywhere.

• The  5-DOF model  in  Figure  3  provides  the  same 
position  representation,  but  it  uses  azimuth and 
elevation angles for only two attitude axes.  It is useful 
for aimable components like sights and gun barrels.

The  format  for  specifying  and  reporting  any  degree  of 
freedom supports two interconvertable systems:

• Absolute  angles   reference   the   contextfree,   fixed 
coordinate system of the world.  For example, north is 
always 0° yaw or azimuth.

• Relative angles reference the contextsensitive, variable 
coordinate   system   of   each   component   (and/or   its 
supercomponents).  For example, 0° yaw or azimuth is 
in front of a component, whereas +45°  is to its front
right.  Similarly, if the supercomponent is pitched +10° 

(up),   and   the  component   is  pitched  10°  (down),   the 
resulting pitch of the component is 0°.

The   interconnections,   once   initially   defined   by   the 
students,   are   managed   automatically.     For   example, 
updating the position and/or attitude of the base entity, say 
the hull of a tank, correspondingly updates its turret, which 
subsequently   updates   the   gun   barrel.     The   underlying 
mathematical   model   uses   quaternions,   which   are   an 
interesting modeling topic in their own right.  This code is 
fully commented and available for student inspection.

Either  model supports optional constraints  to limit   the 
minimum and maximum range of each degree of freedom. 
For example, the gun may have ±10° travel in pitch, and 0° 
in azimuth.   Thus, in order to change the azimuth of the 
gun, the turret, on which it is mounted, must be updated. 
The   physics   model   manages   the   optional   velocity   and 
acceleration constraints.

One  of  the  most  useful  applications  of  composite, 
articulated  components  is  for  sensors,  which  receive 
information  about  the  environment.   The  basic  form 
consists of two parts:

• A  field  of  view (FOV)  in  Figure  4  is  a  pyramidal 
frustum, defined  by  height  and  width  angular  limits, 
that  projects  relative  to  a  definable  origin  on  the 
component.  Anything within the frustum is considered 
to be in view of the sensor.  Additional constraints like 
obstacles to line of sight and degradation of acuity over 
distance are handled separately.

• A field of regard (FOR) specifies the limits over which 
the  FOV can  move,  if  it  is  configured  as  a  moving 
sensor.  Together, the FOV and FOR support scanning. 
A real-world example is  using binoculars  to locate a 
target:   the  FOV is  narrow,  and  it  must  be  updated 
across  the  FOR,  typically  through  restricted  neck 
movement.

This  built-in  physics  and  engineering  functionality  frees 
students to focus on the AI aspects of their projects.  For 
example, one course assignment used two or more sensors 
as eyes, in combination with rudimentary trigonometry, to 
emulate  stereoscopic  vision  for  range-finding.   The 
students  discovered  the  law  of  diminishing  returns  for 
more  than  two  sensors.   Similarly,  they  investigated 
different  arrangements  of  two sensors  to  model  the pros 
and cons of how various animals view the world.

Figure 4:  Frustum
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Updating  can  be  configured  to  occur  on  demand  or 
automatically  (e.g.,  initially  clockwise at  10° per second 
until  the  limit  is  reached,  then  the  reverse,  repeated  a 
configurable  number  of  times,  including  indefinitely). 
This feature eliminates the need for students to manage the 
extensive  complexities  of  initiating,  terminating, 
synchronizing, and timing actions in their own code.

Sensor configurations can also automatically account for 
simple,   realworld,   physical   limitations.     For   example, 
acuity may degrade as a configurable function of distance, 
thereby making faraway objects in field of view harder to 
see   than   closer   ones.     This   information   couples   with 
probabilitybased   support   functions   to   produce   false 
positives (seeing something that is not there) and negatives 
(not seeing something that is there).  Such rich capabilities 
support   powerful   analyses   of   system   performance   and 
reliability.

Agents

The   primary   role   of   components   is   to   acquire   raw 
information   about   the   environment.     They   may   also 
execute   studentsupplied   code   to   preprocess   it;   e.g., 
sorting   objects   by   distance   and   filtering   some   out. 
However,  they are generally “dumb”  engineering devices 
in that they do not make highlevel decisions based on their 
localized, contextually weak information.  Agents play this 
global   role   as   a   hierarchical   collection   of 
intercommunicating   components.   It is here that students 
normally investigate the AI aspects of their designs.

This command-and-control framework is based heavily 
on  established  design  patterns  in  object-oriented 
programming (Gamma et al. 1995).  Effective engineering 
control systems (intelligent or otherwise) usually reflect a 
purposeful,  well-structured  design.   In  software 
engineering, however, students (and professionals) tend to 
build haphazard contraptions that bear little resemblance to 
the  real-world  counterparts  they  are  modeling.   This 
system is designed to foster design-related self-discipline. 
In  particular,  its  agent  framework  natively  supports  the 
following design patterns for students to augment:

Structural patterns define what entities are:

• The  Composite  pattern,  as  described  earlier,   supports 
hierarchical structures of components.

• The Flyweight pattern supports multiagent simulations 
of many entities and/or of entities with complex, shared 
hierarchical   structures.     It   reduces   memory   use   and 
simulation   overhead,   thereby   improving   simulation 
speed.

• The  Facade and  Decorator patterns  allow  baseline 
entities  to  play  similar,  reusable  roles  with  minimal 
additional  code  or  modification.   For  example,  a  car 
and truck are basically subtypes of a common vehicle 
that  is  qualified  as  passenger-carrying  and  cargo-
carrying, respectively.  In all other respects, they may 
be the same.

Creational patterns define how to build and configure the 
structure of entities:

• The  Prototype,  Factory,  and  Builder patterns provide 
an  object-oriented  production  mechanism  within  the 
simulation.  For example, a student might specify for a 
traffic simulation that there are any number of cars and 
trucks  with  certain,  unique  properties.   Setting  up  a 
simulation  should  not  require  substantial  coding 
because  these  patterns  do  the  lower-level  assembly 
work.

Behavioral patterns define what entities can do:

• The  Strategy pattern supports  the reusable,  plug-and-
play philosophy of components.  It allows students to 
swap different implementations under investigation to 
determine their comparative performance.

• The  Chain  of  Responsibility pattern  supports 
disciplined  engineering  considerations  in  the 
interconnection  of  components.   At  the  heart  is 
delegating  tasks  to  the  proper  components,  then 
enforcing  an  established  chain  of  command  for 
information  transfer  up  and  down  the  hierarchy.   It 
reduces the opportunity for spaghetti code and hacks, 
and it makes such inferior solutions apparent.

• The  Visitor pattern serves as the transmission medium 
within the chain of command.  It can be modeled with 
real-world  engineering  considerations,  such  as 
bandwidth, speed, latency, noise, and so on.

• The  Command and  Interpreter patterns  serve  as  the 
intercommunication content model to allow events and 
decisions  to  propagate  appropriately  among  entities. 
For example, one course assignment had a centralized 
traffic controller instructing agents to avoid collisions 
through different classes of English-based commands: 
absolute  (“turn  to  0  degrees”),  quantitative  relative 
(“turn  left  by  90  degrees”),  and  qualitative  relative 
(“keep turning left until I say stop”).

• The  Observer and  Mediator patterns  serve  as  the 
intercommunication delivery model to pass commands 
between entities.   They support  variations on one-to-
one  and  one-to-many  transmissions  of  arbitrary, 
student-defined content.

• The  State pattern provides a straightforward decision-
making  framework  for  implementing  finite-state 
processes with minimal code.  Students can focus on 
the content and meaning of the processes, instead of on 
their implementation.

Simulation

A stochastic, discreteevent simulator manages all entities 
and   serves   as  a   testandevaluation   framework.  Students 
first design, assemble, and configure their components and 
agents, then they place them into an operating context of 



the   environment.     The   intent   is   to   run   controlled 
experiments to measure performance according to students' 
criteria.  This process consists of two parts:

• A control simulation establishes baseline performance; 
e.g.,  tracking and intercepting a target  in  a  predator-
prey simulation.

• A  test simulation augments the  baseline by changing 
one—and only one—aspect  of  it;  e.g.,  increasing the 
magnification of the predator's eye sensors, or replacing 
them  with  a  different  model.   Any  measured 
performance differences between the baseline and test 
simulations can therefore be directly attributed to this 
perturbation  of  the  model.   In  other  words,  it 
establishes a cause-and-effect relationship.

In  both  parts,  a  general-purpose  logger  records  standard 
details (like time, positions, attitudes, and events), as well 
as those specified by the student.  The logs export as plain 
text files.

A  major  strength  of  stochastic  simulation  lies  in  its 
probability-based  non-determinism.   A  single  run  is 
therefore meaningless from an analytical standpoint:  the 
results could be representative of reality, or they could be 
purely  coincidental,  and  there  is  no  way  to  assess  any 
confidence in either outcome.  The simulation framework 
allows students to run an arbitrary number of independent 
iterations (often thousands) with the same initial conditions 
so  that  the  probabilities  unfold  naturally  over  their 
inherent,  yet  hidden,  independent  and  dependent 
distributions.  The logger keeps track of the individual and 
aggregate results.

Analysis

Analysis is  an external  process involving the premise of 
the experiments, their results, and the students' qualitative 
and quantitative reasoning abilities to process the data and 
draw conclusions.  Consistent with the overall philosophy 
of  this  work,  the  students  are  freed  from  most  of  the 
mundane,  tedious  overhead  that  distracts  them from the 
focus.  The analysis work, however, is entirely their own, 
and  is  done  with  external  tools  like  spreadsheets  and 
statistics packages.  This dovetails well with the scientific 
method of running experiments to prove (or disprove) and 
explain  hypotheses.   While  it  certainly  possible  that 
students can randomly generate and test (in other words, 
hack) until something acceptable emerges, with sufficient 
pedagogical emphasis from the instructor on experimental 
discipline  and  rigor,  students  should  learn  firsthand  the 
value of well-defined experiments.

Discussion and Future Work

In  Spring 2007,  an  earlier  proofofconcept   form of   this 
system   was   successfully   fielded   in   an   upperdivision 
undergraduate AI course.  The encouraging results, as well 

as   student   feedback,   contributed   to   its   continual 
development and improvement.   It is expected to play the 
core computational role in the next offering of this course. 
Once stable, it will be made available in the public domain 
for academic use.
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