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Abstract 
This system addresses issues in reasoning intelligently over 
spatial descriptions to produce representations of plausible 
solutions.  Specifically, it looks at coupling a semantic-
network-based explicit representation of a natural language 
description with an ontology of implicit background 
knowledge.  The ontology contains generalized rules for 
interpreting what objects are and how they should and 
should not be interpreted alone and in spatial 
interrelationships.  In addition, the linguistic issues of 
underspecification and uncertainty in spatial semantics and 
pragmatics are considered. 

Introduction   

Given a simple English description of a real-world scene, say, a 
dog is in front of a house and near a tree, anyone can easily 
formulate some kind of corresponding mental image.  The 
description itself contributes only a small part.  In fact, most of 
the details come from a commonsense understanding of the 
components in the scene and how they can and cannot be laid out 
in a realistic manner.  Performing similar spatial reasoning is the 
goal of this system, which takes a formal representation of a scene 
description and produces one or more solutions that specify 
corresponding locations and orientations for its objects.  Such 
solutions can directly support applications in natural language 
processing like text understanding, question-and-answer systems, 
user-friendly animation and graphical rendering tools, etc. 

Reasoning over spatial layouts is a difficult task for a 
computer.  As Herskovits (1986) concludes, “[a] computational 
treatment … will require much greater sophistication than naive 
representation theory would lead us to expect.”  What makes the 
problem especially difficult is that computers lack the vast 
storehouse of knowledge that people possess and the amazing 
abilities to reason intelligently over it.  This system addresses 
these problems, as well as the linguistic and knowledge-
representation issues of underspecification, or the lack of 
complete details in any description, and uncertainty, or the wide 
range of valid interpretations for it. 
 Despite the potential usefulness of this work, very few related 
systems exist.  CarSim (Dupuy et al. 2001) focuses on graphically 
rendering the results of vehicle collisions based on accident 
reports.  WordsEye (Coyne and Sproat 2001) leans more toward 
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depicting appropriate poses for actions.  Neither appears to 
address the linguistic and cognitive side of text understanding 
strongly.  In fact, most systems that do spatial layout take a 
purely geometric approach and do not rely on knowledge at all 
(Xu, Stewart, and Fiume 2002, Yamada 1993). 

Semantic Network 

The scene description is defined by a semantic network of 
concepts, attributes, and relations, which map closely to its 
nouns, adjectives, and prepositions, respectively.  This paper 
addresses only concepts and relations.  In particular, the concepts 
are limited to concrete (i.e., non-figurative) entities that would 
typically be found in a zoo.  Aside from the obvious visual 
appeal, plants and animals exhibit a wide variety of important 
spatial characteristics.  The relations are limited to binary 
constructs such as X in-front-of Y.  Almost all English spatial 
prepositions, which have been studied heavily, fall into this 
category (Freeman 1975, Bennet 1975, Herskovits 1986, Hill 
1982, Talmy 1983, and Hawkins 1984). 
 As in most related systems (except Dupuy et al. 2001), scenes 
are fabricated by hand rather than input from existing sources.  
They must also be static, which is a common limitation due to the 
complexity of dynamic movement, time dependencies, etc. 
(Adorni, Di Manzo, and Giunchiglia 1984).  Finally, only two-
dimensional reasoning is supported because most scenes do not 
actually require the expressive power of true three-dimensional 
reasoning (Xu, Stewart, and Fiume 2002). 
 The semantic network serves as a formal representation of the 
explicit knowledge specified in the description.  For example, 
Figure 1 depicts the statement the dog is to the left of the cat, 
near the cat, and facing away from the cat.  Each node 
specifies a concept instance that refers to a unique entity in the 
description.  Unique labels distinguish between multiple instances 
of the same type; e.g., cat1, cat2, Fido, etc.  Each link specifies a 
binary relation that refers to a spatial context formed between 
its source and target concept instances. 

DOG
left-of

facing-away-from
near CAT

 
Figure 1:  Semantic network 



Knowledge Base 

The explicit knowledge in the semantic network supplies only the 
syntactic framework for interpretation.  Nothing in it defines the 
context-independent semantics of what a dog and cat are, for 
instance, or the context -dependent pragmatics of what it means 
for one to be in front of the other, etc.  For humans, this implicit 
knowledge comes from an acquired understanding of the world.  
The knowledge base provides some of this background by 
formally defining how the concept instances and relations are 
interpreted in context.  It addresses the problem of 
underspecification by augmenting the explicit syntactic knowledge 
with implicit semantic knowledge.  The mechanism is simple:  
each concept instance in the semantic network has a link to a 
corresponding concept definition in the knowledge base.   
 The knowledge base is an ontology structured as an inheritance 
hierarchy of concept definitions that specify a framework for 
their stereotypical interpretation.  Analogous to the way the 
animal kingdom organizes species based on their shared 
morphological characteristics and behaviors, the knowledge base 
organizes its concept definitions by shared spatial characteristics 
and behaviors.  For example, one branch may contain concept 
definitions that are best approximated spatially as a sphere and 
support a particular interpretation of the in-front-of 
relation, whereas another branch may do so with a cylinder and a 
different interpretation. 
 Concept definitions lower in the hierarchy are inherently more 
specific than the more general concept definitions above them and 
inherit their contents.  For example, in biological terms, a dog is a 
canine and inherits its interpretation framework, and likewise for a 
canine, which is a mammal, and for a mammal, which is an animal, 
and so on.  Multiple inheritance permits a concept definition to 
derive from more than one branch, although the possibility of 
conflicts must be considered (e.g., it cannot be approximated as 
both a sphere and a cylinder).  Each concept definition directly 
specifies or indirectly inherits five components:  properties, 
fields, constraint rules, inference rules, and contexts. 

Properties 
A property is a straightforward slot-filler construct that assigns a 
value to a variable.  Other components in a concept definition (or 
in another concept definition linked to it by a relation) can be 
contingent on this value or even on the presence or absence of the 
property itself.  The most common property is the boolean 
has-canonical-front, which specifies whether a 
concept definition is interpreted as having a generally accepted 
front side and therefore is capable of facing something else.  This 
behavior is shared by most animals, for instance but not by 
plants. 

Fields  
A field defines the geometry of a two-dimensional plane for space 
within and around a concept instance (Schirra and Stopp 1993; 
Gapp 1994).  It is projected onto the cells of a polar grid that 
situates the concept instance in the center as shown in Figure 2.  

The grid can be oriented such that the arrow always faces outward 
from the face of a concept instance (if applicable) or always faces 
north (assumed to be the back of the computer screen).  Although 
various shapes can be projected onto this grid, only wedges and 
rings have so far proved necessary.  Face-oriented wedges define 
areas like front, back, left, right, etc., which depend on where the 
concept instance is facing.  North-oriented wedges define areas 
like north, south, east, west, etc. and never rotate.  Rings define 
distances from the center like adjacent, near, far, etc. 

a b  
Figure 2:  Field geometry (top view) 

 The geometry of a field is used primarily for determining 
whether the position of another concept instance satisfies a 
relation between it and the concept instance possessing the field.  
For example, the relation in-front-of is typically bound to 
the front field of a concept instance.  Thus, for any concept 
instance to be inferred as "in front of" this concept instance, it 
must appear within this field. 
 Overlaid on the geometry is a probabilistic topography used 
for generating a position of another concept instance such that 
it satisfies the interpretation of a relation.  The most effective 
topography seems to be a normal distribution through the core of 
the field as shown in Figure 3, where darker shading indicates 
higher probability.  This mechanism appears to provide for a 
realistic distribution where central positions are more likely than 
those at the periphery. 

a b  
Figure 3:  Field probability topography 

Constraint Rules 
The interpretation of a relation comes from the context formed by 
the two concept instances it links.  A constraint rule defines this 
interpretation by specifying how each concept instance must 
interact with respect to their fields.  The only rule within the 
scope of this paper, FIELD-MUST-CONTAIN, requires that 
the target concept instance appear somewhere within a specific 
field of the source concept instance.  For example, the relative 
distance relation 

(RELATION near 
 (FIELD-MUST-CONTAIN ?b.field-near ?self)) 

applied to dog near cat requires that dog (bound to ?self) 
appear in the near field of cat (bound to ?b).  The variable 



?self always binds to the concept instance linked to the 
concept definition containing the rule.  Likewise, ?b always binds 
to the other concept instance of the relation. 
 Constraint rules may also be conditionally evaluated based on 
the properties of either concept instance.  For example, 

(RELATION facing 
 (PROPERTY-IS-TRUE 
  ?self.has-canonical-front 
  (FIELD-MUST-CONTAIN  
   ?self.field-front ?b))) 

would apply the constraint rule for dog facing tree, but not for 
tree facing dog because only dog has a true value for property 
has-canonical-front.  Thus, a tree, lacking a canonical 
front, cannot be constrained to face anything. 
 Relations conditionally dependent on the existence of a 
canonical front are the most complex.  For example, in-
front-of has two disjoint constraint rules: 

(RELATION in-front-of 
 (PROPERTY-IS-TRUE ?b.has-canonical-front 
  (FIELD-MUST-CONTAIN ?b.field-front ?self)) 
 (PROPERTY-IS-FALSE  
  ?self.has-canonical-front 
  (FIELD-MUST-CONTAIN  
   ?b.field-south ?self))) 

 If the concept instance bound to ?b is linked to a concept 
definition that possesses a canonical front, then its front field 
(e.g., Figure 2a) is evaluated in the constraint rule because it 
always projects outward relative to the direction it is facing.  
Otherwise, its south field is evaluated.  This mechanism addresses 
the difference between a local and global frame of reference (Claus 
et al. 1988).  For local, such as dog in-front-of cat, the 
interpretation is solely in terms of the two concept instances.  For 
global, such as dog in-front-of tree, it additionally involves the 
position and orientation of the viewer of the scene (Herskovits 
1986).  To this effect, the viewer is assumed to reside in the 
south and face the center, which corresponds to looking at the 
scene on a computer screen.  Thus, dog in-front-of tree is 
actually interpreted as dog between tree and viewer. 

Inference Rules 
A constraint rule specifies a template for positioning and orienting 
a pair of concept instances based on a relation between them.  An 
inference rule is the opposite of this:  it determines which 
relations hold between any pair of concept instances in the 
solutions generated for the constraint rules.  This serves the 
purpose of inferring implicit relationships that were not stated in 
the scene description.  For example, if a solution to wolf near 
tiger results in wolf being north of tiger as well, then wolf 
(bound to ?self) would be located in the north field of tiger 
(bound to ?any), thereby inferring the relationship wolf north-
of tiger: 

(IS-IN-FIELD ?self ?any.field-north 
 (INFER-RELATIONSHIP north-of ?self ?any)) 

 The variable ?any binds with all concept instances one at a 
time in the semantic network.  If the IS-IN-FIELD 
dependency is satisfied for any pairing of concept instances, then 
the inferred relationship is bound to them.  For example, the 
evaluation of a semantic network containing the set of concept 
instances wolf, tiger, and tree would be the set {{wolf, tiger}, 
{wolf, tree}, {tiger, wolf}, {tiger, tree}, {tree, wolf}, {tree, 
tiger}}, where the first element of each pair is ?self and the 
second is ?any.  As in constraint rules, ?self always binds to 
the concept instance linked to the concept definition containing 
the rule. 
 Again, conditional evaluation is supported.  For example, if 
wolf is oriented such that its front is opposite tiger, then tiger 
(bound to ?any) would be found in the back  field of wolf 
(bound to ?self), thereby inferring the relationship wolf 
facing-away-from tiger: 

(PROPERTY-IS-TRUE ?self.has-canonical-front 
 (IS-IN-FIELD ?any ?self.field-back  
  (INFER-RELATIONSHIP  
   facing-away-from ?self ?any))) 

 The nearly identical inference tree facing-away-from wolf 
would not be made because the concept definition for tree 
specifies that it does not have a canonical front. 

Contexts 
The conditional evaluation presented so far depends entirely on 
the properties of the two concept instances in a relationship.  
This mechanism guides the reasoning by evaluating only 
applicable rules.  It primarily addresses the context -independent 
semantics of what each instance is and what it can or cannot 
support.  It does not strongly address the context -dependent 
pragmatics of interaction between instances.  This role is played 
by contexts, which specify for each concept definition how it 
should be interpreted in a specific relationship with another 
concept definition.  For example, the relationship X under Y 
generally means X is under the bottom side of Y.  The majority 
of concept definitions can inherit this default interpretation.  
However, if Y is a tree, for instance, it is more appropriate to 
override the interpretation to read X is under the top of Y 
(where top loosely refers to the canopy).  Thus anything under a 
tree is interpreted as being under its canopy, not under its base.  
Of course, the original context could be preserved for anything 
that really belongs there, say worms. 
 Contexts can be defined tightly between specific concept 
definitions (e.g., a woodpecker in an oak tree) or loosely between 
categories of concept definitions (e.g., any kind of bird in any kind 
of tree).  This supports a powerful yet concise generalization 
capability that cleanly handles both the majority interpretation 
and various exceptions. 

Constraint Propagator 

A constraint rule is merely a template that restricts a possible 
solution.  It is the responsibly of the constraint propagator to 
satisfy all applicable constraint rules simultaneously by 



generating positions and orientations for all concept instances in a 
semantic network.  This collection of results, called a solution set, 
is not unique.  In fact, an effectively infinite number of solution 
sets can be consistent with a scene description.  This lack of 
preciseness in natural language descriptions greatly complicates 
automated text understanding.  Since all solution sets can be 
considered equally valid, this system uses a probabilistic 
approach to cull the solution sets to those containing the most 
likely positions and orientations.  The implication (yet to be 
demonstrated) is that higher-probability solution sets are 
perceived as generally more acceptable (or less disputable) and 
can thus be taken as a loosely defined "default" interpretation.   

a b  
Figure 4:  Intersected front and near fields 

 In Venn-diagram style, constraint rules for each relation are 
evaluated as the intersection of their contributing fields.  For 
example, in dog in-front-of cat and dog near cat, dog must 
be simultaneously located within both the front field and the 
near field of cat.  The intersection of these respective wedge-
shaped and ring-shaped fields in Figure 2 limits the possible 
positions of dog to the shaded area in Figure 4a.  The probability 
topography of each field in Figure 3 is joined in the intersection as 
well, thereby making the darkest area in Figure 4b the most likely 
position for interpretation of the combined relation in-
front-of-and-near. 
 The final step in the spatial reasoning is to apply all available 
inference rules to all pairings of concept instances in the semantic 
network.  If desired, the resulting inferences can then be inserted 
back into the semantic network, thereby augmenting it with an 
explicit, commonsense spatial understanding of its contents.  The 
caveat is that different solution sets may produce different, 
possibly incompatible, inferences.  Augmenting identical clones of 
the semantic network (one per solution set) solves this problem, 
but it is beyond the scope of discussion. 

Results and Discussion 

The fuzzy, qualitative nature of spatial relations hinders a formal, 
quantitative analysis of the performance of this approach in its 
current stage of development.  Nevertheless, preliminary results 
suggest that it is quite effective.  The knowledge base contains 
over 70 concept definitions that are representative of various 
animals, plants, and simple structures (e.g., park benches, cages, 
etc.).  The large number of combinations prevents exhaustive 
testing, but for representative pairings, this approach has been 
shown to handle both constraints and inferences for the following 
relations (among others outside the scope of this paper): 

• The relative position relations in-front-of, in-
back-of, left-of, right-of, in-front-

left-of, in-front-right-of, in-back-
left-of, and in-back-right-of in both local 
and global frames of reference. 

• The relative position relations north-of, south-
of, east-of, west-of, northwest-of, 
northeast-of, southwest-of, and 
southeast-of for cardinal directions, which are 
independent of frame of reference. 

• The relative distance relations inside-of, 
adjacent-to, near, midrange-from, far-
from, and at-the-fringe-of. 

• The relative orientation relations facing, and 
facing-away-from. 

 Evaluation is performed manually to determine whether the 
results are consistent with a scene description.  For scenes with 
relatively few concept instances, typically less than 10, solution 
sets to constraints are always generated correctly.  For more 
complex scenes, the most common problem is the failure to find 
any solution set that satisfies all the constraint rules 
simultaneously.  This reflects a limitation in the constraint 
propagator, not in the underlying knowledge representation.  
Near-future modifications to it are expected to improve the 
results.  Finally, regardless of the scene complexity, inferences are 
always generated correctly. 
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