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Abstract

This system addresses issues in reasoning intelligently over
spatial descriptions to produce representations of plausible
solutions.  Specificaly, it looks at coupling a semantic-
network-based explicit representation of a natural language
description with an ontology of implicit background
knowledge. The ontology contains generalized rules for
interpreting what objects are and how they should and
should not be interpreted aone and in spatia
interrelationships.  In addition, the linguistic issues of
underspecification and uncertainty in spatial semantics and
pragmatics are considered.

Introduction

Given a smple English description of ared-world scene, say, a
dog isin front of a house and near a tree, anyone can easily
formulate some kind of corresponding mentd imege.  The
description itsdf contributes only a small part. In fact, most of
the detals come from a commonsense understending of the
components in the scene and how they can and cannot be laid out
in aredigic manner. Performing smilar spatid reasoning is the
god of this system, which takes aforma representation of a scene
description and produces one or more solutions that specify
corresponding locations and orientations for its objects.  Such
solutions can directly support gpplications in natural language
processing like text understanding, question-and-answer systems,
user-friendly animation and gragphical rendering tools, etc.

Reasoning over gspatid layouts is a difficult task for a
computer. As Herskovits (1986) concludes, “[@ computationa
treatment ... will require much greater sophidtication than naive
representation theory would lead usto expect.” What makes the
problem especidly difficult is that computers lack the vast
storehouse of knowledge that people possess and the amazing
abilities to reason intelligently over it. This system addresses
these problems, as wdl as the linguistic and knowledge-
representation issues of underspecification, or the lack of
complete details in any description, and uncertainty, or the wide
range of valid interpretations for it.

Despite the potential usefulness of this work, very few related
systemsexist. CarSim (Dupuy et d. 2001) focuses on graphically
rendering the results of vehicle collisons based on accident
reports. WordsEye (Coyne and Sproat 2001) leans more toward
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depicting appropriate poses for actions. Neither appears to
address the linguitic and cognitive side of text understanding
strongly. In fact, most systems that do spatia layout take a
purely geometric gpproach and do not rely on knowledge at dl
(Xu, Stewart, and Fiume 2002, Y amada 1993).

Semantic Network

The scene description is defined by a semantic network of
concepts, attributes, and reations, which map closdy to its
nouns, adjectives, and prepositions, respectively. This paper
addresses only concepts and rlations. In particular, the concepts
are limited to concrete (i.e, non-figurative) ertities that would
typicaly be found in a zoo. Adde from the obvious visud
gpped, plants and animals exhibit a wide variety of important
gpatid characteridics.  The reaions are limited to binary
constructs such as X in-front-of Y. Almog al English spatial
prepositions, which have been dudied heavily, fdl into this
caegory (Freeman 1975, Bennet 1975, Herskovits 1986, Hill
1982, Tdmy 1983, and Hawkins 1984).

Asin most related systems (except Dupuy et d. 2001), scenes
are fabricated by hand rather than input from existing sources.
They must also be stetic, which isacommon limitation due to the
complexity of dynamic movement, time dependencies, eic.
(Adorni, Di Manzo, and Giunchiglia 1984). Findly, only two-
dimensona reasoning is supported because most scenes do not
actudly require the expressive power of true three-dimensond
reasoning (Xu, Stewart, and Fiume 2002).

The semantic network serves as aforma representation of the
explicit knowledge specified in the description. For example,
Fgure 1 depicts the statement the dog is to the left of the cat,
near the cat, and facing away from the cat. Each node
specifiesa concept instance that refersto aunique entity in the
description. Unique labd s digtinguish between multiple instances
of the same type; eg., cat,, cat,, Fido, ec. Eachlink specifiesa
binary relation that refers to a spatia context formed between
its source and target concept ingtances.

left-of
DOG near CAT
facing-away-fro

Figure 1. Semantic network




Knowledge Base

The explicit knowledge in the semantic network suppliesonly the
syntactic framework for interpretation. Nothing in it defines the
context -independent semantics of what a dog and ca are, for
instance, or the context-dependent pragmatics of what it means
for oneto bein front of the other, etc. For humans, thisimplicit
knowledge comes from an acquired understanding of the world.

The knowledge base provides some of this background by
formally defining how the concept instances and relations are
interpreted in  context. It addresses the problem of
underspecification by augmenting the explicit syntactic knowledge
with implicit semantic knowledge. The mechanism is Smple;

each concept ingtance in the semantic network has a link to a
corresponding concept definition in the knowledge base.

The knowledge base is an ontology structured as an inheritance
hierarchy of concept definitions that specify a framework for
their stereotypica interpretetion. Anaogous to the way the
anima kingdom organizes species based on ther shared
morphologica characteristics and behaviors, the knowledge base
organizes its concept definitions by shared spatid characteristics
and behaviors. For example, one branch may contain concept
definitions that are best gpproximated spatidly as a sphere and
support a particular interpretation of the i n-front - of
relation, wheress another branch may do so with acylinder and a
different interpretation.

Concept definitions lower in the hierarchy are inherently more
specific than the more generd concept definitions above them and
inherit their contents. For example, in biologica terms, adog isa
canine and inheritsitsinterpretation framework, and likewise for a
caning, which isamamma, and for amamma, which isan animd,
and so on. Multiple inheritance permits aconcept definition to
derive from more than one branch, dthough the possibility of
conflicts must be consdered (e.g., it cannot be approximated as
both a sphere and a cylinder). Each concept definition directly
specifies or indirectly inherits five conponents. properties,
fields, condraint rules, inference rules, and contexts.

Properties

A property is a straightforward dot-filler construct thet assignsa
vaueto avariable. Other components in a concept definition (or
in another concept definition linked to it by a relation) can be
contingent on this value or even on the presence or absence of the
property itsdf. The most common property is the boolean
has- canoni cal -front, which specifies whether a
concept definition is interpreted as having a generdly accepted
front side and therefore is capable of facing something dse. This
behavior is shared by most animds, for instance but not by
plants.

Fields

A fidd defines the geometry of atwo-dimensiona planefor pace
within and around a concept instance (Schirra and Stopp 1993;
Gapp 1994). It is projected onto the cells of a polar grid that
Stuates the concept ingtance in the center as shown in Figure 2.

The grid can be oriented such that the arrow aways faces outward
from the face of a concept ingtance (if applicable) or aways faces
north (assumed to be the back of the computer screen). Although
various shapes can be projected onto this grid, only wedges and
rings have so far proved necessary. Face-oriented wedges define
aress like front, back, l€ft, right, etc., which depend on where the
concept instance is facing.  North-oriented wedges define arees
like north, south, east, west, etc. and never rotate. Rings define
digtances from the center like adjacent, neer, far, etc.
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Figure 2: Field geometry (top view)

The geometry of a fidd is used primarily for determining
whether the postion of another concept indtance satisfies a
relaion between it and the concept instance possessing the field.
For example, therdation i n- f r ont - of istypically bound to
the front field of a concept ingtance. Thus, for any concept
ingtance to be inferred as "in front of" this concept ingtance, it
must appear within thisfield.

Overlad on the geometry is a probabilistic topography used
for generating a position of another concept instance such that
it satisfies the interpretation of a relation. The most effective
topography seemsto be a norma didtribution through the core of
the fiedld as shown in Figure3, where darker shading indicates
higher probability. This mechanism appears to provide for a
redigtic distribution where centrd positions are more likely than
those at the periphery.

Figure 3: Field probability topography

Constraint Rules

The interpretation of arelation comes from the context formed by
the two concept instances it links. A condraint rule defines this
interpretation by specifying how each concept instance must
interact with respect to their fidds. The only rule within the
scope of this paper, FI ELD- MUST- CONTAI N, requires that
the target concept instance gppear somewhere within a specific
field of the source concept ingance. For example, the rddive
distance relation

( RELATI ON near
(FI ELD- MUST- CONTAI N ?b. fi el d- near ?self))

gpplied to dog near cat requires tha dog (bound to ?sel f)
gppear in the near fidd of cat (bound to ?b). The varidble



?sel f dways binds to the concept ingtance linked to the
concept definition containing therule. Likewise, ?b dways binds
to the other concept ingtance of the relation.

Congtraint rules may dso be conditionaly evaluated based on
the properties of either concept instance. For example,

( RELATI ON f aci ng
( PROPERTY- | S- TRUE
?sel f. has-canoni cal - front
( FI ELD- MUST- CONTAI N
?self.field-front ?b)))

would apply the congtraint rule for dog facing tree, but not for
tree facing dog because only dog has atrue value for property
has- canoni cal -front. Thus atree, lacking a canonicd
front, cannot be constrained to face anything.

Reations conditionaly dependent on the exigence of a
canonicad front are the mogt complex. For example i n-
front - of hastwo digoint congtraint rules:

( RELATI ON i n-front - of
(PROPERTY- | S- TRUE ?b. has-canoni cal -front
(FI ELD- MUST- CONTAI N ?b. fiel d-front ?self))
( PROPERTY- | S- FALSE
?sel f. has- canoni cal -front
( FI ELD- MUST- CONTAI N
?b.field-south ?self)))

If the concept ingtance bound to ?b is linked to a concept
definition that possesses a canonica front, then its front field
(eg., FHoure2a) is evduated in the condraint rule because it
aways projects outward relative to the direction it is facing.
Otherwise, its south field is evaluated. This mechanism addresses
the difference between aloca and globa frame of reference (Claus
et d. 1988). For locd, such as dog in-front-of cat, the
interpretation is solely in terms of the two concept instances. For
globa, such as dog in-front-of tree, it additiondly involves the
position and orientation of the viewer of the scene (Herskovits
1986). To this effect, the viewer is assumed to reside in the
south and face the center, which corresponds to looking at the
scene on a computer screen. Thus, dog in-front-of tree is
actualy interpreted as dog between tree and viewer.

Inference Rules

A condraint rule specifies atemplate for positioning and orienting
apair of concept instances based on arelation between them. An
inference rule is the oppodte of this it determines which
relations hold between any pair of concept instances in the
solutions generated for the congraint rules. This serves the
purpose of inferring implicit relationships that were not stated in
the scene description.  For example, if a solution to wolf near
tiger results in wolf being north of tiger as wdl, then wolf
(bound to ?sel f) would be located in the north fidd of tiger
(bound to ?any), thereby inferring the relationship wolf north-
of tiger:

(IS INFIELD ?sel f ?any.field-north
(1 NFER- RELATI ONSHI P nort h-of ?sel f ?any))

Thevarigble ?any binds with al concept instances one a a
time in the semantic network. If the 1 S-1 N- FI ELD
dependency is satisfied for any pairing of concept instances, then
the inferred rlaionship is bound to them. For example, the
evaduation of a semantic network containing the set of concept
instances wolf, tiger, and tree would be the st {{wolf, tiger},
{wolf, tree}, {tiger, wolf}, {tiger, tree}, {tree, wolf}, {tree,
tiger}}, where the first dement of each pair is ?sel f and the
second is ?any. Asincongraint rules, ?sel f dwayshbindsto
the concept instance linked to the concept definition containing
therule

Again, conditiond evauation is supported. For example, if
wolf is oriented such that its front is opposite tiger, then tiger
(bound to ?any) would be found in the back fidd of wolf
(bound to ?sel ), thereby inferring the reationship wolf
facing-away-fromtiger:

(PROPERTY- 1 S- TRUE ?sel f. has-canoni cal -front
(I'S-IN-FIELD ?any 7?sel f.field-back
(I NFER- RELATI ONSHI P
faci ng- anay-from ?sel f ?any)))

The nearly identicd inference tree facing-away-from wolf
would not be made because the concept definition for tree
specifiesthat it does not have acanonical front.

Contexts

The conditional evauetion presented so far depends entirely on
the properties of the two concept instances in a relationship.
This mechanism guides the reasoning by evduding only
applicable rules. It primarily addresses the context -independent
semantics of what each ingtance is and what it can or cannot
support. It does not strongly address the context -dependent
pragmatics of interaction between instances. This role is played
by contexts, which specify for each concept definition how it
should be interpreted in a specific relationship with another
concept definition. For example, the relationship X under Y
generdly means X is under the bottom side of Y. The mgority
of concept definitions can inherit this default interpretation.
However, if Y is a treg, for instance, it is more appropriate to
override the interpretation to read X is under the top of Y
(where top loosdly refersto the canopy). Thus anything under a
tree is interpreted as being under its canopy, not under its base.
Of coursg, the origind context could be preserved for anything
thet really belongs there, say worms.

Contexts can be defined tightly between specific concept
definitions (e.g., a woodpecker in an oak tree) or loosaly between
categories of concept definitions (e.g., any kind of bird in any kind
of treg). This supports a powerful yet concise generdization
capahility that cleanly handles both the mgjority interpretation
and various exceptions.

Constraint Propagator

A congraint rule is merely a template that restricts a possible
solution. It is the responsibly of the constraint propagator to
satify al applicable congraint rules sSmultaneoudy by



generating positions and orientations for dl concept ingancesina
semantic network. This collection of results, cdled a solution s,
is not unique. In fact, an effectively infinite number of solution
Sets can be consstent with a scene description.  This lack of
preciseness in natural language descriptions greetly complicates
automated text understanding. Since dl solution sets can be
considered equdly vaid, this system uses a probabilistic
gpproach to cull the solution sets to those containing the most
likely positions and orientations. The implication (yet to be
demongrated) is that higher-probability solution sets are
perceived as generdly more acceptable (or less disputable) and
can thus be taken as aloosdly defined "default” interpretetion.

Figure4: Intersected front and near fields

In Venn-diagram style, condraint rules for each relation are
evaduaed as the intersection of their contributing fields.  For
example in dog in-front-of cat and dog near cat, dog must
be smultaneoudy located within both the front fidd and the
near fied of cat. The intersection of these respective wedge-
shaped and ring-shaped fidds in Figure2 limits the possble
positions of dog to the shaded areain Figure4a. The probability
topography of each field in Figure 3isjoined in the intersection as
wall, thereby making the darkest areain Figure 4b the most likely
postion for interpretation of the combined relation i n-
front - of - and- near .

The find step in the spatia reasoning isto gpply dl available
inference rules to al pairings of concept ingtancesin the semantic
network. If desired, the resulting inferences can then be inserted
back into the semantic network, thereby augmenting it with an
explicit, commonsense spatia understanding of its contents. The
cavest is that different solution sets may produce different,
possibly incompatible, inferences. Augmenting identical clones of
the semantic network (one per solution set) solves this problem,
but it is beyond the scope of discussion.

Results and Discussion

The fuzzy, quditative nature of spatia relaions hindersaformd,
quantitative anaysis of the performance of this gpproach in its
current stage of development. Nevertheless, preliminary results
suggest that it is quite effective. The knowledge base contains
over 70 concept definitions that are representetive of various
animds, plants, and smple gructures (eg., park benches, cages,
etc). The large number of combinations prevents exhaudive
testing, but for representative pairings, this gpproach has been
shown to handle both congtraints and inferencesfor the following
relations (among others outside the scope of this paper):

- Therelative position rdationsi n- f r ont - of ,i n-
back- of ,l eft-of ,ri ght-of,in-front-

| eft-of,in-front-right-of,in-back-
| eft-of ,andi n- back-ri ght - of inbothloca
and global frames of reference.

- Therelative postion rdationsnor t h- of , sout h-
of ,east - of ,west - of ,nor t hwest - of ,
nor t heast - of , sout hwest - of , and
sout heast - of for cardind directions, which are
independent of frame of reference.

- Therdative digancerdationsi nsi de- of ,
adj acent -t o,near,m drange-fromf ar -
fromandat -t he-fringe- of .

- Therddive orientetion rdaionsf aci ng, and
faci ng-away-from

Evauation is perfformed manually to determine whether the
results are consistent with a scene description.  For scenes with
relatively few concept instances, typicdly less than 10, solution
sts to condraints are aways generated correctly. For more
complex scenes, the most common problem is the failure to find
any solution sat that sdatisfies dl the congraint rules
sdmultaneoudy. This reflects a limitation in the condraint
propagator, not in the underlying knowledge representation.
Near-future modifications to it are expected to improve the
results. Findly, regardless of the scene complexity, inferencesare
aways generated correctly.
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