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ABSTRACT

KNOWLEDGE-BASED SPATIAL REASONING FOR

AUTOMATED SCENE GENERATION

FROM TEXT DESCRIPTIONS

BY

DANIEL ALLEN TAPPAN, B.A., M.S.E

Doctor of Philosophy

New Mexico State University

Las Cruces, New Mexico, May 2004

Dr. Roger T. Hartley, Chair

Understanding text is a trivial task for literate humans.  For computers,

however,  it  is  extremely  difficult  due  to  (among  other  reasons)  a  lack  of

knowledge about language and the world, as  well  as an intelligent reasoning

mechanism to process such resources.  As a result, computational approaches to

text  understanding  generally  lack  common  sense  and  suffer  from  poor

performance.   This  work  presents  a  system  that  addresses  a  set  of  critical
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cognitive,  linguistic,  and  computational  issues.   On  the  cognitive  level,  it

considers the role of mental  models in the mind and how humans internally

abstract and conceptualize spatial characteristics of the external world.  On the

linguistic  level,  it  considers  the  roles  of  underspecification,  vagueness,

uncertainty, context, and frame of reference in how humans communicate about

space.  On the computational level, it implements a constraint-based, declarative

knowledge representation for qualitative spatial reasoning over the dimensions,

positions, and orientations of representative objects (primarily animals and plants)

in a simulated microworld of a zoo environment.  This system extracts into a

semantic  network the explicit  information in rudimentary  text  descriptions of

static, spatial scenes, integrates it with implicit, background information from an

object-oriented,  commonsense  knowledge  base,  reasons  over  the  combined

representation,  and  renders a  set  of  corresponding  graphical  interpretations.

From these depictions, it extracts new information that iteratively feeds back into

the original  description to augment the understanding further.   As part of  a

Monte Carlo simulation, the architecture supports a multidimensional test-and-

evaluation framework to investigate a variety of related issues that apply to many

applications in artificial intelligence.
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1  INTRODUCTION

“Picture yourself on a boat in a river” [76, 23].  This famous line from the

Beatles’ song Strawberry Fields Forever, like most descriptions, leads the reader

to  form an abstract  picture  of  the  scene in  his  or  her  mind.   This  mental

representation plays an essential role in how humans understand and manipulate

the meaning of a description.  For humans, the task seems trivial.  But what if a

person did not know the simple facts about what a boat and river are or what it

means to be “on” and “in” one, respectively?  For computers, this is exactly the

predicament.  This lack of knowledge and the ability to reason over it intelligently

greatly  hinders  their  performance  in  almost  all  areas  of  processing  human

language.

This  project  investigates  several  key  issues  in  computational  text

understanding and demonstrates a unified approach toward solving them.  Its

primary  goal  is  to  translate  text  descriptions  into  corresponding  graphical

renderings for  simple  scenarios  that  could  be  found  in  a  typical  zoo.   Its

secondary  goal  is  to  infer  simple,  unstated  information  from the  underlying

representation of the renderings as humans might; e.g., the boat is in the middle

of the river, on its surface, and facing north.  A common framework exists for

addressing each goal as well as for analyzing various contributing factors.
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1.1  Problem Statement

Language  processing,  whether  by  computers  or  humans,  is  a  very

complex task that must resolve countless issues.  Of interest in this project are

five tightly intertwined issues that are believed to cause the greatest difficulty in

computational  text  understanding:  underspecification, vagueness,  uncertainty,

context, and frame of reference.  Humans acquire the skills and knowledge to

resolve  these  issues  from  a  lifetime  of  experience  interacting  with  and

communicating  about  the  world  [82, 85].   Computers  obviously  lack  such

preparation and consequently perform poorly on language.

1.1.1  Underspecification

A  description  explicitly  states  very  little  information.   Almost  all  the

content must be derived implicitly by “reading between the lines” and reasoning

over various types of knowledge from other sources.  Two broad categories of

knowledge are considered necessary for this project.

Knowledge  of  language  is  critical  to  decoding  the  grammatical

framework.  For example, the big tree is in front of the dog differs significantly

in meaning from the dog is in front of the big tree, although the structures are

nearly identical.  Even parsing the words requires an understanding of how they

should be interpreted:

[the [big]PROPERTY tree]OBJECT [is]IGNORE [in front of]RELATION [the dog]OBJECT

2



Knowledge of the world is critical to understanding what words describe.

For example, the dog has an accepted front to its body, so the tree in front of it

implies that it is facing the tree.  On the other hand, the tree has no accepted

front—it is uniformly the same all around—so the dog in front of it implies that

the dog is located between it and the viewer of the description.  There is also no

implication of its direction.

1.1.2  Vagueness 

Adjectives of size are not as straightforward as they may appear [87].  For

example,  big generally implies greater size than  small does.  This relationship

indeed holds between objects of the same type (e.g., a big duck is greater in size

than a small duck) but not necessarily between those of different types (e.g., a

big duck is not greater in size than a  small giraffe but is to  a  small mouse).

Furthermore, the application of size often differs between objects.  For example,

a big tree is great in height, but a big lake is great in length and width.  Finally,

how great is a big duck in specific numerical terms of height, width, and length?

The proper size of a rendered object depends on the correct interpretation of

these adjectives.
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1.1.3  Uncertainty

Exact positions and orientations cannot be determined from the imprecise

details in non-technical descriptions.  For example, the dog is in the north, is

facing south, and is far from the cat.  First, this statement legitimately places

the dog anywhere  within  a  large,  vaguely  defined upper  area  of  the  world.

Second, as the lower area is equally vague, the orientation of the dog can differ

considerably and still be interpreted as correct.  Finally, the distance from the cat

is subjective and depends somewhat on the size of the cat and what the writer

might believe it perceives.  These three issues in combination allow for an infinite

number of plausible interpretations, although some are more favored than others

[47, 118].

1.1.4  Context

The meaning of most words depends on their  usage, or as Firth [39]

succinctly expresses, “[y]ou shall know a word by the company it keeps.”  For

example, the preposition  in primarily means “contained or enclosed by” [92].

This definition holds true for both the boat is in the lake and the hippo is in

the lake, but the terms of enclosure differ significantly enough (i.e.,  on versus

under the surface)  to make a  noticeable difference in the interpretation and

consequently the graphical rendering of each.
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1.1.5  Frame of Reference

A description of  the world  requires  the writer  to  commit explicitly  or

implicitly to a particular vantage point (position and orientation) so the reader

can  correspondingly  orient  himself  or  herself  to  reconstruct  it  mentally.   A

computational  solution must  orient itself  as  well.   A simpler form of  explicit

commitment such as the dog is in front of the cat as seen from the fountain

states that the viewer is located at the fountain and is facing both the dog and

cat.  The position of the dog depends on the position and orientation of the cat,

but neither depends on the passive viewer.  A more difficult form such as  the

dog is in front of the tree as seen from the fountain, states the same vantage

point for the viewer.  However, the position of the dog depends on the position

of the tree and the position and orientation of the viewer because the tree has

no  true  “front”  of  its  own.   An  implicit  commitment  introduces  these

complexities as well,  but it is even more troublesome because the description

does not state the vantage point of the viewer; e.g., the dog is in front of the

tree.

1.2  Research Value

From  a  theoretical  perspective,  text  understanding  is  a  highly

interdisciplinary task that draws upon the research areas  of natural  language
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processing,  machine  translation,  artificial  intelligence,  computer  science,

linguistics,  psychology,  cognitive  science,  and  others.   Any  advances  to  it

propagate to a considerable amount of related work.

From a  practical  perspective,  text  understanding  has  the  potential  to

improve human-computer interaction.  Humans communicate most comfortably

in  natural  language;  whereas  computers  demand  a  very  unfriendly,  arcane

mechanism  of  control.   Text  understanding  helps  bridge  this  gap.   It  also

supports  a  more  effective  way  of  indexing  and  retrieving  documents  by

considering their meaning instead of their surface text.  The spatial component

of this project lays the groundwork for advanced search queries and question-

and-answer  interfaces  for  databases  of  pictures  and  geographical  features,

especially for  geographical information systems [43, 35].  Finally, there is the

obvious value to graphical modeling and rapid prototyping of visual scenes.

1.3  Overview of Solution

This project provides a flexible framework to investigate underspecifica-

tion, vagueness, uncertainty, context, and frame of reference in computational

text understanding.  Each issue is addressed with respect to how it affects the

interpretation  and  graphical  rendering  of  the  dimensions,  position,  and

orientation of objects that are consistent with the zoo theme.
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This  project  adheres  to  the  philosophy  of  so-called  weak  artificial

intelligence [106, 83]:  it is primarily designed and defended as a computational

system for solving a problem.  Although the solution is based on research and

limited observation of how humans solve similar problems, no claim is made that

this  solution  emulates  these  cognitive  processes.   The  following  functional

overview outlines the six main processing stages:

 Stage 1 converts the input description from English text into a simple

semantic network to represent its explicit details.

 Stage 2 interprets the semantic network using a complex knowledge base

to infer implicit details that augment the explicit details.

 Stage 3  spatially  reasons  over  the  combined  details  to  produce  valid

dimensions,  positions,  and  orientations  for  each  object.   From  this

solution,  it  infers  new  details  and  adds  them back  into  the  semantic

network from Stage 1.

 Stage 4 collects multiple, independent solutions by repeating Stage 3 in a

simulation.

 Stage 5  analyzes  the  set  of  solutions  to  extract  a  common  set  of

interpretations.

 Stage 6 renders the common interpretations graphically.
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This project is implemented in Java 1.4.1 with Blackdown Java 3D 1.3

and JavaCC 2.0 running on Red Hat Linux 8.0  The source code consists of 7

packages, 64 classes, and roughly 8,000 statements over 33,000 lines.  All tests

were executed on a 450MHz single-processor machine with 384MB RAM.

1.4  Overview of Discussion

This  project  is  a  complete,  self-contained  system  for  end-to-end

processing.  As such, it covers a broad range of topics across the stated areas of

interest.  The organization of this dissertation reflects the issues in Section 1.1

and the stages of processing in Section 1.3.  Specifically,  Chapter 2 reviews

related  systems  and  establishes  a  foundation of  the  cognitive,  linguistic,  and

computational issues of interest.  Chapter 3 covers the structure and content of

the text descriptions to processes.  Chapter 4 discusses the semantic network

that represents the explicit information in a description.  Chapter 5 complements

this discussion with extensive coverage of the knowledge base that represents the

implicit,  commonsense,  background  knowledge  that  is  not  present  in  a

description  but  is  essential  for  its  processing.   This  chapter  also  addresses

constraints, which declaratively define all aspects of knowledge in this project.

Chapter 6 steps  through  the  process  of  combining  the  explicit  and  implicit

representations to reason over the spatial constraints.  Chapter 7 explains how
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this  process  contributes  to  a  simulation  that  supports  a  test-and-evaluation

framework.  Chapter 8 presents the graphical rendering engine that converts the

internal results into a collection of three-dimensional, virtual worlds for interactive

inspection.   Chapter 9 presents  and  discusses  a  collection  of  representative

results, both positive and negative, and also considers future work.  Chapter 10

summarizes what was accomplished and what was learned from this project.

Appendix A lists the complete, annotated grammar of the knowledge represen-

tation language that was created.  Appendix B lists a representative subset of the

knowledge base.  Finally, Appendix C shows a sample vignette, which states a

description and defines the parameters  that  configure all  components of this

project.
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2  BACKGROUND

Research in artificial intelligence naturally draws from many sources due

to its  interdisciplinary nature.  In particular, this project considers three general

areas that are believed to contribute most to representing and reasoning over

spatial descriptions [56]:

 The cognitive foundation considers how the human mind conceptualizes

the external  world into its own internal  representation that it  uses for

spatial reasoning.

 The linguistic foundation considers how humans use natural language to

communicate about the external world.

 The  computational  foundation  considers  how  a  computer  can

satisfactorily emulate the essential aspects of these cognitive and linguistic

processes.

2.1  Related Systems

Despite  the  theoretical  and  practical  value  of  research  in  generating

pictures from text, there is a surprising paucity of related systems [29, 120, 110,

126, 118, 56]:  only five in the 33-year history of the area reasonably overlap

with  the  goals  and  underlying  issues  that  this  project  addresses.   Moreover,

collectively they have produced no more than a handful of publications.  Most
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contemporary research (for which there is considerably more activity) addresses

the converse process of generating text from pictures.  Although many of the

same issues  arise  in both directions,  this  dissertation does not  address  them

because their focus is different.

2.1.1  SHRDLU

The first text-to-image system, SHRDLU,1 appeared to great acclaim in

1971 [131].  It was a revolutionary advance in artificial intelligence and fostered

claims that it could actually “understand text” [132].  On the surface, it basically

extended  Weizenbaum’s [129]  remarkably  popular  (but baseless2)  Eliza  dialog

system from 1966, which (disturbingly) convinced more than a few people that a

computer  could  conduct  psychotherapy.   SHRDLU,  however,  legitimately

focused  on  a  tabletop  world  of  colored  blocks,  cones,  and  balls.   It  also

maintained and manipulated complex (for 1971) internal representations of its

world and was able to reason and communicate effectively over it in response to

natural-language input for the user.

1The name SHRDLU refers to a keyboard arrangement that was common to the
period.  Analogously, if the same naming scheme were followed today, it would
be called QWERTY.

2It was actually intended as a hoax!  The entire program consists of 256 lines of
BASIC code available at http://hps.elte.hu/~kampis/Eliza/ELIZA.BAS.
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SHRDLU focused on grammar, semantics, and deduction.  It defined a

basic vocabulary of objects and properties, a general semantics for interpreting

them, and an environment to which they applied.  As Figure 2.1 illustrates, this

work combined four simple concepts in natural  language processing to great

effect:   a  small  vocabulary  in  a  knowledge base  of  expected  behaviors  and

interpretations, limited context for coreference resolution (e.g., “it” refers to the

previously mentioned “red ball”),  a  true question-and-answer  framework with

remarkable  linguistic  freedom, and the capability  to compose objects  (e.g.,  a

steeple is a small triangle on top of a tall rectangle).

> Pick up a big red block.
  Ok.

> Grasp the pyramid.
  I don’t understand which pyramid 
  you mean.

> What did you do that?
  Because you asked me to.

> What does the box contain?
  The blue pyramid and the blue block.

> What is the pyramid supported by?
  The box.

> How many blocks are not in the box?
  Four of them.

Figure 2.1:  SHRDLU

Despite  its  groundbreaking  implementation,  SHRDLU did  not  actually

understand text as its developer, Terry Winograd, originally believed [132].  The

underlying mechanisms operate well over their restricted, literal domain, but they
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are too rigid for most aspects of language processing [114, 117, 6].  In fact,

Winograd eventually considered the work a dead end and distanced himself from

it.   Nevertheless,  other  researchers  have  revived  the  fundamental  idea  for

different applications over the years, so it was hardly a failure [16].

2.1.2  Natural Language Image Generation System

The next system to appear is the optimistically named Natural Language

Image Generation System (NALIG) in 1984 [1, 2, 56].  It deserves honorable

mention because its  areas of  interest overlap considerably with those of  this

project:

 Semantic  processing  for  computational  text  understanding  of  natural

language input.

 Rudimentary taxonomic knowledge representation of objects.

 Constraints and consistency checking between objects and relations.

 Treatment of “fuzziness”; i.e., vagueness and uncertainty.

 Commonsense, qualitative spatial reasoning over static scenes.

 Graphical rendering.

 Potential simulation capabilities.
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The  preliminary  work  for  NALIG  introduced  these  issues,  but  no  follow-up

publications ensued.  In contrast to SHRDLU, there is no published explanation

for abandoning the work.

2.1.3  Words Into Pictures

Words Into Pictures (WIP) followed in 1994 [94, 118, 123].  It is another

ambitious system that inexplicably disappeared from the publication record after

its introduction.  Its  researchers, however, remain prominent in the field and

continue to publish significant work on the issues that WIP was supposed to

address (see [93]).  Several overlap with this project:

 Investigation of major cognitive aspects of natural language, especially of

preferences in spatial prepositions.

 Qualitative  and  quantitative,  probabilistic  models  for  objects  in  a

conceptual representation.

 Capture of inherently fuzzy meaning in spatial language.

 Introduction of fuzzy, potential fields, which are the basis of constraints in

this project.

 Ambiguity in frame of reference.

 Generation of static, indoor room arrangements as Figure 2.2 shows.
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  A chair is in front of the left desk.

Figure 2.2:  Words Into Pictures

2.1.4  CarSim

CarSim, which appeared in 2001, is an on-going project that generates a

short, animated depiction for French reports of automobile accidents such as

Figure 2.3 [29, 120, 107].3  It is the only text-to-image system that uses non-

contrived input.  As such, the reported correctness of its interpretations is quite

low at 10–17%.  Unrestricted input in systems for natural language processing

generally introduces many problems that overshadow their focus.  In this case,

the incomplete, inconsistent, ambiguous, sloppy, and sometimes incoherent form

of accident reports substantially degrades performance [124].  CarSim focuses

on the static and dynamic components of an accident scene; e.g., a tree and a

3The current version of this work now processes English reports from the public
website of the U.S. National Transportation Safety Board, which is a suggestion
I made to the principal investigator Pierre Nugues at the ACL2001 conference
in Toulouse, France.
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car, respectively.  It performs linguistic analysis on the input and processes the

intermediate XML representation through several stages of planning for position,

trajectory, accident dynamics, and temporal aspects.  The output feeds into a

virtual scene generator.

I was driving on a crossroads with a
slow speed, approximately 40 km/h.
Vehicle B arrived from my left, ignored
the priority from the right and collided
with my vehicle.  On the first impact,
my rear fender on the left side was hit
and because of the slippery road, I lost
control of my vehicle and hit the
metallic protection of a tree, hence a
second frontal collision. [sic]

Figure 2.3:  CarSim

2.1.5  WordsEye

WordsEye, which also appeared in 2001, seems on the surface to be the

Holy  Grail  of  text-to-image  systems.   Its  broad  domain  of  input  and  rich

graphical output, as Figure 2.4 exemplifies, clearly outperform all related work,

including this project.  It is a large system that defines roughly 1,300 objects,

2,300 verbs, and 2,000 3D models (with 10,000 more planned) [116]!  It also

relies heavily on major, external components like Church’s part of speech tagger

[13],  Collins’  parser  [20],  and  the  WordNet lexical-semantic  database  [38].
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Originally under the auspices of AT&T Research Labs, its developers recently

spun it off as their own commercial venture, Semantic Light, LLC.  

John uses the crossbow.  He rides
the horse by the store  The store is
under the large willow.  The small
stegosaurus is in front of the horse.
The dinosaur faces John.  A gigantic
teacup is in front of the store.  The
dinosaur is in front of the horse.
The gigantic mushroom is in the
teacup.  The castle is to the right of
the store.

Figure 2.4:  WordsEye

Despite its magnificent capabilities, WordsEye does not solve all problems

in computational text understanding.  In fact,  its stated objective is actually to

facilitate and expedite the generation of static, three-dimensional graphics for

general-purpose applications.   Natural  language is  an ideal  medium for such

work because humans manipulate it so readily and expressively.  As a result,

WordsEye reflects effort in linguistic processing, knowledge representation, and

reasoning, but it does not do so with the intent of introspectively investigating

these areas as this project does [65, 117].  In other words, this foundation is the

means  toward  the  goal  but  not  the  research  area  per se.  Furthermore,  in

contrast  to  this project,  WordsEye  focuses  primarily  on  the  contextually

appropriate depiction of poses for entities and the kinematics of implied actions
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[23]; e.g., a man throwing a ball.  It does so by heavily articulating its models,

which this project does not support at all.

2.2  Cognitive Foundation

The  cognitive  foundation  of  this  project  superficially  considers  how

humans  mentally  view  and  manipulate  the  external  world  that  descriptions

depict.  This project, like most related work, does not focus on the psychology

and cognition of text understanding, and it does not claim to rely on or advance

any  of  this  foundation  [44, 83].   Therefore,  this  section  presents  only  an

overview.   Johnson-Laird  [63],  Lakoff  [74],  Talmy  [121],  Langacker  [75],

Glasgow  and  Papadias  [44],  and  Mark  [83]  together  provide  a  more

comprehensive review.

The cognitive aspects of this project are based on the notion that the

human  mind  abstracts  the  real  world  into  internal  representations,  which  it

manipulates  as  a  surrogate  for  spatial  reasoning  (and  many  other  purposes)

[105, 7, 67].  While the existence of some innate mechanism to this effect is not

in question, its form and function are highly contested.  In fact, it fuels one of the

fiercest battles in cognitive science [87].  As a result of widely differing views, the

same general  idea  appears  under  many names;  e.g.,  mental  models,  mental

maps, mental imagery, cognitive maps, and others [15, 26].  This project stays
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out of the fray by separating its limited cognitive interests into two areas that

reflect  its  computational  goals  with respect to its  approach of weak artificial

intelligence.  The first resides at the physical or implementation level of the mind

and  corresponds  to  hardware  in  the  computational  sense.   The  brain  is

hardwired to perform many tasks in spatial reasoning, just as it is for language,

vision, and other actions that are critical for survival [95, 121, 83].  Thus, it is

not  surprising  that  humans  universally  share  some common set  of  cognitive

abilities  and  likewise  exhibit  common  weaknesses  and  deficiencies.   This

property is advantageous to a computational approach because certain solutions

should apply uniformly across all  people, languages, cultures, etc. [27].  Like

universal grammar [95], however, which would serve the same ideal purpose for

natural language processing, a comprehensive theory remains elusive [58, 35].

This project subscribes to the view of [43, 93, 118] that the purpose of a

mental  model  is  to  simulate  a  behavior  and  thus  predict  and  plan  for  its

contingencies.  For example, envisage a description of furniture in a room, then

rearrange the  pieces mentally  [56, 67].   Humans do this  relatively  easily  on

multiple, possibly hierarchical levels [43, 71, 11, 35, 56].  The process accounts

for fundamental constraints on the objects such as their location and orientation,

but it also factors in preferences to cull the many possible mental configurations
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of the scene into favored ones that somehow contribute to the goal [15].  This

project  acknowledges  both aspects  as  important in spatial  reasoning over  its

domain of interpretation [4].

The second area of cognitive interest resides at the abstract or symbolic

level of the mind and corresponds to software in the computational sense.  The

ways in which humans perceive the world and conceptualize space vary widely

by language, culture, education, gender, personality, and so on, and they are

incomplete,  inconsistent,  and  often  erroneous  [121, 35, 8, 111, 96, 85, 26].

For example, peculiar for English speakers, some cultures use compass directions

for tabletop objects like plates and utensils in place of relations like in front of

[83].  Likewise, many people are under the impression that the east coast of the

United States is a due north-south boundary [35].  Nevertheless, this confusing

mix of world views does not appear to impair the spatial abilities of humans.

The richest source of research in spatial conceptualization comes from

geographic information systems, which has a long history of trying to represent

the real world on various forms of maps and, more recently, in computers [15].

Research by [35, 11, 32, 31]  provides  a  comprehensive  review of  important

considerations,  and  [82, 84]  augment it  well  with  a  breakout  of  at  least  18

different types of space.
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2.3  Linguistic Foundation

The  linguistic  foundation  of  this  project  considers how  humans  use

natural language to communicate about the external world.  It focuses on the five

issues from the problem statement in Section 1.1.  However, because they are

not disjoint and independent as presented, this discussion of their background

does  not  have  such  a  straightforward  organization.   In  reality,  these  issues

overlap  and  interact  in  ways  that  are  still  poorly  understood  (e.g.,  Sowa's

“knowledge soup” [114]).  As an implementation of weak artificial intelligence,

this  project  does not attempt to advance any  of  this  foundation.   Rather,  it

simply uses selected aspects of a wide range of linguistic theories, principles,

observations,  philosophies,  and  so  on  to  solve  individual  computational

problems.  In combination, they comprise no unified, linguistic approach.

Almost all computational work in the area of spatial language builds upon

the foundation of Talmy [121], Herskovits [58], and Langacker [75].  Talmy's

seminal work on how language structures space [121] forms an integral part of

his larger work that defines the field of cognitive semantics [122].  Herskovits'

thorough investigation of  language and spatial  cognition [58]  focuses  on the

many  and  varied  roles  of  prepositions  [57].   Langacker  [75]  defines  a

comprehensive cognitive grammar that attempts to tie these and other aspects of
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visual language into a unified theory.  Bierwisch and Lang [9] present a popular

conceptual  representation  of  physical  objects.   Hernández  [56]  provides  an

extensive  literature  review of  these authors  and  other  linguistically  motivated

research.

Language is always interpreted in some form of context [60, 51], which

serves many complex, intricate, and subtle roles in resolving a wide range of

issues, including those of interest in this project.  Research into context covers a

broad range of linguistic areas; e.g., lexical semantics, pragmatics, semiotics (a

combination  of  syntax,  semantics,  and  pragmatics),  and  many  others

[51, 52, 60, 4, 62].   To identify,  represent,  and emulate  essential  aspects  of

context, this project considers at a high level what it is, why it is important, and

how  it  operates.   Context  in  general  serves  as  a  filler,  corrector,  or  focal

mechanism to mitigate inherent deficiencies from underspecification, vagueness,

and uncertainty [60, 125].  It other words, it fills in gaps between the explicit and

implicit interpretations of a description.  Hausser [51] presents this view as a five-

level hierarchy of nine types of context that distinguishes between sincere and

ironic use, literal and metaphoric use, and precise and vague use.  As Chapter 3

will discuss, this project addresses only literal and vague use.
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The  appropriate  semantic  and  pragmatic  interpretation  of  linguistic

components  first  requires  the recognition that  a  context  is  present,  then an

identification of its effects [51, 52, 4].  Recognition is relatively straightforward in

this project because contexts can exist only in the form of two objects that are

bound with a spatial relation, which is roughly equivalent to two nouns joined by

a preposition.  Identification is far more tricky, however.  Every combination of

objects and prepositions has the potential to impart its own contextual skew on

their combined interpretation [84].  Research into these effects often considers

how specific, contextual meanings differ from ideal, generic meanings that serve

as  a  baseline  definition  [58, 56].   Such  work  generally  considers  functional

dependencies of behavior and interaction to establish how salience contributes to

certain interpretations and the preference of one over  another  [59, 90, 105,

125].

Very little linguistic background focuses exclusively on underspecification,

vagueness, and uncertainty.  One reason is that these issues fall squarely into the

realm of context and usually  find themselves addressed as part of  that work

[114, 26, 125, 70].   Another  is  that,  from  a  purely  linguistic  perspective,

solutions to them are not particularly relevant.  Cognitive science and computer

science need to address them for practical reasons, but linguistics can generally
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assume that its subjects are fully functional humans whose theoretical ability to

use language is enhanced rather than undermined by them [125, 52, 51].  In

other  words,  underspecification,  uncertainty,  and  vagueness  are  issues  that

linguistics  acknowledges  as  inherent  difficulties  in language processing,  but  it

does  not  necessarily  work  toward  a  theory  to  solve  them.   Hence,  for  the

purposes of this project, they are primarily computational problems.

Frame of reference, which Section 1.1.5 introduced, does have a strong

linguistic  background  to  complement  its  cognitive  and  computational

backgrounds [15].  The notion of a non-fixed location of the viewer in a scene

varies in name (e.g., observer location [57], point of view [56, 121], vantage

point [93]), but the same principles apply.  In general, the speaker's intent or

purpose  plays  the  greatest  role  in  the  choice  of  frame  of  reference

[57, 123, 93].   As  Section 2.2 discussed,  the  way  different  languages  and

cultures conceptualize the world varies.  English is relatively straightforward4—

but  by  no  means  easy  to  process—with  only  three  frames  of  reference

[56, 85, 63, 15]:

 Intrinsic:   an object-centered perspective in which a  natural,  inherent

face of an object defines the region canonically understood to be its front;

4Cora, a language in Mexico, partitions its world into at least 137 forms [8]!

24



e.g.,  a  person, a  dog, and a  car  can support such an interpretation;

whereas a tree and a lake cannot.  A definite front implies a back, left,

and right as well.

 Extrinsic:   an  environment-centered  perspective  in  which  a  transient

location defines a contextual vantage point; e.g., the “front” region of a

car may actually be behind it if it is moving backwards.  As this project

forbids motion, this frame of reference does not apply.

 Deictic:  a viewer-centered perspective in which the viewer serves as a

reference object.  For example, in  the dog is in front of the tree, the

position of the dog is between the tree and the implicit position of viewer.

A second form situates the viewer explicitly; e.g., the dog is in front of

the tree as seen from the car.

2.4  Computational Foundation

The computational foundation of this project considers how a computer

can satisfactorily  emulate  the essential  aspects  of  the cognitive  and  linguistic

issues of interest with respect to its goals.  As the areas of artificial intelligence,

knowledge representation, spatial  reasoning, and natural  language processing

are far too large and interdependent to cover in any detail, this section reviews

only the computational background that directly contributes to or influences the
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solutions in this project.  Davis [26], Hernández [56], Hernández and Mukerjee

[54], Rashid and Shariff [108], Srihari [118], Oliver and Tsujii [93], and Davis,

Schrobe, and Szolovits [27] together provide a well-rounded review of a wider

range of related areas.  Section 5.3 provides additional details as well.

For  the  purposes  of  this  project,  computation  in  artificial  intelligence

focuses on the tightly intertwined issues of what to represent, how to represent

it, and how to reason over it [27].  Contrary to what its name implies, however,

most work in artificial intelligence places relatively little emphasis on the cognitive

aspects of the areas that Section 2.2 outlined [44].  This project takes a similar

position that the cognitive foundation lays an important foundation and therefore

must be considered and acknowledged, but its mechanisms and theories do not

necessarily translate into a computational solution [26].  This project diverges,

however, from the claim of Davis, Schrobe, and Szolovits [27] that “. . . one

significant part of the representation endeavor—capturing and representing the

richness of the natural  world—is receiving insufficient attention” and Guarino

[48]  that  the  artificial  intelligence  community  is  “. . . more  interested  in  the

nature of reasoning rather than in the nature of the real world.”  As Section 2.3

outlined and this dissertation continually addresses, linguistic issues reflect subtle

yet important distinctions in the real world and in how humans perceive and
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manipulate it.  An understanding of these details  is essential to emulate their

behaviors.  Chapters 3, 4, and 5 will discuss them further. 

This  discussion  partitions  the  computational  foundation  into  three

interdependent levels according to Russell and Norvig [106].  The knowledge or

epistemological  level addresses  what  a  system knows  about  the  world;  the

logical level addresses the form of the representation of this knowledge; and the

implementation  level address  how  a  system  internally  manipulates  this

representation for reasoning.  

On  the  knowledge  or  epistemological  level,  decisions  about  what  to

encode  in  a  spatial  reasoning  system  are  difficult  because  there  is  nothing

resembling a comprehensive theory of space [124, 84, 90].  This situation is

exacerbated on three fronts [106]: 

 Theoretical ignorance:   the knowledge to represent is  not completely

understood.   Without  deeper  understanding,  however,  a  high-quality

computational  model  is  unlikely  to reflect  many important nuances of

behavior.

 Practical ignorance:   no representation is  ever  complete  because  the

conditions of  its  use are unique and infinitely  complex.   Humans are

flexible enough to mitigate this problem, but computers are not.
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 Laziness:  the knowledge to identify, consider, encode, test, and evaluate

has immense breadth and depth.  Even if complete details were available

and understood, the amount to encode is intractable.

Although a comprehensive theory of space is lacking, general agreement

within the research community is that there are relatively few epistemological

problems  with  representing  space  [26, 19].   As  Section 2.2 mentioned,  the

greatest  body  of  research  in  this  area  comes  from  geographic  information

systems [15, 83].  While the majority of this work applies to large-scale space

and issues like naive geography and physics, which are beyond the scope of this

project, the foundation of cognitive, linguistic, and computational issues it lays is

invaluable  [35, 2, 109].   Of  particular  interest  here  is  knowledge  about  the

behavior of  spatial  interactions between objects,  which fall  primarily  into the

categories of  topological and  metrical relations.  Topological relations define

relatively  simple  interactions  of  boundary,  contact,  and  separation  between

objects [85, 90, 55, 111, 17, 128, 57, 54,90, 121]; e.g., in, on, at, adjoining,

overlapping.  Metrical relations define imprecise, fuzzy interactions of distance

and angles between objects [55, 85, 88, 90, 59, 121]; e.g., near, far, in front

of,  next to.  In general, topological relations define spatial configurations, and

metrical relations subsequently refine them [35].  From the cognitive standpoint
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of Section 2.2, cognitive maps are mostly metrical and rarely topological [35].

In terms of spatial content, however, topological relations are considered more

important [108, 56].  They are also more flexible because they are not affected

by  translation,  rotation,  or  scaling  [33, 93].   This  project  employs  both

topological  and  metric  relations,  which  Section 5.5.1.3 and  Section 5.5.2.3

discuss.

Topological  relations are the most studied  and consequently  have the

strongest theoretical and practical foundation [15, 90, 17].  Region connection

calculus, the seminal work of Cohn et al. [19], uses just two primitives to define

hundreds of possible topological configurations of two objects [102]:  a function

to define the convex hull of a region, and a predicate to test for the connection

of  two such regions.   Hernández [56]  and  Cohn [18]  exhaustively  list  these

compositions and several others.  The similar 9-intersection model of Egenhofer

[33]  overlaps and extends this  set  further  [108].   It  is  based on the original

interval  calculus  of  Allen [3]  for time, which has been adapted for space by

others as well [100, 26, 28, 98, 17].  It defines 13 interval relations of spatial

topology; e.g., before, meets, contains, contained-by, after.

The logical and implementation levels blend in this review.  In theory, the

logical  formalism is  independent  of  its  implementation,  but,  in practice,  it  is
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difficult  to decouple them in a  computational  system [106].   This  discussion

addresses both levels from the mixed perspective of quantitative and qualitative

representation and reasoning [55].  Hernández and Mukerjee [54] and Mukerjee

[90] provide an extensive review.  A quantitative approach is purely numerical,

generally  in  terms  of  hard,  absolute,  unambiguous  coordinates,  angles,  and

distances.  Representation of space is traditionally quantitative because it meshes

well  with  the  implementation  requirements  for  computation  [54, 109].

However,  this  approach  exhibits  several  disadvantages  with  respect  to  this

project [56, 109, 72, 114]:

 Complexity:  many precise details are required to define objects and their

interrelations.   A  representation  must  commit  to  a  level  of  detail  or

granularity, but one size does not fit all possible cases.

 Partial and uncertain information:   details  must  be  completely  and

unambiguously defined, but the inherent underspecification, vagueness,

and uncertainty in descriptions never provide them.

 Cognitive inadequacy:  humans do not process the world quantitatively

and thus have difficulty defining it in precise, artificial terms.  Therefore,

two  simultaneous  representations  must  be  available  or  derivable  for

interactive manipulation between a human and computer.
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 Transformational impedance:   additional  loss  of  information  and

introduction of errors results as users interact with a system because the

different representations require iterative, bidirectional translation.

 Falsifying effects:   the  spatial  world  and its  representations rarely—if

ever—align  perfectly,  so  approximations  and  concessions  are  often

necessary to force-fit the former into the latter.  Corruption and loss of

information results, which exacerbates the previous issues.

A  qualitative approach  is  soft  and  fuzzy  and  typically  defines  its

knowledge in terms of rules,  heuristics, guidelines, and so on for generalized

degrees of truth.  Their interpretation depends heavily on the context of their use

[51].  They exhibit several advantageous properties with respect to this project

[56, 55, 54, 90, 134, 37, 106, 26, 84, 111, 114]:

 Flexible level of detail:  only the details necessary to solve a problem are

needed, and they are defined at the most appropriate granularities.

 Relative generalities:  details are defined in relative terms of themselves

as  comparisons,  constraints,  intervals,  assertions,  axioms,  and  so  on,

which are independent of scale.

 Support of vagueness:  ranges in details can be represented in terms of

loosely defined gradations.
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 Support of underspecification:  partial details contribute to a solution.

 Compositionality:  partial details can interact for higher precision.

 Structural similarity:  a qualitative representation can closely reflect the

commonsense  structure  of  the  real  world  without  unnecessary

contortions, commitments, concessions, and so on.

 Situated nature:  qualitative definitions map well to particular goals.  The

level  of  detail  can  be  higher  for  specialized  contexts  and  lower  for

generalized ones.

In  practice,  there  is  no  clear  boundary  between  quantitative  and

qualitative  representations  [90].   Each  serves  its  owns  purpose,  and  any

reasonably  broad  system  needs  to  rely  on  properties  of  both  regardless  of

whether  it  acknowledges  the  form  of  representation.  Section 5.1 and

Section 5.3 will discuss the aspects that relate to this project.
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3  SPATIAL DESCRIPTIONS

The form of the input to this system is tailored to showcase how nouns,

adjectives, and prepositions encode spatial knowledge in a description.  As in

most related systems, the input here uses contrived scenarios such as Figure 3.1

instead of passages of authentic text from existing sources [29].  This approach

generally reflects a concession that real-world text is unsuitable for or beyond the

capabilities of a system [124].  In this case, descriptions that are both consistent

with a zoo theme and limited to the scope of investigation simply do not exist in

any  usable  quantity.   This  situation  is  actually  advantageous  here  because

contrived  examples  facilitate  formal,  structured  experiments,  which  are  the

foundation of the analysis component that Chapter 7 will discuss.

Figure 3.1:  Sample Description1

Parsing English text to extract and decipher its grammatical structures is a

complex task that is not the focus of this project (see [13, 20]).  Nevertheless, as

1See Figure 8.1 for the corresponding graphical rendering.
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The scene contains a tree, a zebra named Zeus, and a giraffe.
Zeus is in front of the giraffe.
Zeus is at the fringe of the tree.
The giraffe is in front of the tree.
The tree is in front and left of the giraffe.
The tree is small.
The giraffe is big.



Section 1.1.1 illustrated,  some capability  of  this  type must  be provided.   To

simplify its development, the format of a description is rigidly defined according

to the grammar in Figure 3.2.  Additional, non-linguistic configuration comes

from the vignette file that Section 8.1.1 and Chapter 9 will discuss.

3.1  Spatial Nouns

The nouns in a description specify the entities that play a role.  For a zoo

theme, unsurprisingly, they are limited in scope.  Akin to a virtual Noah’s Ark,

this project employs a strategy of selecting its 41 animals and 11 plants from a

broad  cross-section  of  the  living  world.   This  collection  represents  diverse

exemplars  that  exhibit  the  real-world  and  linguistic  properties  and  spatial

34

<SCENE>       := 'The scene contains' <CONCEPTS> '.' <DESCRIPTOR>*

<CONCEPTS>    := ['a'|'an'] <CONCEPT> ['named' <INSTANCE>]

                 [',' ['and'] <CONCEPTS>]

<DESCRIPTOR>  := <IDENTIFIER> 'is' <DESCRIPTION> '.'

<DESCRIPTION> := (<ADJECTIVE> | (<PREPOSITION> <IDENTIFIER>))

                 [',' ['and'] <DESCRIPTION>]

<IDENTIFIER>  := 'the' <CONCEPT> | <INSTANCE>

<INSTANCE>    := single-word alphanumeric string

<CONCEPT>     := see Section 5.5.1.1

<ADJECTIVE>   := see Section 5.5.1.2

<PREPOSITION> := see Section 5.5.1.3

Figure 3.2:  Description Grammar



behaviors of interest here.  The eclectic mix showcases animals and plants that

vary  structurally  in  combinations  of  height,  width,  and  depth,  as  well  as

behaviorally in terms of being predominantly land-, water-, and/or air-dwelling.

Other  miscellaneous  objects  are  included  as  well  for  experimentation;  e.g.,

structures,  enclosures,  vehicles,  bodies  of  water.  See  Section 5.5.1.1 for  a

complete list.

The choice of a zoo theme is not fanciful or arbitrary.  Aside from the

obvious visual appeal and entertainment value, a zoo and its contents also exhibit

several  excellent  characteristics  from  the  perspective  of  this  project

[27, 111, 127].  First, its scale is linguistically appropriate [84, 35, 83, 50].  As

objects scale down in size, the interpretation of their description becomes more

literal, and the uncertainty and tolerance to error decrease [90].  For example, in

a tabletop environment containing a glass and a dinner plate, the possible spatial

configurations are very limited [35].  A range of plausible solutions may allow a

freedom of only plus or minus a few centimeters in placing these objects with

respect to each other.   The particular  solutions within this  small  range may

hardly differ enough to consider significant, and those immediately outside the

range may be completely incorrect.  While such spatial reasoning undoubtedly

has its uses (e.g., robotics), it does not satisfy the goals of this project.  As objects
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scale up in size, the opposite effect occurs [90].  For example, in a geographic

environment containing a town and a mountain, the possible spatial configura-

tions are extremely loose.  A range of plausible solutions may allow a freedom of

many  kilometers  in  placing  these  objects  with  respect  to  each  other.   The

particular  solutions  within  this  huge  range  may  differ  too much to  consider

significant, and those outside the range may be only marginally incorrect.

The choice of a zoo theme allows the world to be fixed at 100 meters

square  in  this  project.   This  scale  falls  nicely  between  the  minimum  and

maximum scales  as  described and provides  ample space for  large and small

objects to interact on near and far levels.  Another advantageous characteristic of

a  zoo is  that the size and shape of animals  is  dictated by nature.  As later

sections will discuss, a range of plausible sizes from minimum to maximum must

be assigned for the dimensions of each object.  The range for an adult male

animal (the default) is relatively constant in nature.  Contrast this to non-natural

entities such as  cars and buildings,  the size  and shape of which are—for all

practical  purposes—unrestricted.  Finally,  animal  size ranges are conveniently

documented in many nature resources,2 which assist greatly in compiling the

knowledge and validating the results of this project.

2See www.enature.com, www.wikipedia.org, and link.bubl.ac.uk/ISC7842.
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3.2  Spatial Adjectives

The spatial adjectives in a description affect the size of the noun/object

they modify.  All objects have default dimensions of height, width, and depth as

part of their range of plausible sizes that the previous section described.  In the

absence  of  any  spatial  adjective  modifying  a  noun,  the  defaults  are  used;

otherwise,  the  adjective  is  interpreted  with  respect  to  the  noun  so  that  it

corresponds to the contextually appropriate size in the contextually appropriate

dimensions.  For example, a  big tree is great in height; whereas a  big lake is

great in width and depth.3  The qualifier prefix very is also permitted to extend

the  minimum  and  maximum  range  of  sizes  as  contextually  appropriate.

Section 5.5.1.2 describes the spatial adjectives that are supported.  The set is

quite small because  the number of ways each can be interpreted in context is

large.  The adjective big, for instance, has six possible combinations of height,

width, and depth.

3.3  Spatial Prepositions

The spatial prepositions in a description specify how two nouns/objects

interact in terms of their position and/or orientation.  All  objects maintain a

3Case in point:  notice how depth in the context of this discussion on dimen-
sions corresponds to  length, but in the context of a  lake, the reader probably
thinks of the customary interpretation of how far down the bottom is.
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three-dimensional  position  in  the  world  and  a  360-degree  orientation  that

indicates where they are facing.  Prepositions contextually limit the range for

these values.  For example, the dog is in front of the cat specifies that the dog

must located somewhere in front of the cat, and the position of the dog depends

on both the position and the orientation of the cat.  Similarly, the giraffe is near

the lake specifies that the giraffe must be located near the lake, but the position

of the giraffe depends only on the position of the lake and not on its orientation.

The interpretation of what it means to be in front of or near something depends

heavily on the context of the objects.

Section 5.5.1.3 describes the spatial prepositions that are supported.  All

are of the binary form <NOUN1> <PREPOSITION> <NOUN2>, which is consistent with

all  English  spatial  prepositions  of  interest  in  this  project  except  between

[24, 25, 58, 56].   The  qualifier  prefix  directly is  also  permitted  on  some

prepositions to tighten the interpretation.

3.4  Restrictions and Limitations

A description consists of spatial nouns, adjectives, and prepositions.  One

major grammatical  category, verbs, is  conspicuously missing.  Except for the

copular is, no verbs are supported.  This limitation is intentional as it cleanly

eliminates the complexities associated with verbal constructions, all of which are
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beyond the  scope of  this  project.   It  also  forces  scenes  to  be static,  which

precludes any adverse issues of time or movement [106, 26, 77, 44, 87].

Only existential quantification of objects is permitted; e.g., there is a dog.

Universal quantification (e.g., all the dogs) is arguably within the capabilities of

this solution, but it is beyond the scope of investigation.  For similar reasons, no

plural forms of nouns are allowed; e.g.,  the dogs.  It is possible, however, to

have multiple instances of nouns provided that each is specified separately; e.g.,

the dog named Spot and the dog named Fido.  No numerical descriptions are

allowed; e.g., the dog is four meters from the cat.  Although many usages of

negation are possible in this solution, it is not permitted; e.g., the dog is not big

or the cat is not near the giraffe.  No vertical relations like above or below are

supported, except on in certain cases.  Finally, objects are not decomposable or

articulated, so it is not possible to refer to or manipulate any subcomponent;

e.g.,  the dog’s head is facing left.  Similarly, they are not physics-based, so

unrealistic interpretations are possible; e.g., the elephant is in the raft, but the

raft continues to float.
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4  REPRESENTATION OF EXPLICIT KNOWLEDGE

The previous three chapters discussed and demonstrated in many ways

how spatial descriptions contain remarkably little explicit content and how most

of the details for interpretation are actually supplied by the implicit background

knowledge of the reader [61, 113, 114].  This chapter and the next respectively

address how this project represents such explicit and implicit knowledge.

4.1  Description Transformation

The structure and content of how spatial descriptions must be expressed

in English was laid out in the previous chapter.  This sentence-based representa-

tion is convenient for humans to read, but it is not well-suited for computers to

process.  The use of articles and conjunctions, punctuation, capitalization, and

certain  whitespace  makes  the  text  easier  to  read,  but  they  are  extraneous

because they contribute no additional information.  Reformatting or removing

them reduces the text to its core content.  For example, Figure 4.1 is equivalent

in meaning to its base form in Figure 3.1.

4.2  Semantic Network Representation

Descriptions in this form are (cryptically) concise, but they are still based

on the  computationally  unappealing  formalism of  characters  and  words.   A

graph-based  abstraction  known  as  a  semantic  network,  in  contrast,  can
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represent the same information through an intuitive, visual formalism that is easy

to process computationally [114, 87].  It is a collection of one or more disjoint

directed graphs consisting of nodes and arcs as Figure 4.2 illustrates.

The rectangular nodes are  objects, the rounded nodes are  attributes, and the

arcs are relations.  Objects correspond directly to spatial nouns in Section 3.1,

attributes to spatial adjectives in Section 3.2, and relations to spatial prepositions

in Section 3.3.  In certain cases, correspondences are realigned to simplify later

processing.   For  example,  the  phrase dog  facing1 north translates  to  the

attribute expression  dog[is]facing-north because  north is  not an object

and cannot be the destination of a relation arc.

At this stage in processing a description, the representation as a semantic

network is static:  it serves merely as a data structure that holds information

without  manipulating  it  [51, 27, 44].   Section 5.5.2,  Section 5.8.2.2,  and

Section 6.2 and will discuss the dynamic characteristics of a semantic network

when it is augmented with inferences.

1In strict grammatical terms, facing is actually part of a verb phrase.  Due to the
similarity between both grammatical roles, however, it can be easily reclassified
here as a preposition to circumvent the lack of support for verbs.
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tree zebra/zeus giraffe

zeus in-front-of giraffe

zeus at-fringe-of tree

giraffe in-front-of tree

tree in-front-left-of giraffe

tree small

giraffe big

Figure 4.1:  Reduced Description

Figure 4.2:  Semantic Network

ZEBRA: zeus

GIRAFFE

TREE

small

big is

is

in-front-of

in-front-left-of

at-fringe-of

in-front-of



5  REPRESENTATION OF IMPLICIT KNOWLEDGE

The  vast  majority  of  knowledge  that  a  person  brings  to  bear  in

understanding a description is so commonplace and obvious that humans take it

for granted and are not even consciously aware of its contribution [114, 106].

This  so-called  “commonsense” knowledge defines  unseen behaviors,  relation-

ships,  constraints,  and  so  on  in  the  world  [121, 35].   Without  this  implicit

understanding of what should and should not occur in particular contexts, as well

as  what  is  more likely  or  favored,  humans  would  not be able  to reason so

powerfully  over  spatial  descriptions  [15].   Such  is  the  plight  of  many

computational approaches to text understanding, which focus on the grammar

and vocabulary of the text and ignore the deeper significance of meaning [114].

Implicit spatial knowledge in this project provides a limited commonsense

contextual framework for filling in major gaps in the explicit  knowledge of a

description [78, 121].   It  addresses  the  five  stated  lexical-semantic  issues  as

follows:

 Underspecification:   lack  of  explicit  detail  is  addressed  by  providing

formal definitions for many commonsense, spatial aspects of objects.
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 Vagueness:   inconsistent  application  of  size  properties  to  objects  is

addressed  by  formally  binding  supported  English  adjectives  to  a

commonsense interpretation of their effect.

 Uncertainty:  impreciseness in specifying the position and orientation of

objects is addressed by formally constraining plausible interpretations to a

range of possibilities and favoring certain ones.

 Context:  effects on meaning from interactions of objects are addressed

by categorizing similar behavior and formally assigning it as part of their

definitions.

 Frame of reference:  the role of the viewer and objects in a description is

addressed by applying variations of definitions according to context.

5.1  Form of Representation

Among many other  distinctions,  spatial  knowledge representations are

traditionally classified as either quantitative or qualitative [35, 55, 54, 90. 56].

A  quantitative  representation  defines  its  contents  primarily  with  absolute,

numerical values and equations [90].  For example, the attribute big could mean

1.5 meters high by 1.3 wide by 1.6 deep.  Similarly, the relation in front of

could  mean  the  z  position  of  object B  is  2.0  meters  greater  than  the  z

position of object A with respect to the azimuth of object A.  While this form
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is  useful  for many purposes like robotics and tabletop object placement, it  is

generally incompatible with the vague, uncertain, contextually dependent nature

of natural-language descriptions that are the focus of this project [72, 109].

A qualitative representation defines its  contents primarily  with relative,

non-numerical  values  and generalized  degrees  of  truth  over  loose constraints

[90, 51].  For example, the attribute  big could mean roughly 20% above the

norm for the appropriate dimensions of an object in context.  Similarly, the

relation in front of could mean object B is somewhere within a wedge-shaped

region centered on the line of sight of object A, with the middle most likely.

The parallel to a description in natural language is clear.  

A qualitative representation does not preclude the use of numerical values

for many purposes for which they are more appropriate [37].  Also, deep at the

implementation level of any computational reasoning system, all  knowledge is

eventually processed numerically, of course.  A major advantage of a qualitative

representation  is  that  it  can  abstract  this  degree  of  detail  away  from  the

definitions and defer it to lower levels where it interferes less with the conceptual

definitions above it [56, 26, 27, 54].  Where numerical values are unavoidable

or indeed desirable, such as in defining the realistic dimensions of animals, they

are defined in this project as probabilistic intervals; e.g., the height of an adult
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male giraffe is normally distributed between 3.9 and 5.5 meters and must

not exceed 3.5 and 6.0 meters, respectively.

5.2  Structural Overview

The previous chapter addressed the representation of explicit knowledge

with a semantic network.  It was a short and relatively simple discussion because

the semantic network serves in this capacity as a static data structure only.  In

other words, it does not perform any processing.  This chapter addresses the

representation of implicit  world  knowledge with a  knowledge base.  In stark

contrast, it is a long and very complex discussion because this dynamic structure

is responsible for the majority of the reasoning in this project [77].  Although the

reasoning engine in the next  chapter  is  credited in name with this task,  the

“intelligent” processing is actually realized here by setting up the framework to

be used by the “dumb” reasoner.

The  knowledge  base  is  complex  because  the  issues  it  addresses  are

complex.   Unfortunately,  its  tightly  intertwined components  cannot  be easily

broken into independent discussions.  To mitigate the difficulty in reading the

remainder of this chapter, the organization of its sections is outlined here.  They

are primarily oriented toward the issues the knowledge base solves instead of
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toward the knowledge representation language, but there is some crossover.  For

the complete grammar, see Appendix A.

The knowledge base is a parallel structure to the semantic network in the

sense  that  it  operates  on  the  same  framework  of  objects,  properties,  and

relations toward the same goal  of supporting reasoning over the dimensions,

position, and orientation of entities in a description.  Its two main purposes are

to  represent  the  implicit  semantics  and  the  implicit  pragmatics  of  these

components and goals.  Semantic representation in Section 5.5 focuses on the

default definitions of objects, properties, and relations that are most commonly

used  in  general  contexts  [26, 27].   Pragmatic  representation  in  Section 5.6

focuses on extending or overriding the default definitions for use in specialized

contexts [130].  Each of these representations plays two mutually contributing

roles.  The first is to define the details necessary to generate a solution from the

semantic network of a description.  The second is to define how to find new

knowledge about the description based on this solution and to add it back into

the semantic network.  Finally, Section 5.7 focuses on the structural details of

constraints, which are the primary means to define and derive numerical values

and form the basis of the reasoning processes in this project.  This discussion
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serves as a bridge into the next chapter on the reasoning engine that operates

on them.

5.3  Computational Foundation

The knowledge base in this project is defined as an ontology of concepts

that are organized in an object-oriented structure of declarative definitions.

Each of  the four  components of  this  definition plays  an integral  role in the

behavior of the knowledge base and will be addressed separately.

5.3.1  Ontological Representation

Definitions vary widely on what an ontology is and is not according to

different philosophical and practical views [47, 36, 106, 114, 26, 4, 52, 17, 8,

78, 48].  What is agreed, however, is that “[i]n the field of natural  language

processing (NLP), there is now a consensus that all NLP systems that seek to

represent and manipulate meanings of texts need an ontology . . . .” [78].  The

following features of a knowledge representation (adapted primarily from [27])

summarize the points that are considered most important in an ontology for this

project [114, 106, 47, 130, 17, 11]:

 It is a surrogate.  A computational model has no access to the real world

and instead must operate on some abstraction of it.  An abstraction can
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never be complete or exact.  The ontology in this project reduces the

knowledge to fit the stated requirements and goals.

 It is a set of ontological commitments.  An abstraction is arbitrary and

requires its developer to decide and formally define what is important.

This definition maps to some form of the conceptualization of the world

that  Section 2.2 discussed.   Thus,  the organization of  an ontology  is

usually “situated” in a role it must play [78, 106]; e.g., lexical-semantic

issues of space in a zoo.

 It is a fragmentary theory of intelligent reasoning.  An abstraction req-

uires a definition of the behaviors of its components, not just of their

existence,  because  a  reasoning  system  must  operate  on  them.   The

ontology in this  project  defines  what  its  components are  and how to

interpret them.

 It is a medium for efficient computation.  An  abstraction  must  be

amenable to processing, not just interesting or theoretically elegant.  The

graph-based  formalism  and  inheritance  mechanisms  of  an  ontology

directly support this requirement.

 It is a medium of human expression.  An abstraction should retain the

features of the surrogate in a form that humans can understand.  The
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formalism  of  definitions  in  this  ontology  balance  computational  and

human needs.  It is not optimal or ideal for either, but it is understandable

and usable by both.

Above all else, this project conforms to the view that an ontology is a

taxonomy of definitions [106, 4, 87].   Each of  its  nodes defines information

about a single entry in the knowledge base; e.g., a prototypical DOG.1  The nodes

are organized hierarchically from most general at the top of the tree (e.g., THING)

to most specific at the bottom (e.g.,  GREAT-WHITE-SHARK).  Every node except

the root one has at least one parent node, which, by nature of the hierarchy, is

inherently  more  general  than  its  itself.   An  entry  is  thus  defined  by  the

information its node contains, as well as by the information its parent node or

nodes contain.  This behavior, known as inheritance, holds recursively, so each

parent is likewise described by its own parents, and so on up the tree.  

An analogous example is a taxonomy of the animal kingdom, a grossly

simplified branch of which Figure 5.1 shows.  A DOG, for example, is a CANINE,

which is a MAMMAL, which is an ANIMAL, which is a THING, and so on.  Thus by

looking up the entry for  DOG, the hierarchy directly supplies information about

DOG and indirectly about its ancestors CANINE, MAMMAL, ANIMAL, and THING.  If the

1Entries in the knowledge base are denoted here by monotype script.  Concepts
are capitalized.

50



definition of ANIMAL indicates that they must be mortal, for instance, then all its

descendants, including DOG, are by default mortal without having to define them

individually  in  each  node.   Inheritance  plays  a  powerful  role  in  addressing

underspecification in this project, and the next section and Section 5.5.1.1.1 will

discuss it in more detail.

There  is  no single,  theoretically  “correct”  hierarchy  for  anything  that

optimally  serves all  purposes all  the time [79, 114, 111].   Life scientists, for

example, organize the entries in the taxonomy of the animal kingdom according

to  the  physiological  and  morphological  characteristics  they  believe  are  most

representative  in  showing  how  these  animals  are  related.   Many  other

organizations are possible and might even be more appropriate for other uses;

e.g.,  genetic  similarity.   Appropriate  for  this  project  is  an  organization  that

addresses the spatial behaviors of entries.  As such, even though it represents
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many of the same animals as the taxonomy of the animal kingdom, the two

differ significantly in structure.

5.3.2  Conceptual Templates

The  “entries”  in  the  knowledge  base,  as  the  previous  section  loosely

called them, are not instances of what they represent in the real world.  For

example,  DOG does not refer to any particular dog like Rover, Fido, or Spot.

Rather,  it  specifies  a  conceptual  template or,  for  short,  the  concept,  of  a

prototypical  class  of  dog,  from  which  such  instances  can  be  built

[27, 87, 114, 83].  A concept defines—directly and through inheritance—all the

relevant and appropriate information for this project that would be shared by any

dog.   Concepts  are  analogous  to  simple  frames,  which  encapsulate  related

knowledge  and  structure  it  with  respect  to  other  encapsulations

[26, 114, 4, 130, 27]; e.g., a bedroom frame decomposes into (at least) a bed,

which links with and/or decomposes into a box spring, a mattress, blankets, etc.

The primary distinction in this project is that its concepts do not form a deeply

tangled  subsumption and  decomposition  hierarchy  of  such  interconnections,

which is common in other knowledge-based work [79, 115].  Its separation of

explicit and implicit knowledge representations generally  contributes to fewer,

cleaner, more straightforward interconnections.  Also, its scale does not consider
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compositional or articulated objects; e.g., a giraffe has a head and body, and the

head can move in certain ways independent of the body.

5.3.3  Object Orientation

A concept in the knowledge base is analogous to a class in an object-

oriented programming language in several ways [114, 11, 112, 130]:

 Concepts encapsulate related information.

 The same structural  relationships hold between superconcept, concept,

and subconcept as between superclass, class, and subclass.  

 The contents of any superconcept can be inherited or overridden.  

 Multiple  inheritance  allows  a  concept  can  have  more  than  one

superconcept.

 The process of creating an instance from a concept is instantiation.

 Any number of unique instances can be created from a concept.

5.3.4  Declarative Paradigm

Although the  structure of the concepts in the knowledge base exhibits

great similarity with object-oriented programming languages, the contents of the

concepts  rely  on  a  substantially  different  formalism.   Most  object-oriented

languages  follow  an  imperative  paradigm  that  precisely  specifies  the  exact

procedures to execute in order to produce the desired result.  In contrast, the
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definitions in concepts in this project follow a declarative paradigm that specifies

only the necessary and sufficient conditions that a correct solution must satisfy,

but not the steps to produce it [101].  As a result, both the knowledge base (see

Appendix B) and the grammar that defines it  (see Appendix A)  are compact,

straightforward, and relatively easy to define and understand [106].

At some point in the processing of this knowledge, of course, procedural

execution  is  unavoidable  because  Java  is  not  a  declarative  programming

language.  A declarative representation does not eliminate or even mitigate this

need.  Rather, it cleanly separates the declarative knowledge details from the

procedural  implementation  details,  both  of  which  must  still  be  defined

somewhere [4, 26].  The former is here in the knowledge base, and the latter is

in the spatial reasoning engine, which the next chapter will discuss.  The beauty

of this architecture is that it separates what to do from how to do it and allows

the designer of the knowledge base to focus on the issues of interest instead of

on low-level programming details [54, 27, 56].

5.4  Mapping of Semantic Network to Knowledge Base

The semantic network and the knowledge base complement each other.

Recall that the semantic network represents the explicit details of a description,

and  the  knowledge  base  represents  the  implicit  details.   The  mechanism of
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connection is straightforward:  every object node in the semantic network has a

link to its corresponding concept node in the knowledge base, and so does every

attribute node and relation arc originating from it [43].  For example, Figure 5.2

depicts this mapping for the description the big dog named Rambo is in front

of the cat, and the cat is near small dog named Angel.  A similar two-level

approach is used in the Mikrokosmos project as a text meaning representation to

link instances of  concepts in text  to their  framework of  interpretation in an

ontology [113].

The interpretation of an object node and its attributes and relationships is defined

entirely  by  the  contents  of  the  concept  node  to  which  they  point  in  the
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Figure 5.2:  Mapping of Semantic Network to Knowledge Base
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knowledge base.2  For example, Rambo and Angel are unique instances of a

DOG,  but  both  link  to  the  same  concept.   Their  interpretations  will  differ,

however, because each supplies different attributes and relationships.

5.5  Semantic Representation for Intrinsic Context

The appropriate interpretation of an object node in the semantic network

depends on its  links both to the knowledge base and from any other  object

nodes.  This mapping establishes the context, which is considered in this project

as either intrinsic or extrinsic [69].  In an intrinsic context, an object node has a

prototypical (or “default”) interpretation that is independent of any other object

nodes in the semantic network.  In the most basic example, there is a dog, not

enough information is available to posit any interpretation beyond its  simple,

inert presence in the scene regardless of what else is described.  In the extension

to this example, there is a big dog, the interpretation of the size of the dog now

plays a role as well, but again, no other external influences apply.  The default

information for intrinsic contexts is defined in a concept node by a semantic

representation.  This project takes the position that semantics refers to meaning

2As all the links that originate from an object node point to the same concept
node,  there  is  actually  no  need  to  depict  them with  multiple  arrows.   The
attribute and relationship links are shown for clarity only.
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that is independent of context [62, 52, 106, 51].  Section 5.6 will  discuss its

complement:  pragmatic representation for extrinsic context.

5.5.1  Role in Solution Generation

The knowledge base plays two complementary roles evenly across both

semantic  and  pragmatic  representation.   The  first  role,  which  this  section

discusses, addresses the implicit knowledge that is needed to produce a plausible

interpretation from a description.  The second role, which  Section 5.5.2 will

discuss, addresses the knowledge that is essential to handle the converse task—to

infer from an interpretation additional spatial information that was not explicitly

stated in the original description.

As the semantic network and knowledge base are both defined in terms

of  objects,  attributes,  and  relations,  these  three  components  translate  into  a

natural  organization  for  discussing  the  details  of  the  knowledge  base.

Furthermore, the declarative representation of the knowledge base lends itself to

an organization that addresses the role of each component with respect to the

stated issues  and goals  of  this  project.   As such, the syntactic details  of  the

knowledge representation language that defines each component are omitted, as

well as the procedural details of how it is processed.  See  Appendix A for the
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grammar and Appendix B for the knowledge base.  Chapter 6 will discuss the

procedural details.

5.5.1.1  Objects

Objects in the semantic network correspond to nouns in a description and

map  to  concepts  in  the  knowledge  base.   As  Chapter 3 discussed,  these

concepts are related to the zoo theme and organized in an ontology.  As  a

suitable ontology of the animal kingdom already exists,  this  project does not

attempt to reinvent the wheel by defining a radically new ontology of the same

concepts  for  its  own specialized  purposes.   A  more  effective  strategy  is  to

augment3 this existing structure to accommodate new knowledge of the spatial

behaviors  of its  concepts.   The mechanism to map spatial  behaviors  to zoo

concepts is reflected in the definition of the concepts, which are either derived

or abstract.

5.5.1.1.1  Derived Concept

As a general rule, a derived concept represents any zoo-related class of

objects  that  can be instantiated and rendered graphically;  e.g., a  GIRAFFE,  a

LAKE, or a PICKUP-TRUCK.  A derived concept always inherits from one or more

3The structure is also simplified by reduction because many levels of the animal
kingdom play no role in this project; i.e., phylum, class, order, etc.
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other derived concepts and indirectly from THING, which is the root concept of

the ontology.  It can also inherit from abstract concepts, which Section 5.5.1.1.2

will  discuss.   As  the  name  suggests,  a  derived  concept  derives  through

inheritance the contents of all its ancestor concepts (both derived and abstract).

As its  contents  need  only  define  how  it  differs  from  its  ancestors,  this

representation is very compact.  In fact, roughly 34% of the knowledge base

(398 of 1163 non-blank lines) resides in the root concept THING!

This  inheritance  hierarchy  also  inherently  supports  different  levels  of

commitment to the plausible interpretation of uncertainty in a description.  As

Section 5.3.1 discussed,  concepts  that  are  lower  in  the  hierarchy  are  more

specific than those above it.  This narrowing property contributes to two cases.

In the first case, if an object node in the semantic network links to a concept

node  that  is  a  leaf  node  in  the  knowledge  base,  then  the  most  specific

interpretation is made.  For example, Figure 5.3 depicts a reduced branch of the

MAMMAL lineage in knowledge base.  The description  there is  a St.  Bernard

would link directly and unambiguously to the concept ST-BERNARD.

In the second case, if a link is to a non-leaf node, then a more general,

less  committal interpretation is made.  For example, the description there is a

dog is  satisfied indirectly by a  ST-BERNARD or a  PIT-BULL, and the even more
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general description there is an animal by a ST-BERNARD, a PIT-BULL, or a CAT.

The choice of animal is actually irrelevant because any leaf-node beneath ANIMAL

is equally valid.  This project does not consider context in its selection; e.g., the

interpretation of there is animal in the lake could limit the possible candidates

to only those animals that reasonably belong in a lake.  It is beyond the scope of

this work to infer such specifics from unnecessarily ambiguous descriptions.

The knowledge base supports multiple inheritance, so a derived concept

may have more than one parent concept.  This mechanism is very powerful for

representing complexities and irregularities in the real world; e.g., a  MULE is a

HORSE and  DONKEY.   Figure 5.4a  shows  the  arbitrary  concepts  A,  B,  and  C.

Concepts  A and  B define  the  arbitrary  contents  x,  y,  and  z (as  bold),  and
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concept C inherits them (as italics).  Thus concept C implicitly shares the contents

of its parents.  However, as Figure 5.4b shows, concept  C is not required to

accept the inherited contents and can explicitly override any of them.

Figure 5.4:  Multiple Inheritance

Multiple  inheritance  unfortunately  has  the  potential  to  cause  ambiguous

derivations  if  two  or  more parents  have  conflicting  definitions  as  Figure 5.5

shows [106, 114, 115].

Figure 5.5:  Multiple Inheritance Conflicts
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The knowledge base implements two mechanisms to resolve such conflicts.  For

conflicts of the form in Figure 5.5a, the most direct connection to the concept

that defines the inherited contents has precedence, so concept D gets its x value

from concept B.  For conflicts of the form in Figure 5.5b, where both conflicting

definitions have equally direct connections, the parent that contributes more non-

conflicting  information  has  precedence,  so  concept  D gets  its  x value  from

concept A.  While these mechanisms are not perfect, they do consistently resolve

most  conflicts  satisfactorily  and  automatically.4  Fortunately,  a  well-designed

knowledge base with appropriate use of multiple inheritance tends to avoid most

of these issues.  The one problematic case in this project was the combination of

the  abstract  concepts  (in  the  next  section)  GROUND-THING and  WATER-THING,

which exhibited inconsistent contextual application.

Table 5.1 shows the derived concepts in the knowledge base, each with

an arbitrary, unique numeric code that identifies it in the hierarchy in Figure 5.6.

They are chosen as representatives for a zoo theme according to the criteria in

Section 3.1.  Outliers like  BLUE-WHALE and  RIVER violate these criteria but are

included anyway to test the failure limits of this project [101].

4Programming  languages  that  support  multiple  inheritance  usually  force  the
programmer to indicate the intended interpretation explicitly.  In an automated
reasoning system, such a mechanism is not viable.
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Table 5.1:  Derived Concepts

# Concept # Concept # Concept

1 alligator 37 garter-snake 73 park-bench

2 american-alligator 38 gator 74 pen

3 american-crocodile 39 geographic-thing 75 pickup-truck

4 amphibian 40 giant-manta 76 pig

5 anaconda 41 giraffe 77 pine-tree

6 animal 42 golden-eagle 78 pink-salmon

7 ape 43 gray-wolf 79 pit bull

8 aquatic-animal 44 great-egret 80 plant

9 aquatic-plant 45 great-white-shark 81 pond

10 artificial-thing 46 hammerhead-shark 82 primate

11 aspen-tree 47 hippo 83 python

12 atlantic-octopus 48 horse 84 rabbit

13 birch-tree 49 human 85 raft

14 bird 50 iguana 86 red-wolf

15 blue-whale 51 kangaroo 87 redwood-tree

16 bullfrog 52 killer-whale 88 reptile

17 bush 53 lake 89 rhino

18 cactus 54 leopard 90 river

19 cage 55 lily-pad 91 rodent

20 camel 56 lion 92 saguaro

21 canine 57 lizard 93 saint-bernard

22 cat 58 loch-ness-monster 94 salmon

23 cherry-tree 59 mallard-duck 95 sea-monster

24 coho-salmon 60 mammal 96 shark

25 colobus-monkey 61 man 97 snake

26 corral 62 manta 98 snapping-turtle

27 crocodile 63 maple-tree 99 swine

28 dog 64 marsupial 100 tree

29 domestic-cat 65 mexican-wolf 101 turtle

30 elephant 66 mondopod 102 ungulate

31 elk 67 monkey 103 whale

32 emperor-penguin 68 mountain-gorilla 104 white-pelican

33 feline 69 octopus 105 wild-cat

34 fern 70 pacific-octopus 106 willow-tree

35 fish 71 palm-tree 107 wolf

36 fountain 72 panther 108 zebra
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Figure 5.6:  Taxonomy of Derived Concepts
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5.5.1.1.2  Abstract Concept

An abstract  concept follows  the opposite general  rule  from a  derived

concept:   it  represents  any  class  of  objects  that  cannot  be  instantiated  or

rendered graphically.  In this project, such classes are based on spatial behaviors

that have no real-world correspondence; e.g., there is a member of a class of

objects that share the spatial behavior of having a front side.  An abstract

concept defines a top-level contract for behaviors by which its descendants must

abide.  It is similar to an abstract class in programming languages.  In addition, it

cannot  inherit  from other  abstract  concepts  or  derived  concepts  because  it

resides at the top level of the ontology.  Table 5.2 shows the abstract concepts

in the knowledge base.

Table 5.2:  Abstract Concepts

Abstract Concept Description

THING Defines the single ancestor of all derived concepts;
contains the default interpretations that they all inherit
or override.

CONTAINER Allows other objects to penetrate its volume.

GROUND-THING Belongs on the ground only.

WATER-THING Belongs in a BODY-OF-WATER only.

TREE-ABLE-THING Can occupy a TREE.

BODY-OF-WATER Allows other objects to be on or below its surface.

SMALL-ANIMAL Indicates a relatively small animal.

LARGE-ANIMAL Indicates a relatively large animal.
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5.5.1.1.3  Multidimensional Knowledge Base

The knowledge base is  an single  ontology that  combines the abstract

concepts  in  Table 5.2 with  the  derived  concepts  in  Table 5.1 to  produce  a

structure similar to the notional example in Figure 5.7.  The abstract concepts

define the spatial behaviors to which all their derived concepts must conform;

e.g., every CANINE is a GROUND-THING, every AQUATIC-ANIMAL is a WATER-THING,

and a HIPPO is both.  The derived concepts define the zoo-related taxonomy by

inheriting  from  derived  and/or  abstract  concepts.   This  solution  facilitates

overlaying  an application-specific  structure  onto an existing  general  ontology

[71, 41, 124].  It also deflects a common criticism of knowledge-based systems

that their haphazard, ad hoc structure bears little or no resemblance to the real

world [90, 79, 106].
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Figure 5.7:  Multidimensional Ontology
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It is interesting to note how small the collection of abstract concepts is.

Although the derived concepts in the animal kingdom vary greatly in breadth and

depth (even in this simplified taxonomy), there is surprisingly little variation in

their spatial behavior.  In other words, not much representation is required to

model the spatial  behaviors of a wide range of animals at the level that this

project considers.

5.5.1.2  Attributes

Attributes in a semantic network correspond to adjectives in a description

and  map  to  attribute  definitions  within  a  concept  in  the  knowledge  base.

Attributes  define two types of  features  that  configure the  interpretation of  a

concept:  properties and attribute intervals.

5.5.1.2.1  Properties

A  property  is  a  type  of  attribute  that  is  used  internally  within  the

knowledge base only.  It defines immutable features, either  primitive or  range

values, that always hold true for the concept in which it resides.  For example,

the property  has-canonical-front is assigned a boolean value depending on

whether the concept has a front face and is capable of looking in a particular

direction;  e.g., true  for  a  DOG but  false  for  a  TREE.   A  property  cannot  be
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changed or referenced in any way from outside the knowledge base; e.g., there

is a tree with a canonical front.

5.5.1.2.1.1  Primitive Properties

The properties in Table 5.3 are used mainly in conditional dependencies

to process contextual interactions.  They are referred to as primitive properties

because they are assigned a single value, normally a boolean or number.  For

example, in the dog is in front of the tree, the appropriate interpretation of the

relation IN-FRONT-OF depends on the knowledge that a  TREE has no canonical

front.   Section 5.6.2 will  discuss  the  details  of  defining  attributes  for  these

properties.

Table 5.3:  Primitive Properties

Primitive Property General Purpose

has-canonical-front Does an object has a canonical front?

is-container Can an object contain another object?

supports-dimension-comparison Does an object generate dimension inferences?

5.5.1.2.1.2  Range Properties

The properties in Table 5.4 are used to determine an appropriate value

for each of the three dimensions that an instance of a concept occupies in space.

They are referred to as range properties because they are assigned an inclusive
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range of values from minimum to maximum.  For example, the absolute height

of  a  GIRAFFE is  distributed  between 3.5  and  6.0  meters,  with  a  suggested

minimum and maximum of 3.9 and 5.5 meters, respectively.  Section 5.7.1.1

will discuss the details of defining attributes for these properties.

Table 5.4:  Range Properties

Range Property

height

width

depth

5.5.1.2.2  Attribute Intervals

An attribute interval is a type of attribute that links a contrasting pair of

English adjectives of size to the appropriate dimensions that are defined as range

properties for a concept.  For example,  short and  tall apply to the  height

dimension of a GIRAFFE, where the former links to the lower range and the latter

to the upper range.  Thus the descriptions there is a short giraffe and there is a

tall giraffe should produce giraffes that are roughly 3.9 meters and 5.5 meters

in  height,  respectively.   The  qualifier  very is  defined  to  extend  this  range.

Table 5.5 shows  the  attribute  pairings, and  Section 5.7.1.2 will  discuss  the

details of defining them.
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Table 5.5:  Attribute Intervals

Interval General Application

short ... tall height, for vertically oriented concepts

short ... long length, for horizontally oriented concepts

narrow ... wide width

small ... big height, width, and depth

5.5.1.3  Relations

Relations  in  a  semantic  network  correspond  to  prepositions  in  a

description and map to relation definitions within a concept in the knowledge

base.  Relations define the constraints that apply in the interpretation of spatial

interactions for  position and orientation between two objects in a description.

Section 5.7 will discuss how constraints operate.

5.5.1.3.1  Relative Position Relations

A  relative position  relation specifies  the plausible  range of  positions

where an object in a description must appear with respect to the position of

another object; e.g., the dog is east of and near the cat.

5.5.1.3.1.1  Global Relative Position Relations

The  simplest  class  of  position  relations,  global  relative,  is  listed  in

Table 5.6.   It specifies positions based on cardinal and  intercardinal compass

directions; e.g., the dog is north of the cat.  These relations are comparatively

70



simple because context plays little role; i.e., north is always north regardless of

the particular objects [30].

Table 5.6:  Global Relative Position Relations

north-of directly-north-of northeast-of

south-of directly-south-of northwest-of

east-of directly-east-of southeast-of

west-of directly-west-of southwest-of

Global  relative  position relations  play  a  secondary  role  as  well.   The

knowledge base defines no true global absolute position relations, which would

specify the plausible range of positions where an object in a description must

appear in the world.  Nevertheless, the relations in Table 5.7 are available to

descriptions because they provide control over the basic layout of objects in the

world that is otherwise not be possible with the other relations; e.g., the dog is

in the north.

Table 5.7:  Quasi-Absolute Position Relations

in-north directly-in-north in-northeast

in-south directly-in-south in-northwest

in-east directly-in-east in-southeast

in-west directly-in-west in-southwest

The issue that makes this case special is the strict definition of a relation:

it establishes a relationship between two objects.  In this project, directions and

areas on the world, like north, are not objects.  To circumvent this syntactic
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limitation, the relations in Table 5.7 undergo an automatic  transformation in

parsing from this form in a description to their representation as a legal relation

in  the  semantic  network.   The  mechanism is  straightforward:   entries  from

Table 5.7 are syntactically rewritten in terms of entries from Table 5.6, and the

special object WORLD-CENTER5 serves as the missing object.  For example, the dog

is in the north is rewritten as the dog is north of world center.

5.5.1.3.1.2  Local Relative Position Relations

The  similar  but  far  more  complex  class  of  position  relations,  local

relative,  is  listed in Table 5.8.  It  specifies  positions based on the sides and

corners—referred to as  facets here—of objects; e.g.,  the dog is in front and

left  of  the  cat.   These  relations  are  complicated  because  facets  differ

contextually depending on the particular objects.  For example, a DOG is defined

to have a canonical front, so it has an established front facet, as well as a back,

left, right, and so on.  A TREE, on the other hand, is defined not to have one, so

it has no established facets.  Nevertheless, it is obviously possible to describe that

the dog is in front of the tree.  The proper interpretation of these relations

5Section 5.5.1.3.1.1 and  Section 5.7.2.1.1.2 will  discuss  the  WORLD-CENTER
concept/object.
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depends on their properties and the context that they form.  Section 5.6 will

discuss this mechanism.

Table 5.8:  Local Relative Position Relations

in-front-of directly-in-front-of in-front-left-of to-side-of

in-back-of directly-in-back-of in-front-right-of

left-of directly-left-of in-back-left-of

right-of directly-right-of in-back-right-of

5.5.1.3.1.3  Relative Distance Relations

The  final  class  of  position  relations,  relative  distance,  is  listed  in

Table 5.9.   It  specifies  how  far  apart  two  objects  must  be  based  on  their

perception6 of  distance;  e.g.,  the  dog  is  midrange  from  the  cat.   These

relations are complicated because distances differ contextually depending on the

particular  objects.   For example,  what  is  considered  FAR-FROM for  a  DUCK is

probably reasonably NEAR for a GIRAFFE.

Table 5.9:  Relative Distance Relations

in on midrange-from

inside adjacent-to far-from

outside near at-fringe-of

6Actually, on humans’ perception of their perception because animals generally
cannot communicate their perceptions, of course, even though most certainly
are  aware  of  distance  [12].   Other  objects  like  trees  obviously  do  not  have
perceptions at all.
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5.5.1.3.2  Orientation Relations

An  orientation  relation specifies  the  plausible  range  of  directions  in

which an object in a description must face; e.g., the dog is facing the cat and

the cat is facing the east.

5.5.1.3.2.1  Absolute Orientation Relations

The  simplest  class  of  orientation  relations,  absolute,  is  listed  in

Table 5.10.  It specifies orientations based on cardinal and intercardinal compass

directions and is independent of any other objects; e.g, the dog is facing north.

These relations are considered simple because context plays little role beyond the

requirement of a canonical front; e.g., north is always north regardless of the

particular object.

Table 5.10:  Absolute Orientation Relations

facing-north facing-northeast

facing-south facing-northwest

facing-east facing-southeast

facing-west facing-southwest

5.5.1.3.2.2  Relative Orientation Relations

The similar but more complex class of orientation relations,  relative, is

listed in Table 5.11.  It specifies orientations based on the position of another

object that an object is facing or facing away from; e.g., the dog is facing the
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cat.  These relations are complicated because context plays a role in what is

considered the extent of the front field for particular objects.  In general, field

size is directly  proportional to object size; i.e., larger objects have larger fields.

Section 5.7.2.1.1.1 will discuss this issue in detail.

Table 5.11:  Relative Orientation Relations

facing directly-facing

facing-away-from directly-facing-away-from

5.5.2  Role in Inference Generation

Section 5.5.1 discussed  in  great  detail  the  implicit  knowledge  in  the

knowledge  base  that  contributes  to  producing  an  interpretation  from  a

description.  This section discusses the implicit knowledge that contributes to the

complementary  process  of  inferring  from an  interpretation  additional  spatial

information that the original description did not explicitly state and feeding it

back into the semantic network that represents it [26, 4, 77].  In other words,

inferences make implicit relations explicit [56, 15, 11].  Section 6.2 will discuss

the procedural details and provides a complete example.

The  same  declarative  framework  of  objects,  attributes,  and  relations

applies  to  the  generation of  inferences  just  as  it  does  to  the  generation of

solutions.  Not surprisingly, there is  usually  a direct correspondence between
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each  solution  component  in  Section 5.5.1 and  its  complementary  inference

component in this section.  However, the correspondences are not necessarily

between object and objects, relations and relations, or attributes and attributes, as

one might expect.

5.5.2.1  Object Inferences

Inferences do not create new object nodes in a  semantic network, so

there is no inverse to Section 5.5.1.1.  They  can only refine existing ones by

adding  new  attribute  nodes  and  new  relationship  arcs.   This  behavior  is

consistent with many basic spatial inferences that humans make [15, 35, 77, 10]

and typical of reasoning systems that operate over a static world [106].7  For

example, it would make little sense to infer from the description there is a dog

that somehow a LAKE plays an unstated role in the scene.  Nevertheless, inferring

the  presence  of  unstated  objects  is  not  at  all  unusual  in  more  complex

descriptions that are beyond the scope of this project; e.g., one can easily infer

from  the dog is  swimming that  the dog should  be in water.8  In fact,  the

7It is also convenient for the simulation and analysis processes that Chapter 7 will
discuss.

8Such inferences are far more complex that those handled in this project because
they require reasoning on many more levels over a greater variety of information
[104, 114, 121, 26].  For example, swimming actually implies that the action
occurs in a liquid, which is not necessarily water.  Lava, while certainly not the
preferred inference, is a valid liquid!
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WordsEye system [116] focuses considerable effort on determining the nature of

the environment that implicitly accompanies a description.

5.5.2.2  Attribute Inferences

An attribute inference generates a new attribute node for an object node

in  the  semantic  network.   Only  the  absolute  orientation  inferences in

Table 5.12 are  defined  as  attribute  inferences.   The  relative  orientation

inferences, which infer objects facing other objects, are generated as relations in

Section 5.5.2.3.3.

Table 5.12:  Absolute Orientation Inferences

facing-north facing-northeast

facing-south facing-northwest

facing-east facing-southeast

facing-west facing-southwest

From a particular  solution to a description, attribute inferences specify

which cardinal or intercardinal direction each object in it is facing.  For example,

if  the description  the dog is  facing  the cat and the cat is  facing the dog

produces a solution where the  DOG is  arbitrarily facing north, then the object

node of  the  DOG in  the  semantic  network will  receive  a  new attribute  node

facing-north.  Likewise, as  the  CAT is facing in the opposite direction, it will

receive a new attribute node facing-south.
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Absolute  orientation  inferences  are  the  direct  inverse  of  absolute

orientation relations in Section 5.5.1.3.2.1.  Notice that the inverse of these

relations is  actually  defined  as  attributes!   The  reason  behind  this  skewed

correspondence lies at the syntactic level of this project.  As Section 5.5.1.3.1.1

discussed,  directions  are  not  objects,  so  what  appears  to  be a  relation in  a

description like the dog is facing north is actually translated into the semantic

network as  the attribute node  facing-north.   Therefore,  the inverse  of  this

quasi-relation is rightfully an attribute inference.

This  confusing  transformation  deserves  additional  justification.   For

descriptions involving one object facing another, say the dog is facing the cat,

there is clearly a relationship between the object  DOG and the object  CAT.  In

contrast, in descriptions involving one object facing a direction, say  the dog is

facing north, there is no such relationship because DOG is the only object.  One

option in resolving this inconsistency in the behavior of the relation FACING is to

treat directions as objects.  Unfortunately, this introduces problems with other

relations that use directions as locations; e.g.,  the dog is in the north.9  This

9This solution seems viable in the general  case because there are established
locations for the north and south poles in the world.  The lack of east or west
poles,  however,  introduces  further  inconsistencies  that  would  make  the
representation even more convoluted.
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project instead treats the act of facing objects as a relation and facing directions

as an attribute.

Notice also that there is no inverse to attributes of size.  A description can

state  that  there  is  a  big  dog and  generate  a  solution with  the  appropriate

dimensions for the DOG.  However, from the solution, unstated attributes of size

for the  DOG cannot be inferred; e.g., that the  DOG is  long,  too.  The reason

behind this  apparent limitation is  that  any object  lacking a  specific size in a

description defaults to a nominal size in its interpretation [114].  Therefore, all

solutions for there is a dog always produce roughly the same average-sized DOG.

There is no point in inferring that a default dog is of nominal size and adding this

redundant information back into the semantic network.

5.5.2.3  Relation Inferences

A relation inference generates a new relationship arc between two object

nodes  in  the  semantic  network.   The  relation  in  this  arc  may  specify  new

information about their relative dimensions, position, or orientation. 

5.5.2.3.1  Relative Dimension Inferences

A  relative  dimension  inference individually  compares  the  three

dimensions of height, width, and depth between two objects in the solution of a

description.  The appropriate inferences in Table 5.13 are added back into the

79



semantic network.  For example, in there is a dog and a giraffe, obviously the

GIRAFFE has greater  height,  width, and  depth values than the  DOG has, so all

inferences in Column A apply to the GIRAFFE and conversely all in Column B to

the DOG.

Table 5.13:  Relative Dimension Inferences

A B C

has-more-height has-less-height has-equal-height

has-more-width has-less-width has-equal-width

has-more-depth has-less-depth has-equal-depth

Isolating comparisons of size into three dimensions removes all context

from the inference process because the implementation is purely numerical; e.g.,

GIRAFFE.height  DOG.height  GIRAFFE HAS-MORE-HEIGHT DOG.  If  the desired

inference  were  GIRAFFE BIGGER-THAN DOG,  then  it  would  be  necessary  to

determine the definition of BIGGER-THAN in the context of the two; i.e., bigger in

precisely which ways?  However, this mapping would reintroduce ambiguity into

the semantic network and thus undermine the goal of producing a representation

that is amenable to computational processing.

Finally, notice that relative dimension inferences have no corresponding

relations in Section 5.5.1.3.  This situation occurs because comparisons are not

allowed in descriptions; e.g., the dog is bigger than the cat.  Little value for this

functionality  was  found  in  the  proof-of-concept  prototypes  of  this  project
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because the variation in size  between two objects  of  the same type is  often

imperceptible unless they are presented next to each other.  In addition, it was

found to be remarkably  easy  to describe  unsatisfiable scenes like  the  dog is

bigger than the giraffe!

5.5.2.3.2  Relative Position Inferences

A relative position inference adds new information about the position or

distance between two objects in the solution of a description.  The appropriate

relation inference is added back into the semantic network.

5.5.2.3.2.1  Local Relative Position Inferences

A  local  relative  position  inference determines  where  one  object  is

located with respect to a facet of another object in the solution of a description.

The inferences in Table 5.14 are the direct inverse of the local relative position

relations in Section 5.5.1.3.1.2, so the same issues apply in both.

Table 5.14:  Local Relative Position Inferences

local-in-front-of local-directly-in-front-of local-in-front-left-of

local-in-back-of local-directly-in-back-of local-in-front-right-of

local-left-of local-directly-left-of local-in-back-left-of

local-right-of local-directly-right-of local-in-back-right-of

These  inferences  are  considered  local  because  they  apply  only  if  an  object

supports  a  local  frame  of  reference  by  having  a  true  has-canonical-front
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property.  For example, in the dog is facing the tree, the TREE is inferred to be

LOCAL-IN-FRONT-OF the  DOG because the  DOG has  a  front facet.   Conversely,

however, the tree cannot generate any local  inferences involving the  DOG (or

anything else) because it lacks facets.

5.5.2.3.2.2  Global Relative Position Inferences

A  global  relative  position  inference determines  where  one object  is

located  with  respect  to  another  object  in  the  solution  of  a  description

independent of facets.  The inferences  in Table 5.15 are the direct inverse of

both  the  global  relative  position  relations in  Section 5.5.1.3.1.1 and,

surprisingly, also of the local relative position relations in Section 5.5.1.3.1.2.

Table 5.15:  Global Relative Position Inferences

A B

global-in-front-of south-of

global-in-back-of north-of

global-left-of west-of

global-right-of east-of

global-directly-in-front-of directly-south-of

global-directly-in-back-of directly-north-of

global-directly-left-of directly-west-of

global-directly-right-of directly-east-of

global-in-front-left-of southwest-of

global-in-front-right-of southeast-of

global-in-back-left-of northwest-of

global-in-back-right-of northeast-of
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This seemingly odd correspondence arises from the treatment of global frame of

reference in this project.  For example, if any object is in front of an object that

does not have a canonical front, then the interpretation is that the first object is

located  somewhere between the second object  and the viewer  of  the scene.

Consistent  with  the  graphical  rendering  of  a  three-dimensional  scene  on  a

computer monitor, the viewer is always assumed to be located in the south of the

world and facing north [8].  Therefore, the first object is located both SOUTH-OF

the  second  object  and  GLOBAL-IN-FRONT-OF it,  as  these  two  relations  are

equivalent.  In fact, for every relation in Table 5.15, Column A and Column B

are equivalent.  Both forms are defined for completeness and clarity.  Global and

local  frame  of  reference  can  apply  simultaneously,  so it  is  common to  see

inferences that, at first glance, appear contradictory.  For example,  the dog is

facing south and is west of the tree generates the inferences that the  DOG is

GLOBAL-LEFT-OF the TREE while the TREE is also LOCAL-LEFT-OF the DOG.

5.5.2.3.2.3  Relative Distance Inferences

The  final  class  of  relative  position  inferences,  relative  distance,

determines how far apart two objects are in the solution of a description.  The

inferences in Table 5.16 are the direct inverse of the relative distance relations

in Section 5.5.1.3.1.3, so the same issues apply in both.
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Table 5.16:  Relative Distance Inferences

in adjacent-to far-from

inside near at-fringe-of

outside midrange-from

The measure of distance is based on the context of the objects, especially on

their size.  For example, the giraffe is in the north and the duck is in world

center generates  different  relative  distance  inferences  for  each  object.   The

GIRAFFE is much larger than the DUCK, so the DUCK is perceived (by humans) as

NEAR it.  The DUCK has quite the opposite behavior, so the GIRAFFE is perceived

as MIDRANGE-FROM it.  In reality, the absolute distance between them is identical—

only the perception differs [12].  Section 5.7.2.1.1.1 will discuss this behavior in

detail.

5.5.2.3.3  Relative Orientation Inferences

The  third  and  final  class  of  relative  inferences,  relative  orientation,

determines where an object in the solution of a description is facing with respect

to another object.  The inferences in Table 5.17 are the direct inverse of the

relative orientation relations in Section 5.5.1.3.2.2, so the same issues apply

in  both.   Only  objects  that  have  a  canonical  front  can  generate  a  relative

orientation inference; e.g., the dog is facing the tree, but not the tree is facing

the dog.
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Table 5.17:  Relative Orientation Inferences

facing directly-facing

facing-away-from directly-facing-away-from

5.6  Pragmatic Representation for Extrinsic Context

Section 5.5 discussed semantic representation for intrinsic context, which

defines default interpretations for object nodes in a semantic network that are

interpreted independently of any other object nodes.  This section discusses the

complement:  in an  extrinsic or  interactional context, an object node has a

special (or “non-default”) interpretation that is dependent on other object nodes

in the semantic network [69, 58].  For example, the dog is in the corral implies

that it is (standing) on the ground, but the dog is in the lake implies that it is

(floating)  under the water.10  The special  information for extrinsic contexts is

defined in a concept node by a pragmatic representation.  This project takes the

position  that  pragmatics refers  to  meaning  that  is  dependent  on  context

[62, 114, 95, 106, 51].  The pragmatic representation builds upon the semantic

representation  (i.e.,  semantics + context = pragmatics),  so  it  serves  the  same

purposes and uses the same formalisms that Section 5.5 described.  The primary

10The dynamic states of standing and floating are implicit because movement is
not supported.
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addition is a declarative mechanism to identify contexts and define which special

behaviors apply when.

5.6.1  Pragmatic Interpretation by Context

If the interpretation of an object node were always independent of the

other object nodes in its relationships, then a pragmatic representation would be

unnecessary because only one context could ever exist; i.e., the concept would

always have the same meaning.  At the other extreme, if the interpretation were

unique for every pairing of nodes, then the number of contexts would be  c2,

where  c is  the  number  of  concept  nodes  in  the  knowledge  base  and  the

exponent derives from the binary nature of the relationships [7].  Fortunately,

reality lies somewhere between these two extremes, generally much closer to the

former than to the latter.  Contexts define these special interpretations through

two similar mechanisms:  concept matching and concept lineage matching.

5.6.1.1  Concept Matching

Recall from Section 5.5 that a default (semantic) interpretation applies in

the prototypical case where the two object nodes in a relation are interpreted no

differently  together  than  they  would  be  apart  [35].   For  example,  the

interpretation of the  HIPPO is identical in  the hippo is in the corral and  the

hippo  is  in  the  cage.   Likewise,  the  interpretation  of  IN defaults  to  the
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commonsense understanding that the  HIPPO is located on the lower surface of

the CORRAL and the CAGE; i.e., standing on their base.  A non-default (pragmatic)

interpretation, on the other hand, applies in the special case where one or both

objects are interpreted differently when in context with each other [57].  For

example, in  the hippo is in the lake,  the  HIPPO should appear beneath the

upper surface of the LAKE; i.e., swimming in it.  In contrast, however, in the raft

is in the lake, the RAFT should appear on the upper surface of the LAKE; i.e.,

floating in it.  Figure 9.2 in the results chapter depicts this example.

Concept matching provides a straightforward mechanism to identify and

define  non-default  interpretations.   It  supports  overriding  any  component  in

either concept definition except their hierarchical structure in the ontology; i.e.,

the links to their parents.  Figure 5.8 illustrates the pragmatic template for the

golden eagle is in the pine tree.
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In  this  example,  the  GOLDEN-EAGLE should  appear  somewhere  in  the  upper

region of the  PINE-TREE, not at the base of its trunk.  To define this different

position,  a  degree-of-freedom  adjustment is  associated  with  the  concept

definition of  the  GOLDEN-EAGLE.   This  adjustment  offsets  any  element  of  the

default position (x, y, and z) and/or attitude (pitch, roll, and yaw) for the object

[90, 49].  Thus, to position the GOLDEN-EAGLE up in the PINE-TREE, an arbitrary

offset of 3.0 meters is assigned to its y element.  The inclusion of the degree-of-

freedom adjustment in this project allows it to support limited reasoning in the

vertical dimension even though the underlying formalism for reasoning is actually

based on only two dimensions.  Section 5.7.2 and Section 6.1.1.3 will discuss

this issue.

5.6.1.2  Concept Lineage Matching

Concept lineage matching is a minor extension to concept matching to

improve the effectiveness and compactness of the representation.  It performs

the identical function but does so through a more flexible mechanism.  With

basic concept matching, a unique pragmatic template is required for each pairing

of  specific  concepts.   This  structure is  acceptable  for  relatively  small  sets  of

unusual or exotic non-default interpretations that are best defined in an ad hoc

manner.  For larger sets that share obvious common behavior, however, the
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number of individual templates is prohibitive.  For example, the spatial behavior

that the  GOLDEN-EAGLE exhibits in context with a  PINE-TREE also holds for the

seven other  trees  in the  knowledge base.   Concept  matching  would  require

additional  templates  in  context  with  ASPEN-TREE,  BIRCH-TREE,  CHERRY-TREE,

MAPLE-TREE,  PALM-TREE,  REDWOOD-TREE, and  WILLOW-TREE.  The obvious com-

monality between these eight concepts is that they are all trees.  As they are all

descendants of the same superconcept TREE, it is far more effective to match to

the lineage than to the individual concepts as Figure 5.9 shows.

This mechanism could be extended even further based on the observation that

perhaps any BIRD exhibits this spatial behavior, not just a GOLDEN-EAGLE.  Thus a
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single  pragmatic  template  would  describe  this  entire  class  of  non-default

interpretations:  BIRD in context with  TREE.  With basic concept matching, 40

templates are required because the knowledge base defines five kinds of birds

and eight kinds of trees.  

Note that it also possible to override a non-default interpretation [130];

i.e.,  override  the  override  of  a  default  interpretation.   For  example,  not  all

descendant concepts of the superconcept BIRD may exhibit this spatial behavior

in the context  of  a  TREE;  e.g.,  an  EMPEROR-PENGUIN would  find  it  difficult!11

Conflicts  in  multiple  inheritance  appear  more  likely  to  arise  as  the  override

nesting deepens, however.

As concept lineage matching supports overriding almost any component

in a concept definition, dimensions can be contextually defined as  well.   For

example, a reasonably appropriate class of size can be assigned to each CAGE in

the  elephant  is  in  the  cage and  the  rabbit  is  in  the  cage based  on  the

templates LARGE-ANIMAL in context with CAGE and SMALL-ANIMAL in context with

CAGE, respectively.

11In reality, the knowledge base does not define such inane cases because it is
unacceptable to describe that the emperor penguin is in the tree anyway.  In
other words, this project is not expected to produce a valid interpretation from
an invalid description, even though a human can easily envision and reason over
such a scenario.
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5.6.2  Pragmatic Interpretation by Conditional Dependency

The mechanism for pragmatic interpretation by context in Section 5.6.1

operates at a high level by concept lineage matching or at an intermediate level

by  concept  matching.   Pragmatic  interpretation  by  conditional  dependency

completes this set by operating at a low level and evaluating the contents of

concepts.  This mechanism is similar to a Horn clause in Prolog, in that a rule

applies  only  if  all  its  antecedents  are  true [106].   Its  propositions define (or

redefine) only constraint rules (Section 5.7.2) or inference rules (Section 5.5.2) in

a concept, unlike pragmatic interpretation by context, which can define or refine

almost any component.  A conditional dependency is classified as either an early

dependency or a  late dependency based on when it can be evaluated.  For

clarity  and  simplified  parsing,  the  grammar  of  the  knowledge  base  in

Appendix A makes a further distinction between a static dependency function

or dynamic dependency function, which Chapter 6 will discuss for the spatial

reasoning engine.

5.6.2.1  Early Dependencies

An  early dependency consists of one or more conditional expressions

that are evaluated during solution generation as Section 5.5.1 outlined.   Each

conditional expression uses one or more of the static dependency functions in
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Table 5.18 to  determine  whether  a  constraint  rule  applies  in  a  particular

situation.12  These functions are  considered static  because only  the  semantic

network is used in evaluating them.

Table 5.18:  Static Dependency Functions

PROPERTY-IS-TRUE PROPERTY-IS-FALSE

PROPERTY-IS-EQUAL PROPERTY-IS-UNEQUAL

PROPERTY-IS-MORE PROPERTY-IS-LESS

PROPERTY-IS-PRESENT PROPERTY-IS-ABSENT

ATTRIBUTE-IS-PRESENT ATTRIBUTE-IS-ABSENT

The  most  common  early  dependency  uses  the  PROPERTY-IS-TRUE

function to determine whether the has-canonical-front property of a concept

is true.  This information is used as the basis for determining which frame of

reference  to  apply  in  solution  generation  as  Section 1.1.5 and  Section 2.3

discussed.  For example, the FACING relation can apply only if an object has a

front, so a DOG, which does, can face a TREE, which does not, but not vice versa.

Similarly, the IN-FRONT-OF relation applies local frame of reference if an object

has a front and global frame of reference if it does not.  Therefore, in the tree is

in front of the dog, the TREE is located within the line of sight of the DOG, but in

the dog is in front of the tree, the DOG is south of the TREE.

12A  situation is considered in this project as a degenerate form of a context,
where the latter is based on a particular combination of concepts and the former
on certain states of their internal definitions [114, 106]
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5.6.2.2  Late Dependencies

A late dependency consists of one or more conditional expressions that

are  evaluated  during  inference  generation  as  Section 5.5.2 outlined.   Each

conditional  expression  uses  one  of  the  dynamic  dependency  functions in

Table 5.19 or one of the static dependency functions in Table 5.18 to determine

whether an inference rule applies in a particular situation.  These functions are

considered dynamic because they depend on the particular, unique solution from

many solutions for a description.  The static dependency functions can also be

evaluated at this time because the semantic network is always available.

Table 5.19:  Dynamic Dependency Functions

IS-IN-FIELD DIMENSION-IS-EQUAL

FIELDS-OVERLAP DIMENSION-IS-LESS

DIMENSION-IS-MORE

The most common late dependency uses the  IS-IN-FIELD13 function to

determine whether  one object  is  positioned in a  certain way with respect to

another  object.  This information is  used as  the basis  for  determining which

inferences  to  generate  as  Section 5.5.2 discussed.   For  example,  the  NEAR

inference can apply only if one object is reasoned to be within the contextually

appropriate vicinity of another.

13Section 5.7.2 introduces fields.
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Dynamic  and  static  dependency  functions  can  be  nested  to  form

compound  conditional  expressions.   However,  only  intersection  can  conjoin

them, which greatly simplifies their evaluation in the reasoning engine and is also

consistent  with  the  conjunctive  normal  form  of  a  Horn  clause  [106].   For

example, the LOCAL-IN-FRONT-OF inference is generated if the has-canonical-

front property of object B is true and object A is located in the front field of

object B.  In contrast, the GLOBAL-IN-FRONT-OF inference is generated if the has-

canonical-front property of object B is false and object A is located in the front

field of object B.  Thus, the tree is in front of the dog generates the former and

the dog is in front of the tree the latter.

5.7  Representation by Constraints

The  underlying  formalism  of  all  representation  and  reasoning  in  this

project is based on  interval constraints and  field constraints to represent all

aspects of the dimensions, position, and orientation of objects.  This declarative

approach, which  Section 5.3.4 introduced, allows the knowledge engineer to

focus  on  the  form of  the  solution  rather  than  on  the  procedural  details  of

computing it.  Constraints generally map qualitative features of a description to

quantitative data structures for computational processing by the spatial reasoning

engine, which Chapter 6 will discuss.
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5.7.1  Interval Constraints

Interval  constraints  apply  to  reasoning  over  dimensions  only.   They

provide the framework to map a vague, underspecified English description of

size to plausible numerical values in the contextually appropriate dimensions of

height, width, and/or depth for any object.  This mechanism utilizes two types,

plausibility interval constraints and attribute interval constraints, and extends

the discussion on properties and attributes in Section 5.5.1.2.

5.7.1.1  Plausibility Interval Constraints

A  plausibility  interval  constraint  defines  a  function  to  calculate  a

contextually appropriate value for a single dimension of an object.  As all objects

have three dimensions, each requires three definitions.  This section extends the

discussion on range properties in Section 5.5.1.2.1.2.  A plausibility interval is

similar to a fuzzy membership function in fuzzy logic [64].  It defines a range of

values that reasonably correspond to sizes for the lower, nominal, and upper

limits of an object.  Its role is to accept from an attribute interval constraint (see

Section 5.7.1.2) a contextually appropriate binding from an English adjective of

size.  For example, small might bind to the lower limit of the plausibility interval

for the  height property of an object.  The definition of a plausibility interval
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consists of a discrete interval, a distribution coefficient, a bandpass filter, and

a disproportionality limit.

5.7.1.1.1  Discrete Interval

A plausibility interval is a continuous function with five discrete points:

1. Absolute minimum value:   the  lower  limit  of  a  dimension for  the

smallest real-world value that an object should ever exhibit.

2. Suggested minimum value:   the lower limit of a dimension for the

smallest real-world value that an object typically exhibits.

3. Nominal value:  the default or average value of a dimension that an

object exhibits if its size is not stated.

4. Suggested maximum value:  the upper limit of a dimension for the

largest real-world value that an object typically exhibits.

5. Absolute maximum value:   the upper limit of  a  dimension for the

largest real-world value that an object should ever exhibit.

Figure 5.10 shows the discrete interval for a  GIRAFFE.  The values for animals

are much easier to define than for inanimate objects because nature dictates their

intervals.  Also, many resources conveniently  document this information.  To

simplify the calculations further, all animals are assumed to be adult males unless

otherwise specified.
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5.7.1.1.2  Distribution Coefficient

The suggested minimum, nominal, and suggested maximum points on

the  interval  lines in  Figure 5.10 correspond  respectively  to the  appropriate

English adjectives for  least,  average, and  most size in a particular dimension.

Linguistic qualification of size is inherently vague, so the correspondence should

not be exactly one to one; e.g., not every average  GIRAFFE is precisely 4.70

meters in height.  To introduce realistic variation in the size values, a modified

random Gaussian  distribution is  defined  such  that  the  mean of  the  curve  is

centered  at  the  corresponding  discrete  point,  and  the  standard  deviation  is

adjustable through a  distribution coefficient to steepen  or flatten the default

probability curve as Figure 5.11 shows [101].  The result is a random value that

is consistent with the expected size while accommodating linguistic vagueness

and exhibiting real-world uncertainty.

97

Figure 5.10:  Discrete Intervals for GIRAFFE
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5.7.1.1.3  Bandpass Filter

For all random values in a standard Gaussian distribution, 68 percent are

within 1.0 standard deviations of the mean.  This property produces a realistic

distribution and thus useful values in the majority of cases, but it does not prevent

outliers in extreme cases.14  A value that is too far from the mean encroaches on

the next discrete point and corrupts its correspondence to the English adjective.

A bandpass filter solves this problem by applying a simple, adjustable clamping

function over the result of the Gaussian random function.  Thus, any random

value outside this local interval is set to the nearest legal value as  Figure 5.12

shows.   The  same  role  is  played  over  the  global interval  by  the  absolute

minimum and maximum values in Figure 5.10 to prevent sizes in excess of the

defined real-world limits.

14The curve extends to infinity in both directions.
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Figure 5.11:  Distribution Coefficients



5.7.1.1.4  Disproportionality Limit

The  final  component  of  a  plausibility  interval,  the  disproportionality

limit,  influences the plausibility  intervals  for  the two other dimensions of  an

object.  It dictates how far one dimension can deviate from nominal before the

other  dimensions must  be adjusted to maintain realistic  proportionality  in an

object.  For example, the snake is long implies that the length dimension of the

SNAKE is near its suggested maximum.  The height and  width dimensions are

not addressed in this description, so they would default to roughly their nominal

values.  The resulting proportions may not correspond well with the real-world

spatial behavior of a snake:  greater length usually implies greater height and

width  as  well,  so  calculating  the  length  only  would  produce  an  unrealistic,

spaghetti-like snake!

5.7.1.2  Attribute Interval Constraints

An attribute interval constraint defines the binding of a contrasting pair

of English adjectives of size to one or more plausibility interval constraints, each

of which defines how to generate a reasonable value for a single dimension of an
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object based on the interpretation of this adjective.  This section extends the

discussion on attribute intervals in Section 5.5.1.2.2.

Contrasting  adjectives  of  size—basically  antonyms—define  a  simple

interval from least to most of the quality they describe; e.g.,  short ... tall for

height, or small ... big for height, width, and depth.  Each linguistic interval in

Table 5.5 maps directly  onto the appropriate  plausibility  intervals  for  height,

width, and depth such that the first adjective binds to their suggested minimum

values  and  the  second  to  their  suggested  maximum  values  in  Figure 5.13,

respectively.  Adjectives of size in this project also may be qualified with very to

intensify  their  interpretation by  nudging  the  suggested  values  closer  to  their

absolute limits.
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Figure 5.13:  Attribute Interval Constraints

height

width

depth

absolute
minimum

suggested
minimum

suggested
maximum

absolute
maximum

3.51 3.90 4.70 5.50 6.05

0.67 0.74 0.85 0.95 1.05

1.59 1.77 1.87 1.96 2.16
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Adjectives of size may be ambiguous in their application to dimensions; e.g.,

short ... long for  length in SNAKE, but short ... tall for  height in GIRAFFE.  As

long as the different definitions reside in different concepts as they do here, no

ambiguity exists because the interpretations are independent of each other.

5.7.2  Field Constraints

Field constraints apply to reasoning over position and orientation only.

They provide the framework to map a vague, underspecified, uncertain English

description  of  where  an  object  is  located  and/or  is  facing  to  contextually

appropriate numerical values of horizontal position and 360-degree directional

orientation in a two-dimensional virtual world.15  A field constraint consists of

two  components:   a  geometry to  define  its  absolute  interpretation  and  a

topography to define its probable interpretation.

5.7.2.1  Geometry

The  geometry of a field constraint limits where one object can appear

with respect to another in a relation.  For example, in the tree is in front of the

dog, the TREE must be located somewhere within the front field of the DOG.  This

field extends from the center of the  DOG (D) outward  as  a  cone or  conical

15Although the world is internally represented and graphically rendered in three
dimensions, the spatial  reasoning engine does not take full  advantage of the
vertical dimension [35].  Section 6.1.1.3 will discuss this issue.
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frustum [97].   However,  as  the  geometry  is  a  two-dimensional  top-view

projection, this cone is actually flat as depicted from a top view in Figure 5.14.

This projection lends itself  directly  to a  polar  representation of cells  that are

referenced as the intersection of a sector and a cylinder as Figure 5.15 shows.

A position is considered plausible if and only if it is located within the area of the

enabled cells.

Empirical  testing suggests  that 32 sectors and 100 cylinders16 provide

adequate resolution in this project.  The world is 100 meters square, so each

16For clarity, the projections in this chapter do not show all the cylinders.
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Figure 5.15:  Field Projection

Figure 5.14:  Two-Dimensional Frustum
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cylinder is by default 1.0 meter thick.  The width of each sector varies depending

on the cylinder it intersects; i.e., smaller near the center and greater toward the

fringe.  This property is advantageous because it maps realistically to real-world

uncertainty as a function of distance [35, 56, 15].  For example, the depiction of

the cat (C) is in front of the dog (D) and near the dog in Figure 5.16a allows

little freedom in how far the  CAT can be to either side of the centerline of the

DOG;  whereas  the  cat  is  in  front  of  the  dog  and  far from  the  dog in

Figure 5.16b allows significant freedom.17

Figure 5.16:  Uncertainty as a Function of Distance

More cells would provide finer resolution, but such level of detail is unnecessarily

precise  for  the  imprecise  nature  of  the  issues  that  this  project  investigates.

Similarly, fewer cell would provide coarser resolution with less control over the

interpretations.  In theory, this polar projection supports almost infinite variety in

17More precisely, the relative freedom in degrees is constant because the same
angle subtends the arc over the near and far distances.  The absolute freedom in
meters varies as a function of distance.
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the definition of fields.18  In practice, however, only two classes of geometries,

facets and rings, were found necessary to define all desired spatial relations.

5.7.2.1.1  Facet Geometry

A facet  is  basically  a  pie slice  that  originates  from the  center  of  the

projection, where the object that defines it is located.  Each facet in the definition

of a concept plays at least one of the spatial  roles for local  relative position

relations  in Section 5.5.1.3.1 and for  relative  position  inferences  in

Section 5.5.2.3.2.  For  example,  the  front  facets  in  Figure 5.17a  and

Figure 5.17b associate with the canonical front of a concept and play a role in

their IN-FRONT-OF and DIRECTLY-IN-FRONT-OF relations, respectively, as well as

in the FACING and DIRECTLY-FACING relations.

Figure 5.17:  Facet Geometry of FRONT and DIRECT-FRONT

18The 3,200 cells (32 sectors  100 rings) support 3200 C 3200 combinations!
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5.7.2.1.1.1  Real-World Foundation

The definition of each facet is based on a human’s perception of how a

concept behaves spatially, not on the concept’s perception.19  This speciocentric

bias comes from the observation that humans describe scenes from their own

point of view for consumption by other humans [62, 46, 106].  A facet is not a

field of view as defined by the physiological characteristics of the eyes of an

animal [12, 106].  For example, a GOLDEN-EAGLE has a narrow focus because its

eyes  are  located  at  the  front  of  the  head  and  face  forward  to  improve

stereoscopic vision; whereas an  IGUANA has a wide focus because its eyes are

located at the sides of the head and face outward to improve peripheral vision.

In this project, such issues of physiology play no role in how each object

is perceived spatially by humans because the viewer of a scene is merely an

external observer.  Field of view would come into play, however, if the viewer

were part of the scene; e.g.,  the dog is in front of  me.  It would also if the

objects could be queried on their perception of the world; e.g., in the vicarious

sense, If I  were the iguana, what would I be able to  see?  Such a level of

representation  would  be  useful  in  a  simulation  of  the  interactive  dynamic

behaviors of objects, but it is not for this project [127].

19Assuming that it is even capable of perception.  Obviously inanimate objects
and plants are not, so this distinction applies just to animals.
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Not all physiological or physical characteristics can be ignored in spatial

reasoning with fields, however.  The size of an object plays a significant role in

contextually determining how large its fields should be.  The geometry defines

the shape of the field but not its size because this information derives from the

particular dimensions that an object is reasoned to have.  Thus, if the identical

front facet is shared by two objects with significantly different dimensions, for

example, an ELEPHANT (E) and a  RABBIT (R), the facets on the surface of the

world differ contextually as Figure 5.18a and Figure 5.18b respectively show.

Figure 5.18:  Front Facet for ELEPHANT and RABBIT

This  contextual  interpretation  is  consistent  with  real-world  spatial

reasoning [56].  The ELEPHANT, as a large object, naturally accommodates more

area “in front of” it than the  RABBIT can as a small object.  As Figure 5.19a

demonstrates, the RABBIT can shift laterally by a large amount while remaining in

front of the ELEPHANT.  In contrast, the ELEPHANT at the same relative distance

(midrange)  in  Figure 5.19b can  shift  laterally  by  only  a  slight  amount  while
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remaining in front of the RABBIT.  Only the scale differs between the two, not the

number of cylinders.

Figure 5.19:  Lateral Freedom of ELEPHANT and RABBIT

5.7.2.1.1.2  Orientation Anchor

The final component of a facet geometry is its orientation anchor.  So

far in this discussion, the centerline of a projection has been assumed to align

with the  centerline of the object that defines it as Figure 5.20a shows.  This

relative orientation, which most fields use, anchors the 12-o’clock position of

the projection to the 12-o’clock position of the object.  Thus, for example, the

front field of a  DOG will always rotate with it to remain “in front.”  The set of

eight fields  for cardinal  and intercardinal  directions, or  compass rose,  in the

world use an  absolute orientation that never rotates [85].  The centerline of

these projections always  points north such that the 12,  3,  6,  and 9-o’clock

positions  correspond  to  north,  east,  south,  and  west,  respectively,  as

Figure 5.20b shows.
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Figure 5.20:  Relative and Absolute Orientation

Thus, for example, the east field of a  DOG will  always face east regardless of

where the DOG is facing, and any object positioned in this field is interpreted as

EAST-OF the DOG.  Furthermore, as the center of the projection is co-located with

the center of the DOG, the contextual interpretation depends on the position of

the DOG.  This floating-position behavior applies to all objects except one, WORLD-

CENTER, which is a special object that is always implicitly present in a description

but cannot be referenced.  Its position and absolute orientation is fixed in the

exact center of the world, but in all  other respects, it behaves like any other

object.  Its role is to define the compass rose of the world for the global relative

position relations in Section 5.5.1.3.1.1; e.g., the cat is in the northeast.

5.7.2.1.2  Ring Geometry

A ring surrounds the center of a projection and defines a measure of

relative distance from the object there that defines it.  Each ring in the definition

of a concept plays a role in the relative distance relations in Section 5.5.1.3.1.3
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and the relative distance inferences in Section 5.5.2.3.2.3.  For example, the

two rings in Figure 5.21a and Figure 5.21b correspond to the default NEAR and

FAR-FROM relations, respectively.

Figure 5.21:  Ring Geometry for NEAR and FAR

The same real-world foundation that  Section 5.7.2.1.1.1 discussed for

facets applies to rings as well.  The most important point is that the width of the

cylinders that  comprise a ring varies  contextually  with the dimensions of the

object they surround.  In other words, for the same definition of a ring, the

absolute  inside  and  outside  radii  in  meters may  differ.  Figure 5.22a  and

Figure 5.22b demonstrate this effect on a  FAR ring for an ELEPHANT (E) and a

RABBIT (R), respectively.

Figure 5.22:  FAR Rings for ELEPHANT and RABBIT
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This contextual interpretation is consistent with real-world spatial reasoning [56].

The  ELEPHANT, as a large object, naturally accommodates a more distant and

liberal  horizon  than  the  RABBIT can  as  a  small  object.   As  Figure 5.23a

demonstrates, the RABBIT can shift in range by a large amount while remaining

far  from  the  ELEPHANT.   The  ELEPHANT,  as  Figure 5.23b  demonstrates  in

contrast, can shift in range by only a slight amount while remaining far from the

RABBIT.

Figure 5.23:  Distance Freedom for ELEPHANT and RABBIT

The  contextually  appropriate  width  of  the  cylinders  is  determined  by

scaling the first cylinder to the bounding cylinder of the object [15, 87].  This

cylinder  is  defined  as  the  minimum radius  that  fully  encloses the object.   In

addition to establishing the scale factor, it also serves as the interface between

the interior and exterior regions of the object.  The first cylinder can thus be

associated with the IN, ON, and INSIDE relations as Figure 5.24a shows, and the

second through 100th are available as appropriate for the OUTSIDE, ADJACENT-
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TO,  NEAR,  MIDRANGE-FROM,  FAR-FROM,  and  AT-FRINGE-OF relations  as

Figure 5.24b shows.

Figure 5.24:  INTERIOR and EXTERIOR Rings

5.7.2.2  Topography

Whereas  the  geometry of  a  field  constraint  strictly  dictates  which

positions are  sanctioned, the  topography loosely suggests which positions are

recommended [27].   In  other  words,  the  topography  overlays  a  probability

distribution on the geometry.  The basis of this distribution is the observation that

interpretations favor positions in the “core” of a field over those at the periphery

[103, 94];  e.g.,  “in  front  of”  is  more likely  to be interpreted as  somewhere

directly down the middle of a facet than off to a side.

Each  field  defaults  to  a  Gaussian  distribution  and  accepts  different

standard  deviations to steepen or  flatten the curve as  Figure 5.11 illustrates.

Uniform, triangular, concave, and convex distributions are also supported for

experimentation purposes, but they were found to be less effective and more
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difficult  to  justify  than  a  straightforward  bell  curve.   The  standard  Gaussian

distribution is one dimensional, which makes it inadequate for producing random

positions  over  the  two  dimensions  of  a  field.   To  extend  it  into  a  second

dimension, a discrete array of Gaussian random functions is projected along the

perpendicular axis of the field [68].  A uniformly distributed random number

selects the array element, which corresponds to one dimension, then a Gaussian-

distributed random number selects  a  position on the other  dimension.  This

algorithm  produces  the  tent-like  two-dimensional  distribution  in  Figure 5.25

(tilted for clarity).  The axes are intentionally undefined here because, as the next

two sections will discuss, the uniformly distributed axis is automatically morphed

to fit the geometry of a field.

5.7.2.2.1  Facet Topography

Facet  topography  maps  directly  onto  the  facet  geometry  in

Section 5.7.2.1.1.  Its role is to favor random positions down the center of the
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facet  over  those  at  the  lateral  periphery  without  biasing  distance.   The

distribution in Figure 5.25 is automatically morphed along the longitudinal axis,

and for each element in the array of Gaussian random functions, the upper and

lower limits are sandwiched between the bounds of the lateral axis.  The result is

the wedge-shaped, tent-like, two-dimensional distribution in Figure 5.26a for a

typical front facet and in Figure 5.26b for a typical direct-front facet.

Figure 5.26:  Facet Topography for FRONT and DIRECT-FRONT

This  contextual  interpretation  is  consistent  with  real-world  spatial  reasoning

because freedom in uncertain lateral  positions increases as a  function of the

distance  [56].  In other words, the farther an object is from the center of the

projection, the farther it  may appear  left or right of the centerline while still

satisfying the relation “in front of.”  The description has no effect on which

positions along the centerline are more favored as it lacks such information.
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5.7.2.2.2  Ring Topography

Ring  topography  maps  directly  onto  the  ring  geometry  in

Section 5.7.2.1.2.  Its role is to favor random positions uniformly around the

ring between the minimum (proximal) radius and maximum (distal) radius.  The

distribution in Figure 5.25 is automatically morphed around the ring to sandwich

each element in the array of Gaussian random functions.   The result  is  the

donut-shaped, tent-like, two-dimensional distribution in Figure 5.27a for a typical

midrange ring and in Figure 5.27b for a typical adjacent ring.  All topography

figures are tilted here for perspective.

This  contextual  interpretation  is  consistent  with  real-world  spatial

reasoning because ordinary distance descriptions are inherently imprecise and

open to wide interpretation in both distance and azimuth from the center of the

projection  [56].  Only the freedom in distance plays a role, however, because

any  azimuth  is  equally  plausible.   Bounding  this  impreciseness  as  described

provides a reasonable estimate of distance without biasing the azimuth.  In other

words, a midrange ring might constrain an object to appear 20 meters plus or

minus 5 meters from the center, but it has no effect on which positions along the

particular  circle  are  more  favored.   Descriptions  of  distance  lack  such

information.
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Figure 5.27:  Ring Topography for MIDRANGE and FAR

5.7.2.3  Spatial Interaction with Fields

Section 5.7.2 covered the declarative details of what fields are and how

they are defined.  This section extends that discussion into interactions between

fields, which is what occurs in most aspects of spatial reasoning over position

and  orientation  in  this  project.   Without  loss  of  generality,  fields  can  be

represented as overlapping planes and manipulated using standard intersection,

union, symmetric difference, and complement set operations [26, 56, 93, 15,

106, 81, 111].  All these operations have been implemented and evaluated in

this  project.   However,  only intersection is  currently  supported  by  the input

parser for the English description because the others were found unnecessary to

satisfy the goals.
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5.7.2.3.1  Field Intersection

Intersection operates on any combination of fields in which  all spatial

constraints must be satisfied simultaneously; e.g., the dog is north of the lake

and in front of the cat and midrange from the cat and facing away from the

tree.   Only  the  cells  that  are  available  in  all  projections  contribute  to  the

intersected result, as Figure 5.28a shows for the dog is in front of the cat and

midrange from the cat.  The intersection operation applies first to the geometry

of  each  projection  to  produce  a  new  geometry.   The  topography  is  then

recalculated over this new geometry as the product of the probabilities at each

cell over the old geometries.  Thus, the new geometry sanctions which cells are

available  in  the  interpretation,  and  the  new  topography  suggests  which  are

preferred [106].  The volcano-like topography in Figure 5.28b is consistent with

real-world spatial reasoning because it simultaneously combines the uncertainty

of  lateral  (sideways)  position  with  the  uncertainty  of  longitudinal  (distance)

position [56].  The compositional peak is most preferred; whereas the perimeter

is least preferred.
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Figure 5.28:  Intersection of FRONT and MIDRANGE

5.7.2.3.2  Field Union

Union  operates  on  any  combination  of  fields  in  which  any spatial

constraints must be satisfied simultaneously; e.g., the dog is north of the lake or

in front of the cat or midrange from the cat or facing away from the tree.

Only the cells that are available in at least one of the projections contribute to the

unioned result, as  Figure 5.29a shows for  the dog is in front of the cat  or

midrange from the cat.  The union operation applies to the geometry the same

way as described for the intersection operation.  The topography, however, is

then recalculated over this new geometry as the maximum of the probabilities at

each cell over the old geometries.  The topography in Figure 5.29b is consistent

with  real-world  spatial  reasoning  because  it  simultaneously  addresses  the

uncertainty  of  lateral  position  independent  of  the  uncertainty  of  longitudinal

position [56].  The ridge of the facet or of the ring is most preferred; whereas
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the perimeter of each is least preferred.  There is no compositional peak because

the two fields are independent.

Figure 5.29:  Union of FRONT and MIDRANGE

5.7.2.3.3  Field Symmetric Difference

Symmetric  distance,  also  known  as  exclusive-or,  operates  on  any

combination of  fields  in  which  one  and only  one spatial  constraint  can  be

satisfied; e.g.,  the dog is  either north of the lake  or in front of the cat  or

midrange from the cat or facing away from the tree.  Only the cells that are

available in exactly one of the projections contribute to the symmetric-difference

result,  as  Figure 5.30a  shows for  the  dog is  either in  front  of  the  cat  or

midrange from the  cat  but  not  both.   The  symmetric-difference operation

applies to the geometry the same way as described for the intersection and union

operations.   The  topography,  however,  is  then  recalculated  over  this  new

geometry as the actual probability at each cell from the selected old geometry.
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The topography in Figure 5.30b is generally20 consistent with real-world spatial

reasoning because it simultaneously addresses either the uncertainty of lateral

position or the uncertainty of longitudinal position, but not both [56].  As with

the union operation, the ridge of the facet or of the ring is most preferred;

whereas the perimeter of each is least preferred.  There is no compositional

peak because the two fields are mutually exclusive.

Figure 5.30:  Symmetric Difference of FRONT and MIDRANGE

5.7.2.3.4  Field Complement

Complement  operates  on  a  single  field  such  that  the  one spatial

constraint must be  satisfied by its opposite interpretation; e.g.,  the dog is  not

north  of  the  lake.   Only  the  cells  that  are  unavailable in  the  projection

contribute to the complemented result, as Figure 5.31 shows for the dog is not

20The  precipitous  drop  at  the  boundaries  between  the  two  fields  should  be
smooth gradients.  The topography generator does not take this transition into
account because symmetric difference is not officially supported in this project.
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in front of the cat and for the dog is not midrange from the cat, respectively.

The  complement  operation  applies  to  the  geometry  only  because  the

topography is uniform.  This layout is consistent with real-world spatial reasoning

because it addresses the uncertainty of lateral and longitudinal position in terms

of the opposite interpretation [56].  That is to say,  not in front of implies a

position  uniformly  anywhere  on  the  projection  except  in  front,  and  not

midrange from implies uniformly anywhere except midrange.  As the preferred

positions on each projection were the ones that were discarded, there is no

topography.

Figure 5.31:  Complement of FRONT and MIDRANGE

5.7.2.3.5  Other Field Operations

Finally, as the solution to spatial interactions over fields in this project is

closed under  intersection,  union,  symmetric  difference,  and  complement,

DeMorgan’s Laws can be used to manipulate fields even further.  However, this

functionality is of theoretical interest only because ordinary descriptions of spatial

120

a b



scenes  in  the  real world  seldom—if  ever—exhibit such  complex  logical

interactions [119, 26].

5.7.2.4  Catalog of Fields

Every relation and inference in this project binds to one of the 34 fields

defined in the knowledge base.  As there are 50 relations and 56 field-based

inferences, many fields play more than one role.  Nevertheless, all  are easily

categorized as  local,  global, or  distance fields.  The following three sections

illustrate the default geometry of all fields.  Concepts may refine them according

to their needs, but the differences are generally minor.

5.7.2.4.1  Local Fields

Local  fields  are  tightly  associated  with  an  object  in  the  world.   Each

projection centers on the object and orients itself toward the front of the object.

The fields  in  Figure 5.32 are  used by  the  local  relative  position relations  in

Table 5.8, the local relative position inferences in Table 5.14, and the global

relative position inferences in Table 5.15.

5.7.2.4.2  Global Fields

Global  fields  are associated  with  either  an object  in the world  or  the

special  WORLD-CENTER object (see Section 5.5.1.3.1.1 and Section 5.7.2.1.1.2).
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Each projection centers on the object and orients itself toward the north.  The

fields  in  Figure 5.33 are  used  by  the  global  relative  position  relations  in

Table 5.6,  the  quasi-absolute  position  relations  in  Table 5.7,  the  absolute

orientation  relations  in  Table 5.10,  the  absolute  orientation  inferences  in

Table 5.12, and the global relative position inferences in Table 5.15.

5.7.2.4.3  Distance Fields

Distance fields are associated with an object in the world.  Each projection

centers on the object but has no orientation because it is symmetrical.  The fields

in Figure 5.34 are used by the relative distance relations in Table 5.9 and the

relative distance inferences in Table 5.16.

5.7.2.5  Comparison with Other Field Models

The notion of fields in other projects varies considerably in name and

definition depending on their use and emphasis; e.g., potential fields, typicality

potential fields, continuum measures, acceptance areas or volumes, containment

areas,  influence  areas,  etc.  [91, 30, 66]   Nevertheless,  they  all  share  the

properties of being either two- or three-dimensional geometric representations of

space  as  Figure 5.35 from  [50, 50, 59]  and  Figure 5.36 from  [23, 59, 59]

respectively illustrate.  They may also impose preference upon certain positions

with the fields and a “haze” factor for uncertainty about fuzzy bounds [15].
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Figure 5.32:  Local Fields
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direct-north direct-south direct-east direct-west
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east-west anywhere

Figure 5.33:  Global Fields

124



interior exterior adjacent near

midrange far fringe

Figure 5.34:  Distance Fields

Figure 5.35:  Sample Two-Dimensional Fields
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Figure 5.36:  Sample Three-Dimensional Fields

Regardless  of their form, it  is  difficult  to argue against  the usefulness,

straightforward nature, and obvious intuitiveness of fields [85].  While it is true

that establishing which fields a system should implement and defining their shape

is somewhat of an art  [90], they do not have to be a “rather cumbersome”

approach as Hernández [55] claims.  Granted, some formalisms arguably bear

little resemblance to the problem, as Figure 5.37 exemplifies (from [36] and [93],

respectively), but, as this project shows, a straightforward polar projection of cells

need not exhibit such a weakness.

(< ?X ?Y

 (AND (Point-2d ?X)

      (Point-2d ?Y)

   (Or (< (X-Coord ?X) 

          (X-Coord ?Y))

    (And (= (X-Coord ?X)

            (X-Coord ?Y))

     (< (Y-Coord ?X) 

        (Y-Coord ?Y))))))

Figure 5.37:  Sample Definitions
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To  be  fair,  notation  and  elegance  in  knowledge  representation  are

unimportant  or  even  irrelevant—-content,  expressiveness,  and  usefulness  are

what count most—but a non-intuitive representation with no clear visualization is

harder for humans to define and manipulate [78, 112, 27, 53. 90, 54].  As for

the criticism of a lack of theoretical elegance in “simplistic” approaches (such as

geometric fields), Egenhofer [35] counters succinctly:  “[i]f it is simple and solves

the problem, then it is good.”

5.8  Synopsis of Knowledge-Base Architecture

This chapter on the representation of implicit spatial knowledge so far

spans 73 sections over 85 pages!  The breadth and depth of its vast contents are

difficult  to  grasp,  especially  from  a  declarative  perspective  alone  because

procedural details play an important role as well.  This final section presents a

synopsis of the chapter and leads into the next chapter on the spatial reasoning

engine that processes the semantic network and knowledge base.

5.8.1  Form of Representation

The  knowledge  base  is  a  declarative  representation  that  defines

constraints, as well as rules for when they apply.  It is a structure of constraints in

which each object defines a conceptual template for its corresponding instance(s)

in the real world.  The structure is hierarchical such that concepts are composed
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of  the  more  general  concepts  above  them  (Figure 5.1).   Two  hierarchical

organizations  map  the  same  concepts  for  different  purposes  (Figure 5.7):

derived concepts map to a simplified taxonomy of the actual animal kingdom;

abstract  concepts  map  to  a  contrived  framework  of  spatial  behaviors  and

interpretations.  Each concept defines its single semantic interpretation in terms

of default attributes and relations that apply in the same way regardless of any

context that other concepts in a description might impose.  A concept may also

define one or more pragmatic interpretations in terms of non-default attributes

and relations that apply differently in specialized contexts.  The mechanisms for

identifying and applying these differences are concept matching, concept lineage

matching, and conditional dependencies.

5.8.2  Role in Spatial Reasoning

The combined role of  the semantic  network and  the  knowledge base

(Figure 5.2) is  to  build  from a  description  a  set  of  contextually  appropriate

constraints that the spatial reasoning engine can mechanically process without

considering linguistic and knowledge-related complexities.  This processing gen-

erates two types of results:  solutions are plausible spatial interpretations of the

objects in a description; inferences are additional spatial details that derive from a

particular solution and contribute to a better understanding of the description.
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5.8.2.1  Solution Generation

The  role  of  the  knowledge  base  in  generating  solutions  is  to  build

constraints  that  appropriately  limit  the  plausible  values  for  the  dimensions,

position, and/or orientation of objects in context.  A constraint defines either an

interval  or  a  field.   An interval  constraint  applies  to  dimensions  by  binding

English adjectives of size to numerical functions that calculate plausible values for

height, width, and/or depth (Figure 5.13).  A field constraint applies to position

and orientation by specifying the shape of a geometric area (Figure 5.28a) that

an object must inhabit and which subareas within it are more likely in context

(Figure 5.28b). Table 5.20 summarizes the constraints that this project supports.

Table 5.20:  Summary of Constraint Classes

Constraint Class Role

Attribute interval Dimensions of an object

Global relative position relation Position of one object with respect to position of
another object in terms of the compass

Local relative position relation Position of one object with respect to position of
another object in terms of the intrinsic facets of 
the latter

Relative distance relation Distance of one object from another object with
respect to position and spatial conceptualization
of the latter

Absolute orientation relation Direction of an object in terms of the compass

Relative orientation relation Direction of one object with respect to position 
of another object
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5.8.2.2  Inference Generation

The role of the knowledge base in generating inferences is to apply rules

that contextually derive from a particular solution new attributes and relations for

the dimensions, position, and/or orientation of its objects with respect to each

other  [26].  Any new attributes or relations go back into the original semantic

network to augment its basic interpretation with commonsense information that

a  human might  infer  from the solution; i.e.,  a  form of  situation semantics

[114, 106].  Table 5.21 summarizes the inferences that this project supports, in

addition to all the entries from Table 5.20.

Table 5.21:  Summary of Inference Classes

Inference Class Role

Relative dimension relation Dimensions of one object with respect to dimensions
of another object
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6  SPATIAL REASONING

Together, the semantic network and knowledge base respectively supply

the explicit and implicit knowledge that is needed to interpret a description [15].

Their combined role is to construct a set of interval and field constraints that

declaratively  define the form of  an appropriate  solution, as  well  as  a  set  of

inference rules  to apply  to  it.   All  the complex  issues  of  underspecification,

uncertainty,  vagueness,  context,  and  frame  of  reference  have  already  been

addressed by the time these sets reach the spatial reasoning engine.  The only

processing that remains is to generate a solution that satisfies these constraints,

then to generate any  inferences that it satisfies in turn.  The spatial reasoning

engine has no interest in decisions that contributed to these sets.  Therefore, it

can  blindly  operate  in  the  same  mechanical  way  over  any constraints  and

inferences for any description and does not need an intricate maze of complex,

contextually dependent, conditional rules to perform its task.

6.1  Solution Generation

The  purpose  of  and  representation  for  solution  generation  in  spatial

reasoning  have  been addressed  from various  perspectives  already1;  only  the

procedural details of its implementation remain.  The reasoning that generates a

1See Section 5.5.1 and Section 5.8.2.1.
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solution in this project is  static:  the form of the solution is already known in

advance, and nothing in the form changes during the reasoning or as a result of

it [106].  If this reasoning were dynamic, the decoupling of the spatial reasoning

engine  from  the  knowledge  base  would  not  be  possible  because  the

representation  would  change  during  the  reasoning  and  thus  require

reinterpretation with respect to the complexities that only the knowledge base

can  resolve  [106, 114].   Humans  do  both  static  and  dynamic  reasoning  to

generate solutions to spatial descriptions [63].

6.1.1  Process Outline

The  “reasoning”  in  this  project  is  actually  treated  as  a  constraint

satisfaction problem, which is similar in many respects to the way humans solve

analogous problems [73, 77, 90, 11].   A  typical  approach to solving  such a

problem for the position and orientation of its  objects employs the following

general steps:

1. Place together into a pool to the side of the solution area all the objects

that play a role.

2. Select one object from the pool as the initial object and add it to the

solution area.
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3. Select one object from the pool as the working object and add it to the

solution area.

4. Satisfy all  the constraints between the working object and the initial

object by moving only the working object.

5. Select one object from the pool as the working object and add it to the

solution area.

6. Satisfy all  the constraints between the working object and the other

objects in the solution area by moving only the working object.  If this is

not possible, return the working object and another object to the pool

and repeat 5.

7. Repeat 3 until all the pool is empty, or give up after a certain number

of attempts.

This (oversimplified)  approach is greedy:  it tests a potential  solution for one

object at a time against the solutions for the previous objects that have already

been satisfied [5, 101].  If the current solution works, then it is accepted, and the

next  unsatisfied object  is  considered.   If  it  does  not,  then some part  of  the

previous solutions is changed in the hope that this change will satisfy the current

object  when  it  is  eventually  reconsidered.   The  process  of  advancing  and

retreating,  known  as  backtracking,  is  a  common  approach  for  constraint
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satisfaction problems [73, 5, 56].  However, it is not efficient beyond a certain

number of objects and/or total constraints (generally 7 and 11 in this project,

respectively) because a significant amount of work is duplicated in a blind search

for an overall solution that satisfies all constraints simultaneously.  It also does

not exhibit  the property  of  graceful  degradation,  which humans do:   if  an

overall solution cannot be found, often a less-than-perfect one can [72].  This

process,  known  as  satisficing,  gradually  relaxes  the  constraints  to  find  an

imperfect yet acceptable solution instead of none [56, 15, 11].  In contrast, if

this approach fails to find a solution after a certain (arbitrarily defined) number of

attempts, it generates nothing at all, declares that no solution exists, and exits.

Furthermore,  it  justifies  this  behavior  as  a  variation  on  the  closed-world

assumption:   if  it does not find a timely solution, then it assumes that none

exists [53, 26, 4].  This check prevents an infinite loop in case a description is

inadvertently unsatisfiable.

There are many other approaches to constraint satisfaction that are more

efficient and effective [5].  A single key fact justifies why this one is acceptable in

this project:  humans cannot reasonably process more than a few objects and

constraints in a spatial description, so there is no reason to do better [63].  In

134



other words, realistic descriptions of spatial scenes do not exceed the capabilities

of this admittedly handicapped approach.

6.1.1.1  Semantic Network as Dependency Graph

Recall  that  the  semantic  network  contains  the  explicit  definitions  of

objects in a description, as well as their attributes and interrelations.  By the time

it reaches the spatial  reasoning engine, it  also contains formalized constraint

rules for the implicit contextual  interpretation of all  these components.  This

complete form of the semantic network also inherently serves as a dependency

graph that shows which objects  directly and  indirectly affect others [56, 73].

For example, Figure 6.1 depicts the semantic network for the dog is south of

the tree and near the cat; the cat is right of the dog; the elk is facing away

from the lake; the lake is midrange from the elk.

The TREE, DOG, CAT are interdependent in the following ways:

 The DOG is directly dependent on the TREE.

 The DOG is directly dependent on the CAT and vice versa.
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 The CAT is indirectly dependent on the TREE by transitive closure.

Likewise, the ELK and CAMEL are interdependent in the following ways:

 The ELK is directly dependent on the LAKE and vice versa.

However, the  TREE,  DOG,  CAT in the first subgraph are independent of the  ELK

and  LAKE in the second subgraph, and vice versa.  In fact, for any semantic

network, all subgraphs are always independent of each other and therefore can

be solved as independent subproblems through a  divide-and-conquer strategy

[101].  This process of fragmenting a semantic network into subgraphs, called

partitioning,  forms  the  high-level  organization  of  the  constraint  satisfaction

algorithm in this project [73].  It applies only to constraint  satisfaction for the

interobject constraints of position and orientation.

The foundation of this reasoning from relation arc to constraint rule to

numerical  position and orientation has already been addressed in Section 4.2

and Section 5.4.  The implementation of it in the spatial reasoning engine is

relatively simple and straightforward:

1. For  an  unsolved  partition,  satisfy  its  position  and/or  orientation

constraints as the next two sections will discuss.
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1a. If the solution to the current partition conflicts with the solution to any

previous  partition,  repeat  Step 1  for  the  current  partition  up  to  a

predefined number of times.

1b. If  a certain number of attempts does not generate a  non-conflicting

solution  to  the  current  partition,  backtrack  and  re-solve  a  previous

partition.

2. Repeat Step 1 until all partitions have been solved, or give up after a

certain number of attempts.

Note  the  apparent  contradiction  between  Step 1a  and  the  assertion  that

partitions are independent:  if it is true that all partitions are always independent,

then how could there ever be a “conflict” between them?  The answer lies in the

definition  of  a  conflict.   It  is  true  that  the  objects  within  a  partition  are

independent of the objects outside that partition  in terms of interdependent

constraints.  All such  static pre-constraints are known when the dependency

graph is built and remain constant, so conflicts can never occur at this stage of

constraint satisfaction; i.e., partitions that conflict before a solution is generated

for them are never built.  However, it is possible—actually  quite common—for

partitions to conflict  after a solution is generated for them.  Most objects have

rules that define their abstract spatial behavior; e.g., an ALLIGATOR derives from
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the abstract concepts LAND-THING and WATER-THING, which together indicate that

it is equally at home in either environment.  This definition serves as a dynamic

constraint to verify that an object does not violate a customary interpretation.

For example, if a particular solution to the first partition in Figure 6.1 placed the

DOG in  the  LAKE,  the interpretation would  be considered odd  because  a  DOG

typically does not belong there.  However, no static constraint between the two

partitions asserts that such a solution is illegal.  Only after the solution has been

generated  does  the   conflict  arise,  which  forces  the  constraint  satisfaction

algorithm  in Step 1b to reconsider the “independent” partitions from a global

perspective.

All concepts define a general behavior toward the  noninterpenetration

constraint rule that implicitly applies to everything in the world.  Every concept

must declare through its (usually inherited)  is-container property whether  it

allows any other object to occupy the same space that it does.  This constraint

prevents objects from inappropriately embedding in each other; e.g., the ELK is

impaled on the  TREE!   Certain concepts  like  LAKE and  CAGE actually  require

interpenetration for their interpretation, so they are defined as  containers and

are exempt from this post-constraint.2

2Noninterpenetration is the only post-constraint in this project.
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6.1.1.2  Processing Dimension Constraints

Dimension  constraints  are  the  simplest  to  satisfy  because  they  are

intraobject constraints—fully  self-contained  rules  that  are  not  dependent  on

other objects.  Every object must be assigned a value for each of its height,

width,  and  depth  dimensions  in  order  for  it  to  exist  in  three  dimensions.

Dimension constraints are also the first to be processed because the size of an

object affects  the size  of its  fields,  which play a role in subsequently  solving

position and orientation constraints.

The foundation of this reasoning from attribute node to attribute interval

to  plausibility  interval  to  numerical  value  has  already  been  addressed  in

Section 5.4 and  Section 5.7.1.   The  implementation  of  it  in  the  spatial

reasoning engine is relatively simple and straightforward:

1. For each object node in the semantic network, visit each of its attribute

nodes.

1a. Using  the  attribute  interval  of  the  object,  bind  the  attribute  to  the

plausibility interval of the object.

1b. Generate  the  contextually  appropriate  random  value  for  each

dimension to which the attribute applies.
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2. For any dimension that is not specified with an attribute node, use the

nominal  interpretation  in  the  plausibility  interval  of  the  object  to

generate the contextually appropriate random value.

6.1.1.3  Processing Position and Orientation Constraints

Position  and  orientation  constraint  rules  require  that  one  object

appropriately appear within a field of another.  The aspects of the objects that

can  be  manipulated  to  satisfy  such  a  constraint  are  the  position  and/or

orientation of either or both of them.  For instance, the dog is left of the cat

can be satisfied by moving the DOG and/or by moving and/or rotating the CAT!

The result is a three-dimensional (x, y, z) coordinate in the world that indicates

the static  position of  the objects  and/or  an azimuth (in degrees)  from north

where the object or objects face in a solution.  Be forewarned:  this process is

complicated and/or confusing!3

First,  in  reality,  as Section 5.6.1.1 and  Section 5.7.2 discussed, the

reasoning in this project is considered two-and-a-half dimensional because the

vertical  component  (y)  is  controlled  by  a  contextual  degree-of-freedom

adjustment in the knowledge base and not by the spatial reasoning engine.  It

3For the sake of clarity and to avoid near redundancy, read “position” through-
out  this  discussion  as  “position  and/or  orientation.”   The  same  description
basically applies to both.
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was concluded that fields are better defined in this project as two-dimensional

footprints than as three-dimensional regions because birds are basically the only

vertically  capable  objects  that  are  consistent  with  the  zoo  theme,  and  their

behavior is  relatively constant and thus uninteresting.  Moreover, English has

only two major spatial prepositions (with variations) for vertical specification that

fit the scope of this project:  above and below [57, 121].  In other words, the

substantial  cost (in both development and run time) of true three-dimensional

reasoning did not justify the minor return.  Other systems have made similar

concessions [18, 119, 54, 56, 35].  In any case, the vastly simpler implementa-

tion with reduced vertical capabilities still satisfies the goals of this project.  The

primary limitation is the following:  the vertical  dimension is  available in the

implicit knowledge  representation  for  reasoning  but  not  in  the  explicit

knowledge  representation  for  describing  a  spatial  scene.   For  example,  this

project can generate solutions and inferences that place a  HIPPO beneath the

surface of a LAKE, but a person cannot write a description that states the hippo

is under the lake.

The mechanism for determining the position and/or orientation of one or

both  objects  such  that  they  satisfy  a  constraint  uses  field  membership  as
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Section 5.7.2 discussed.  For example, (6.1) paraphrases a logical form of  the

dog is is left of the cat.

DOG left-of CAT  DOG.position  CAT.field-left (6.1)

True to the declarative nature of this project, any number of coordinates and/or

orientations for  DOG and/or  CAT can satisfy this constraint.  In Figure 6.2, the

three interpretations respectively illustrate how the position of the CAT (C) alone

dictates the position of the DOG (D), how the orientation alone does so, and how

both do so simultaneously.

Figure 6.2:  Interpretations for Position and Orientation

For  two  objects  and  one  constraint,  the  task  seems  simple.   However,  the

complexity increases quickly with more objects.  For example, (6.2) paraphrases

a logical form of the dog is left of the cat, and the cat is in back of the tree.

DOG left-of CAT  CAT in-back-of TREE 

  DOG.position  CAT.field-left  (6.2)
  CAT.position  TREE.field-north
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Although the underlying  formalism of  reasoning in  this  project  is  not

intentionally4 based  on first-order  logic,  the  two share  semi-analogous  proof

mechanisms.  The first mechanism, forward chaining, starts with a head object

and individually solves constraints in the forward direction [5]; i.e., first DOG, then

CAT, and finally TREE.  In other words, first find a solution for DOG, then based on

that solution, find a solution for CAT, then based on that solution, find a solution

for TREE.  The second mechanism, backward chaining, starts with a tail object

and individually solves constraints in the backward direction [5]; i.e., first  TREE,

then CAT, then DOG.  In other words, first find a solution for TREE, then based on

that solution, find a solution for CAT, then based on that solution, find a solution

for DOG.  Consistent with the fail-first principle, the order of the nodes is from

most constraining to least  constraining [5, 73].  This heuristic  functions as a

proactive truth maintenance system to reduce the likelihood that later solutions

will force the revision of earlier constraints [106].

In forward chaining, “based on” means to anchor the field of the current

object at the position that was selected for it, then randomly5 select a position

within this field for the next object as Figure 6.3 shows.  The possible positions

4All  symbolic approaches  to knowledge representation derive  from first-order
logic [130].  This project simply does not advertise or promote this foundation.

5More precisely,  randomly with respect to the topography of  the field that
defines its probability distribution.
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for the next object are limited to the gray area.  In abstract terms, If object A is

here, then object B must appear somewhere within here.

In backward chaining, “based on” means to position the field of the next

object randomly such that it satisfies the position that was selected for the current

object and use the anchor of this field as the position for the next object as

Figure 6.4 shows.  In this inverse constraint mode, the possible positions for the

next object are limited to the hatched area.  In abstract terms,  Where would

object A (with unknown position) have to be in order for the known position

of object B to be within the field of object A?

Almost  any  nontrivial  description  has  several  objects  with  several

interdependencies that cannot be solved by either forward or backward chaining
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alone.  For example, in the dog is in front of the cat and the cat is in back of

the dog, the position of the DOG depends on the position of the CAT, which, in

turn, depends on the position of the  DOG!  Such circular dependencies require

simultaneous forward and backward chaining.

There is  one aspect of solving orientation constraints that is mercifully

simple in comparison with the others:  absolute orientation refers to compass

directions and therefore does not impinge as much on the states of other objects.

Each object  contains  the  set  of  compass fields  in  Figure 5.33 and internally

implements a “probe” called a  pipper6 that extends out from the front of the

object  such  that  it  always  resides  in  one  of  these  fields.   The  process  of

constraining the orientation of an object to a compass field requires only that the

orientation be rotated randomly such that the pipper is in the appropriate field.

Figure 6.5 shows two interpretations for the dog is facing south.

Figure 6.5:  Pipper in SOUTH

6A military designation for the line-of-sight aimpoint on a targeting reticule.
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The implementation of constraint satisfaction for position and orientation

in  this  project  is  horrendously  complex  because  it  must  take  into  account

changes and revisions that propagate across parts of the current solution that are

already committed; e.g., if the tree is left of the dog, too, then repositioning the

DOG must reposition the TREE, as well as re-satisfied any dependencies that the

TREE imposes on other objects, and so on.  Thus, in the worst case, a single

change may ripple throughout the entire solution and invalidate every object in

every  partition  along  the  way!   For  this  reason,  constraint  satisfaction  by

backtracking  is  not  a  fast  approach  for  spatial  reasoning  over  complex

descriptions [73].  In fact, results in this project may take minutes to appear.

Alternative  search  mechanisms  like  hill-climbing  in  [133]  may  improve  this

performance.

6.1.2  Synopsis of Constraint Satisfaction

Constraint satisfaction problems typically employ either backtracking or

constraint propagation as their solution [73, 5].  This project uses a combination

of both due to the way it decomposes the task from a high level to a middle level

to a low level.  At the high level, the problem is to reason over spatial constraints

of position and orientation for the entire description.  At the middle level, the

subproblem is to reason over principally independent partitions.  At the low level,
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the sub-subproblem is to reason over interdependent objects.  Backtracking at

the middle level attacks each partition in series; if the current partition cannot be

satisfied, then the approach systematically  backtracks to a  previous partition,

discards  its  solution,  rebuilds  it  from  scratch,  and  continues  forward  again.

Constraint  propagation at  the  low level  attacks  each  object  in  series;  if  the

current object  pair  cannot be satisfied,  then it  systematically  backtracks  to a

previous object pair, adjusts some part of its solution, propagates any changes

forward, and continues forward again from some intermediate point.  Together,

the processing of the middle and low levels contributes to the high-level solution.

This  combination  of  backtracking  and  constraint  propagation  coexists  well

because  the  middle  level  of  partitions  has  little  control  over  adjusting  its

parameters; whereas the low level of objects has significant control.

6.2  Inference Generation

The purpose of  and representation for inference generation in spatial

reasoning  have  been  addressed  from  various  perspectives  already7;  all  that

remains are the procedural details of its implementation.  The reasoning that

generates  inferences  in  this  project  is  dynamic:   specific  inferences  are  not

known until a solution is generated.  If this reasoning were static, the inferences

7See Section 5.5.2 and Section 5.8.2.2.
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would  be  known  in  advance  from  commonsense  expectation  [56, 114].

Humans  do  both  dynamic  and  static  reasoning  to  generate  inferences  from

spatial solutions [63].

6.2.1  Process Outline

The approach for generating inferences is far simpler than for generating

solutions.  It is treated as an “extreme” case of constraint propagation in which a

nearly complete graph is built with relation arcs between every pair of objects if

they satisfy any inference rules in context [15].  Every combination of two objects

is considered, the set of contextually appropriate inference rules for each object

is evaluated, and the satisfied ones generate attribute nodes and/or relation arcs

that go directly back into the original semantic network.  This process serves a

second specialized purpose as well:  to verify that a solution is consistent with the

constraints  that  define  it.   This  mechanism  plays  no  role  in  the  reasoning

process, but it does in the simulation process that Chapter 7 will discuss.

The sample description in Figure 3.1, for example, corresponds to the

reduced form in Figure 4.1, which directly translates to the semantic network in

Figure 4.2.  Figure 6.6 specifies this explicit knowledge more succinctly in terms

of the attributes and relations that the description specifies.  Before inference

generation, only this information is known.
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tree small

tree in-front-left-of giraffe

zeus in-front-of giraffe

zeus at-fringe-of tree

giraffe big

giraffe in-front-of tree

Figure 6.6:  Explicit Knowledge

After  inference  generation,  the  additional  knowledge  in  Figure 6.7 is

known!  All these relations are added back into the original semantic network,

thereby  augmenting  the  understanding  of  the  description  further  [114].

Although the augmented structure is not used beyond this point in this project, it

is available to follow-on work and other applications.

6.2.1.1  Processing Attribute Inferences

The  only  attribute  inference  rules  in  this  project  infer  the  compass

direction that an object is facing.  The appropriate inference in Table 5.12 is

generated for an object simply by determining which one of its global fields in

Figure 5.33 contains its pipper.

6.2.1.2  Processing Relation Inferences

Relation inference rules consider all combinations of pairs of objects with

respect to their set of contextually appropriate inference rules.  These inferences

apply to dimensions, position, distance, and orientation.
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tree southwest-of world-center

tree far-from world-center

tree local-in-front-of giraffe

tree local-in-front-left-of giraffe

tree global-in-back-of giraffe

tree global-directly-in-back-of giraffe

tree north-of giraffe

tree directly-north-of giraffe

tree outside giraffe

tree near giraffe

tree has-more-height giraffe

tree has-less-width giraffe

tree has-less-depth giraffe

tree local-in-front-of zeus

tree local-directly-in-front-of zeus

tree global-left-of zeus

tree west-of zeus

tree outside zeus

tree near zeus

tree has-more-height zeus

tree has-less-width zeus

tree has-less-depth zeus

giraffe south-of tree

giraffe directly-south-of tree

giraffe at-fringe-of tree

giraffe facing tree

giraffe has-more-width tree

giraffe has-more-depth tree

giraffe has-less-height tree

giraffe south-of world-center

giraffe far-from world-center

giraffe local-left-of zeus

giraffe local-in-front-left-of zeus

giraffe global-in-front-left-of zeus

giraffe southwest-of zeus

giraffe outside zeus

giraffe midrange-from zeus

giraffe facing zeus

giraffe directly-facing zeus

giraffe has-more-height zeus

giraffe has-more-width zeus

giraffe has-more-depth zeus

zeus east-of tree

zeus at-fringe-of tree

zeus facing tree

zeus directly-facing tree

zeus has-more-width tree

zeus has-more-depth tree

zeus has-less-height tree

zeus south-of world-center

zeus far-from world-center

zeus local-in-front-of giraffe

zeus local-directly-in-front-of giraffe

zeus global-in-back-right-of giraffe

zeus northeast-of giraffe

zeus outside giraffe

zeus near giraffe

zeus has-less-height giraffe

zeus has-less-width giraffe

zeus has-less-depth giraffe

world-center global-in-back-of giraffe

world-center north-of giraffe

world-center at-fringe-of giraffe

world-center global-in-back-of zeus

world-center north-of zeus

world-center at-fringe-of zeus

Figure 6.7:  Inferred Knowledge
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6.2.1.2.1  Dimension Relation Inferences

Dimension inference rules determine how two objects are related in their

three dimensions of height, width, and depth.  As the result of the comparison

for each must satisfy the trichotomy property of less than, equal to8, or greater

than,  every object combination always produces one dimension inference for

each row in Table 5.13 [21].9

6.2.1.2.2  Position and Distance Relation Inferences

Position and distance inference rules respectively infer where two objects

are positioned with respect to each other and how far apart they are.  In both

cases, the appropriate inferences in Table 5.14, Table 5.15, and/or Table 5.16

are generated for each object simply by determining which one of its fields in

Figure 5.32, Figure 5.33, and/or Figure 5.34 contains the other object.

6.2.1.2.3  Orientation Relation Inferences

Orientation inference rules infer where two objects are facing with respect

to each other.  The appropriate inference from Table 5.17 is generated for each

8Equality uses a 5% proximity threshold to avoid the direct comparison of real
numbers internally.

9Except  in  combination  with  WORLD-CENTER,  which  is  not  considered  a
comparable object.  To avoid a nonsensical comparison, the inference rules for
dimension relations have a conditional dependency that determines applicability
based on the supports-dimension-comparison property of both objects.
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object simply by determining whether its  front or  back fields  in Figure 5.32

contains the other object.

6.2.2  Scene Recognition for Description Generation

A surprising discovery emerged during the write-up of this  project:   it

inherently supports limited scene recognition, from which it can generate coarse

natural language descriptions!  This process is the converse:

a. For any scene that conforms to the specifications in Chapter 3, the

dimensions, positions, and orientations of its objects map directly to a

semantic network.  Without relations, all nodes are independent.

b. The inference component of the spatial reasoning engine considers the

entries  in  all  combinations  with  each  other  with  respect  to  their

definitions in the knowledge base.

c. The resulting inferences form a rudimentary English description.

This  capability  is  serendipitous and  has  received  little  attention beyond basic

verification of its  existence.  Cursory inspection, however, suggests  that such

inference generation does not take  full  advantage of  the knowledge base to

resolve  contextual  issues  in  recognition  because  this  project  considers  only

generation.  Future work will investigate this area.
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7  SIMULATION AND ANALYSIS

The  spatial  reasoning  engine  generates  numerical  results  for  the

dimensions, positions, and orientations of all objects in a scene.  These values

derive from constraints, which are a declarative representation that specifies valid

numerical  ranges of solutions as well  as  probability  distributions for preferred

solutions.  This mechanism produces results that address the issues of vagueness

and uncertainty in spatial descriptions.  The randomized or probabilistic nature of

this process means that the interpretation is different every time the project runs

for  the  same description.   In  other  words,  it  produces  a  valid  but  different

interpretation each time from an infinite set of valid interpretations [47, 23, 63].

Although  any valid interpretation of a description officially  satisfies the

goals of this project, a single interpretation does not depict a true measure of its

behavior or performance.  For example, consider an analogous example for the

game darts.  The declarative form of a “valid” throw is that the dart strikes the

board (or close to it).  The stochastic or uncertain nature of the action dictates

that the dart does not always strike exactly where the player wants it to go.

Thus, for each valid throw, the dart strikes the board but not in exactly the same

place.   If  only  one  dart  is  thrown—analogous  to  generating  only  one
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interpretation—then these results are ambiguously representative of the following

performances:

 A good player may have thrown well.

 A good player may have thrown poorly.

 A poor player may have thrown well.

 A poor player may have thrown poorly.

In other words, a single, valid throw demonstrates little about true performance

overall—the player may have had a lucky throw, an unlucky throw, or a typical

throw, so the conclusion that he or she is respectively a good player, bad player,

or mediocre player has little merit.  Thus, although the results can be measured,

confidence in the conclusion cannot.

After  50  throws,  however,  a  more  representative  picture  emerges

because the contribution of true performance dominates that of pure chance.

More throws thus strengthen confidence in the conclusion.  They also serve to

identify patterns in the behavior of the processes that contribute to performance

[114].  In numerical analyses, accuracy and precision are a standard measure of

performance [89].  Accuracy refers to how close the actual results are to the

expected results; whereas precision refers to how close the actual results are to

each other.  The former is a metric of correctness and the latter of consistency.
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Figure 7.1 illustrates  the  four  combinations  of  high  and  low  accuracy  and

precision with respect to 50 darts (using a non-standard dartboard for clarity).

Figure 7.1:  Accuracy and Precision

In Figure 7.1a, one can conclude with high confidence that the player is good at

darts.  In Figure 7.1b, the player is inconsistently good and needs to stabilize

performance.   In  Figure 7.1c,  the  player  is  consistently  poor  and  needs  to

improve performance.  And in Figure 7.1d, the player is inconsistently poor and

perhaps needs to figure out what the goal of the game is!

7.1  Monte Carlo Simulation

This process of evaluating performance  at darts, which is analogous to

spatial  reasoning  in  this  project  as  well,  forms  a  Monte  Carlo  simulation

[89, 45].  It consists of a framework for collecting the results of multiple runs and

feeding them into data-reduction and analysis components to draw conclusions

from the aggregate results.  This methodology is frequently applied to stochastic

processes for independent  events  in many disciplines,  but seldom in artificial

intelligence for knowledge representation and reasoning [42].  Nevertheless, in
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this project, it provides a powerful, analytical mechanism to investigate not only

the performance of this approach but also the underlying cognitive and linguistic

foundations of spatial representation and reasoning [118, 127, 35].

At this point in the chapter, a disclaimer is appropriate:  simulation and

analysis  are not part  of  the proposed work for this  project.   They emerged

during its development as a natural extension and a stepping stone toward future

work.  As such, this chapter is intended only to present a reasonable discussion

on the  mechanics  of  the  simulation  and  analysis  and  the  issues  they  likely

addresses.  It is an introduction to the potential only and therefore lacks strong

justification of its details and conclusions.

7.2  Data Reduction

The spatial reasoning engine can be run multiple times on any description

to produce a  set of solutions.  The same objects appear in each solution, but

they differ between solutions in their dimensions, positions, and/or orientations.

Data reduction is the process of culling and organizing these objects in a useful

way for analysis.  This project does so through distillation, which clusters the

solutions into one or more relatively disjoint subsets  by similarity  [106].  Any

combination of similarity tests for dimensions, position, and/or orientation can

be configured for distillation and analysis.  The similarity threshold for each is
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measured in terms of a standard deviation from the mean interpretation between

all objects in all solutions.  This relative metric for similarity is inherently based on

the  nature  of  the  solution as  opposed  to  an  absolute  metric  with  a  “magic

number” that would arbitrarily specify some rigid threshold like 5.0 meters [56].

7.2.1  Dimensional Similarity

Similarity in dimensions is  generally  the least  interesting metric of the

three due to circularity in their behavior:  the plausibility intervals that constrain

the  values  of  dimensions  use  a  defined  probability  distribution  that,

unsurprisingly, the objects exhibit in every solution!  Nevertheless, dimensions

are  available  for  isolating  different  interpretations of  size;  e.g.,  to investigate

issues of vagueness.  For example, Figure 7.2 depicts 9 GIRAFFEs of average (or

default) height to illustrate their comparative dimensions.  The height component

of  the  plausibility  interval  of  the  GIRAFFE (Section 5.5.1.2.1.2 and

Section 5.7.1.1.1)  specifies  that  its  mean height  lies  at  4.70  meters.1  The

bandpass filter on the interval (Figure 5.12) is relatively liberal at 1.18 meters,

which allows considerable variation in nominal height.  Consequently, for a small

sigma, three disjoint interpretations of these solutions are easily possible:  one for

the cluster of GIRAFFEs around the mean, and one each for the outlying clusters.

1For simplicity, the width and depth components are ignored here.
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7.2.2  Positional Similarity

Similarity  in  position  uses  the  coordinates  of  objects  to  cluster  by

proximity  [93].   For  example,  in  the  dog  is  to  the  side  of  the  cat,  the

overwhelming uncertainty revolves around whether the DOG (D) is to the left or

right of the CAT (C),2 either of which is equally valid.  As Figure 7.3 illustrates,

an arbitrary seven to the left form one cluster, and another three form the other.

Notice that although all the DOGs are roughly the same distance from the CAT and

thus have similar sigmas, they are not all the same relative distance from each

other.   This  secondary contribution to the measure of  similarity  triggers  the

creation of separate clusters.

2Assume the position and orientation of the cat are fixed.
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7.2.3  Orientational Similarity

Similarity in orientation uses the azimuth of objects to cluster by angular

proximity  [93].   For example,  in  the  dog is  facing  the  cat,  the uncertainty

revolves around the acceptable deviation between the front of the  DOG and a

direct line from its center to the  CAT.   As Figure 7.4 shows, different sigmas

might place an arbitrary seven CATs into one, two, or three clusters.

7.3  Analysis

Distillation supports a test-and-evaluation framework for this project that

can be used both to improve performance and to test hypotheses  [45].  The
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former aspect is more developed than the latter because it contributes to the

goals.   Hypothetical  and  theoretical  analyses,  on  the  other  hand,  better

contribute to future work.  This Monte Carlo framework implements the essential

analytical functionality with certain limitations [89]:

 It configures the initial conditions of an experiment in terms of control

and test variables.  However, the input parser does not currently support

absolute  descriptions  for  precise  manipulation;  e.g.,  the  dog  named

Control is at position 10x10 and facing 270 degrees.  Such fine tuning

is supported internally in the source code, however.

 It  supports  consistency  and  reproducibility  of  results  through  a

configurable randomization seed.

 It oversees an  arbitrary number of independent simulations and collects

their  results.   However,  memory  considerations  currently  limit  the

maximum number of runs to roughly 25 depending on the complexity of

the description.  The graphical rendering engine imposes this limitation,

not the simulation framework itself.

 It supports analytical methods for drawing conclusions from the results.

However, the actual analyses require external statistical processing.

160



7.3.1  Analysis of Knowledge Base Configuration

The  knowledge  base  provides  extremely  detailed  control  over  the

interpretation of its contents.  Thus, it is not difficult to define or refine particular

interpretations.  Rather, it is difficult to determine which of the many parameters

to address.  If the performance of a simulation is not consistent with real-world

interpretations, then one or more of them needs adjustment.  Analysis of the

knowledge base configuration provides a mechanism to tweak definitions in a

systematic manner.  For a constant description, one set of solutions serves as a

baseline, and subsequent sets serve as excursions from the baseline with one

perturbed experimental parameter.  In this way, it should be possible to isolate

and  rank  the  contributing  factors  to  any  observed  behavior.   In  fact,  this

mechanism played a considerable role in refining the results of this project.

7.3.2  Analysis of Interpretation Commonality

Due to the stochastic nature of this simulation framework, multiple runs

over  the  same  description  often  produce  significant  variation  in  the  results.

Clusters  demonstrate  commonality  among  different  solutions  and  facilitate

“averaging” over a cluster to produce  a  single interpretation that represents it

[45].  For all objects in a cluster, their dimensions, position, and/or orientation

contribute to a single, new object in a new cluster, which then takes the place of

161



the  entire  existing  cluster  as  Figure 7.5 exemplifies  [22].   This  process

summarizes interpretations.  It also provides an analytical method to investigate

how much freedom is acceptable in such interpretations before their average no

longer  represents  the  commonalities  of  the  whole  cluster.   For  example,  a

relatively large sigma may be acceptable for position but not for orientation, from

which one might conclude that variation over position is less important than

variation over orientation.

In  general,  determining  the  validity  of  interpretations  or  judging  their

consistency with the real world is subjective [111, 35, 50].  Clustered averaging,

however, takes advantage of the objective power of inferences [10].  Section 6.2

discussed how inferences—new attributes and relations—are generated from a

solution.  The important characteristic of inferences for analysis is that they also

redundantly generate existing attributes and relations from a solution as a by-

product.  Normally these inferences are discarded because they contribute no

new information to the semantic network of a description; e.g.,  the dog is in

front  of  the  cat produces  the  tautological  inference  DOG IN-FRONT-OF CAT,

which, of course, is already in the semantic network because it is exactly what
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was specified.  With an average solution, however, such inferences play a critical

role in verification.  For example, 25 runs would produce 25 valid solutions with

DOG IN-FRONT-OF CAT.   If the  average  interpretation  of  these  solutions  also

produces the inference DOG IN-FRONT-OF CAT, then the sigma that specified the

freedom  for  averaging  is  acceptable.   On  the  other  hand,  if  the  average

interpretation  fails to produce this inference, then the sigma is  unacceptable

because the actual results are not consistent with the expected results.  This test-

and-evaluation  framework  supports  automated,  iterative  refinement  of  the

sigmas by driving a set of Monte Carlo simulations with different sigmas to find

the boundary between acceptable and unacceptable.  Such results are beyond

the scope of this project, however.

7.3.3  Analysis of Spatial Discovery

The  observation  that  interpretations  exhibit  certain  inherent

commonalities can contribute to more than just the process of averaging clusters

for summarization.  It can also potentially detect so-called emergent properties

of unspecified or unknown commonalities [106, 87, 64].  Basically, if a set of

objects with predefined behaviors is allowed to run on its own, over time, do any

unexpected or previously unknown patterns emerge [114]?  It appears possible

to use this test-and-evaluation framework to identify such interrelations between
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objects  [35, 43].  For example, if an arbitrary description explicitly interrelates

three objects  A,  B, and C over 1,000 runs, do any of the following unspecified

interrelations consistently emerge?  

1. Does A NEAR B always imply B NEAR A?

2. Does A NORTH-OF B and B NORTH-OF C always imply A NORTH-OF C?

3. Does A FACING-NORTH and B FACING-SOUTH always imply B FACING A?

In fact, none3 of these claims is true, but proving4 so is non-trivial.  This test-and-

evaluation  framework  allows  solutions  to  be  compared  against  formal

mathematical relations like symmetry, reflexivity, transitivity, asymmetry, and so

on to discover constant patterns [35, 56, 111].  Such investigation is beyond the

scope of this project, however, the focus of which is to develop the necessary

framework, but not actually to utilize it or report its results.

3In commonsense terms, (2) is indeed true, but it is possible to manipulate the
fields such that the relation in the consequent is NORTHEAST-OF or NORTHWEST-OF,
which does not entail NORTH-OF in this reasoning formalism.

4Or at least convincingly demonstrating.  Linguistic issues cannot be “proved” in
the formal sense due to the inconsistency of language [80].
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8  GRAPHICAL RENDERING

The internal representations of the semantic network, knowledge base,

spatial reasoning engine, and simulation framework have a human-readable text

form that was very helpful during the development of this project to inspect and

debug their contents  [56].  This unified formalism could also serve as the final

output from this project because it contains all the results of interest.  Obviously,

however,  text  output  of  an  arcane  internal  representation lacks  the  intuitive

appeal of a visual presentation for a spatial description.

The  graphical  rendering  engine  is  a  powerful  visualization  tool  that

translates these arcane structures into a corresponding three-dimensional virtual

world.  It serves simultaneously as both a display tool to view the results and an

evaluation tool to inspect their underlying representations [56].  The graphics are

a minor component in this project, however, because they play  no role in the

issues  of  representing  and  reasoning  over  knowledge  of  spatial  interactions.

Consequently, they are relatively primitive by modern standards.  This decision is

easily justified by the lack of precise detail in descriptions anyway as there is no

basis for rendering ornate graphics from generic statements like  there is a big

dog.1  For example, Figure 8.1 graphically renders the description in Figure 3.1.

1A  major  component  of  the  WordsEye  system  actually  does  try  to  fill  in
unspecified objects that plausibly appear in an environment [116]; e.g., a kitchen
should have counters, cabinets, a sink, etc.
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The scene contains a tree, a zebra
named Zeus, and a giraffe.

Zeus is in front of the giraffe.
Zeus is at the fringe of the tree.
The giraffe is in front of the tree.
The tree is in front and left of the
giraffe.

The tree is small.
The giraffe is big.

Figure 8.1:  Sample Graphical Rendering

8.1  Architecture

The architecture of the graphical rendering engine maps directly onto the

framework  of  the  Monte  Carlo  simulation  that  Chapter 7 discussed.   The

playground–sandbox–toy model2 in Figure 8.2 corresponds  to  a set  of

independent solutions that are generated from a single description, for which

each solution contains copies of same objects but with different values.

2The basis of this naming scheme is to reduce confusion within the components
of  this  project.   The  simulation–solution–object model  applies  only  to  the
reasoning components;  whereas  the  playground–sandbox–toy model  applies
only to the rendering components.  Both play confusingly similar roles but are
completely decoupled internally.  Independent naming decouples them externally
as well.
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8.1.1  Playground

The playground is a container for all  the independent solutions in the

sandboxes.   It  provides  no functionality  beyond  the  initial  placement  of  the

sandbox windows.  As the graphical output in this project receives relatively little

emphasis, there is only this rudimentary graphical user interface to manipulate

the system.  It is for output only; the input of a description and the configuration

of  the  simulation  and  analysis  are  through  a  text-file  interface  known as  a

vignette.  Appendix C provides a complete example.

8.1.2  Sandbox

A sandbox is a self-contained virtual  world for one interpretation of a

description.  As the entire “world” encompasses just a small zoo in this project,

the flat-earth representation in Figure 8.3 is appropriate [35].  WordsEye [117]
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uses  a  similar  platform  that  floats  in  space.3  A  sandbox  is  a  true  three-

dimensional representation of the world that overlays its objects and the viewer

onto a 100-meter square platform with 10-meter grid resolution.  The viewer4

appears initially south of the world facing north, which is the default deictic and

extrinsic frame of reference.  He or she possesses six degrees of freedom for

ghost-like mobility  to fly around and through objects.  The optional  head-up

display (inset) reflects the current position and attitude.

Each raw or clustered interpretation from a Monte Carlo simulation appears in

its own independent sandbox in the playground.  The viewer can fly through

3The platform plays no role in the reasoning here because it is not a true object;
it is merely a graphical artifact for reference and scale.  As such, objects may
occasionally  appear  beyond  it  in  space,  especially  when  the  AT-FRINGE-OF
distance relation is used.

4The viewer is never shown because he or she is assumed to be see the world
through his or her own eyes; i.e., from in front of the computer monitor.
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each  independently  to  view  the  different  interpretations  from  different

perspectives.   To  facilitate  comparing  and  contrasting  them,  sandboxes  also

support synchronization, in which all sandboxes configure the viewer based on

the active sandbox.

8.1.3  Toy

A  toy  is  the  manifestation of  an  object  in  an  interpretation.   Each

graphically  reflects  the  dimensions,  position,  and  orientation  that  the  spatial

reasoning engine calculated for it.  These values map to six degrees of freedom

(i.e., x, y, z, pitch, roll, and yaw), but the pitch and roll components play no role

because  they  are  not  considered  in  the  reasoning  process.   For  evaluation

purposes, each toy can optionally render a metaoverlay of the fields that play a

role in its interpretation to illustrate the interaction between itself and other toys.

Figure 8.4a  shows  only  field  geometry,  which  indicates  all  the  possible

interpretations of position and/or orientation for the constraint that generated

this  toy.   Figure 8.4b  overlays  the  field  topography  to  show the  probability

distribution over the possible interpretations.  Finally, each toy can interactively

display  its  internal  details,  which  provide  insight  into  the  underlying

representations that contributed to it from the first stage of processing to this

final stage.
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Figure 8.4:  Metaoverlays for Geometry and Topography
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8.2  Implementation Issues

The implementation of the graphical rendering engine is unnecessarily

detailed and out of scope for this discussion.  However, one related issue is

appropriate because it plays a role in aspects of the knowledge representation.

The knowledge  base  and  spatial  reasoning  engine are  completely  decoupled

from the  graphics  in  all  respects  except  one:   each  derived  concept in  the

knowledge  base  must  indicate  the  name  of  the  model  that  represents  it

graphically.  One could consider this entry as knowledge of how something is

supposed to look.

8.2.1  Model Mapping

The low-level details of the graphics are maintained separately in a table

that maps the model name to the file containing the polygon definitions of the

corresponding three-dimensional model.  This project supports only models that

are defined in the popular 3D Studio MAX and Wavefront formats.  Popularity is

an important consideration because almost all the models were freely acquired

from the World Wide Web.  Specialized and obscure models like a corral, lake,

non-coiled snake, and (inexplicably)  a giraffe had to be created using a basic

shareware editor.  The table not only maps a model name to a model file, but it

also configures how the model appears in a particular mapping.  As there are
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108 derived concepts in the knowledge base and only 69 unique models in the

project  library,  obviously  some  concepts  must  share  the  same  model  as

Figure 8.5 shows.

This property is exploited to reuse the same models with slight configuration

changes, normally the color.  This implementation eliminates the need to find

specific  models  for  visually  similar  concepts  whose  real-world  differences  in

appearance are irrelevant for this project.  For example, a LAKE and a POND differ

only in their dimensions, so they share the same model and file.  Similarly, the

HORSE and the ZEBRA are share the same file (which explains why the ZEBRA in

Figure 8.4 has no stripes), but they require different color configuration.

8.2.2  Model Normalizing

The  motivation  behind  the  mapping  table  extends  beyond  the

convenience of model reusability.  It also serves the essential role of normalizing
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the models to a single, standardized internal form.  The models in this project

were acquired from many sources and therefore have little or no consistency in

their scale, origin, orientation, and so on.  To ensure that they render according

to the specifications of the spatial reasoning engine, each model was manually

normalized so that it stands with its base on the ground, has its origin in the

center, faces forward, and fits tightly within a one-meter cube.  Normalization for

most models is straightforward, but certain irregular shapes require a  judgment

call.  For example, trees are normalized such that the trunk fits within the cube

regardless of the width of the canopy.  This determination is consistent with the

real-world description of trees, which tend to refer to width in terms of the trunk.

Visual  inconsistencies,  however,  are  still  common  due  to  limitations  in  the

graphics.  For example, a big tree should have more leaves than a small tree.

Unfortunately, the number of leaves is fixed by the model, so a big tree is instead

rendered with bigger leaves!
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9  RESULTS AND DISCUSSION

The practical, application-oriented goal of this project is to translate text

descriptions  of  spatial  scenes  to  corresponding  graphical  renderings.   The

theoretical, research goal is to investigate the underlying processes and develop

approaches to resolving major issues.  The degree of success of the latter goal is

reflected in the former, which this chapter addresses.

The results in this project are presented in the form of vignettes—simple,

descriptive sketches that showcase its features.  The determination of whether a

solution to a vignette is consistent with a real-world interpretation is subjective

[56].  A stronger evaluation of the results would require psychometric studies and

statistical analyses over a reasonably large sample of determinations by different

human subjects  [56, 50, 35, 15, 86, 116].   This  approach  was  unanimously

rejected by all parties at the proposal stage due to the unnecessary, additional

complexity it would bring to the project.  However, it is possible to establish a

reasonable measure of evidence to estimate informal confidence in the results

[45, 101].   As  underspecification,  uncertainty,  and  vagueness  in  descriptions

contribute  in  general  to  an  infinite  number  of  valid  solutions  to  a  single

description, obviously it is not possible to define unambiguously the subjective

form of a “correct” solution [118, 10, 47].  However, a more relaxed metric has
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potential:  if a solution is not arguably incorrect, then it is assumed to be correct.

The  human  spatial  mind  is  very  discerning  and  can  readily  detect  most

inconsistencies  [56].   Furthermore,  as  Section 5.5.2 discussed  on  inference

generation,  this  project  inherently  supports  the  objective  verification  that  its

results do not violate their defining constraints.  Together, these subjective and

objective metrics form a reasonable basis for presenting the samples of positive

and negative results in the following two sections, respectively.

9.1  Positive Results

The issues in this project have been throughly addressed from various

perspectives.   Each  has  been  intricately  decomposed  into  sub-issues  with

individual solutions that can recombine in countless ways.  The great number and

large,  graphical  nature  of  these  solutions  preclude  anything  resembling  an

exhaustive treatment of their  results.   In light of this inherent limitation, this

section presents selected results that showcase interesting features and behaviors

that are representative of the success of the project as a whole.

The distance relations  INSIDE and  OUTSIDE, unlike  ADJACENT-TO,  NEAR,

MIDRANGE-FROM,  FAR-FROM, and  AT-FRINGE-OF, have a clearly defined interface

between themselves, which corresponds to the bounding cylinder of their object

(see Section 5.7.2.1.2).  Thus,  as Figure 9.1 illustrates for  the horse is inside
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the corral and the zebra is outside the corral, ring A serves as the interface.

The EXTERIOR field (Figure 5.34) that the relation OUTSIDE uses extends only to

ring B, and not to the horizon as might be expected, however.  This behavior is

consistent with real-world spatial reasoning because the focus of these relations is

on the interface, which imposes preference on its vicinity [103, 94, 56].

Figure 9.1:  Relations INSIDE and OUTSIDE for CORRAL

A LAKE also defines an interface, but a vertical one; i.e., between positions

on and below its surface.  Figure 9.2 illustrates this behavior for (a) the raft is in

the lake and (b) the hippo is in the lake.  For (c) the hippo is in the raft and

the raft is in the lake, both the HIPPO and the RAFT belong on its surface, which

is also the interpretation that applies if they are on land.
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Figure 9.2:  Relation IN for RAFT, HIPPO, and LAKE
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Concept matching in Section 5.6.1.1 discussed the spatial interaction and

pragmatic  interpretation  for  the  golden  eagle  is  in  the  pine  tree,  which

Figure 9.3 illustrates.   This example also serves as a negative result, which the

next section will discuss.

Figure 9.3:  Relation IN for GOLDEN-EAGLE and PINE-TREE

Concept matching facilitates contextually specialized modifications to almost any

part  of  a  concept  definition.   Usually  it  applies  to relations,  but dimensions

occasionally benefit as well.  For example, the appropriate, general dimensions

of a CAGE depend on the object it encloses.  Thus, any concept that derives from

the abstract concepts LARGE-ANIMAL or SMALL-ANIMAL deserves a large or small

CAGE, respectively.  Figure 9.4 illustrates this behavior for (a)  the monkey is in
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the cage and (b)  the gorilla is in the cage.1  This example also serves as a

negative result, which the next section will discuss.

Figure 9.4:  Concept CAGE for SMALL-ANIMAL and LARGE-ANIMAL

1The cage is actually an oversize birdcage!  Section 8.2.1 discussed various ways
to map models to extend their usefulness.
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As Section 5.5.1.2 discussed, dimensions are contextually dependent on

objects even if they do not interact with other objects.  Figure 9.5 comparatively

illustrates this behavior for Roger (R) and Peter (P) are giraffes; Peter is short

and Roger is tall.  Son (S) and Kerry (K) are anacondas; Son is short and

Kerry is long.

Figure 9.5:  Dimensions SHORT, TALL, and LONG for GIRAFFE and ANACONDA

Section 5.6.2.1 discussed  how the  IN-FRONT-OF relation uses the  has-

canonical-front property  of  the  second  object  to  determine  the  frame  of

reference.  Figure 9.6 illustrates this difference for (a) the tree is in front of the

dog and (b) the dog is in front of the tree.  Note that (a) also results from the

dog is facing the tree.
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Figure 9.6:  Relation IN-FRONT-OF for TREE and DOG

The relation TO-SIDE-OF is the most ambiguous in this project because it

is  the  union  of  the  LEFT-OF and  RIGHT-OF relations  for  intrinsic  frame  of

reference or  of  WEST-OF and  EAST-OF for  deictic  (see  Section 5.7.2.3.2 and
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Section 2.3).  Figure 9.7 illustrates one interpretation for the dog is to the side

of the gorilla.

Figure 9.7:  Relation TO-SIDE-OF for GORILLA and DOG

Section 5.7.2.3 discussed various spatial interactions of fields in terms of

set operations.  Figure 9.8 illustrates four intersections in the rhino is north of

the lake, in front of and midrange from the elephant, and facing away from

the maple tree.

Section 5.7.2.1.1.1 discussed how the size of objects heavily influences

the scale of their fields.  Figure 9.9 illustrates this behavior for (a)  the turtle is

near the elephant and (b) the elephant is near the turtle.
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Figure 9.8:  Field Intersections
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Figure 9.9:  Relation NEAR for ELEPHANT and TURTLE

Finally, Section 6.1.1.1 discussed how the components of descriptions

may form independent partitions of objects that reside in the same interpretation

but do not interact.  Figure 9.10 illustrates this behavior for (partition 1) the dog

is south of the tree and near the panther, and the panther is right of the dog
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and (partition 2) the elk is midrange from and facing away from the lake and

near the maple tree.  This example also serves as a negative result.

Figure 9.10:  Independent Dependency Graphs

9.2  Negative Results

The  combination  of  tightly  defined  constraints,  an  all-or-nothing

constraint  satisfaction  algorithm,  and  a  strict  postchecking  mechanism

unsurprisingly guarantees that all results will reflect their defined behavior.  Thus,

only incorrect or inadequate definitions can produce negative results.  All known

cases are errors of omission, in which behaviors that should be present are not

(through fault of the implementation and/or the knowledge engineer); none are

errors of commission,  in which the results  are not justified by the premises

[100].  As this project performs above and beyond its proposed requirements,
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the  contents  of  this  section  are  more  appropriately  considered  issues  and

limitations rather than incorrect results.

Several negative results were acknowledged in the previous section.  In

Figure 9.3, the eagle is in the tree, but no branches support it.  In fact, the eagle

is actually partially embedded in the trunk.  This visual inconsistency stems from

the decoupled nature of the reasoning and rendering components of this project.

The  knowledge  base  has  no  information  about  the  detailed,  compositional

structure of the graphical models and therefore cannot enforce such fine-grained

interpretations.

In Figure 9.4, the size of the cage reflects the size class of its contents.

This mechanism functions correctly for a single object in the cage; e.g., either

the  monkey  or  the  gorilla.   However,  it  does  not  currently  resolve  conflicts

between multiple objects.  For example, if the cage contains both a monkey and

a gorilla, common sense dictates that the cage must reflect the size class of the

larger of the two objects.  Similarly, two gorillas should make the cage roughly

twice as large.  Finally, physical size alone is not a good indicator for the size of

the cage; e.g., an eagle is a small animal, but its real-world behavior demands a

large cage for freedom of mobility.
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In Figure 9.10, the elk is midrange from the lake.  Although the depiction

appears reasonable, the underlying representation is slightly flawed.  A lake is a

large,  ill-defined,  geographical  feature  that  technically  violates  the criteria  for

objects in  Section 3.1.  The unseen problem it introduces is that objects are

processed in the reasoning engine as  point sources, or single points in space,

and not as the shape they really exhibit.  Thus, a lake is represented by a point

in its center, and the elk is actually midrange from it, not from the shore.  The

noninterpenetration postconstraint (Section 6.1.1.1) dictates that the elk should

not appear in the lake, so the position of the elk reflects the closest valid position

to the center of the lake that is not actually in it.  A person would probably say

that the elk is near the lake.

The polar projection of rings and sectors (Section 5.7.2.1) is appropriate

for the animals and plants in this project.  However, it does not extend well to

non-circular  objects  because  of  mismatches  between  polar  and  Cartesian

coordinate systems.  For example, no suitable fields exist for a river because it is

primarily a rectangular object.  In order to support the opening sentence of this

dissertation, “[p]icture yourself on a boat in a river,” a bow-tie field similar to the

LEFT-RIGHT field in Figure 5.33 is used.  Another concession of this nature is the

use of a round corral and lake.

187



Another unseen issue arises due to shape.  All objects are approximated

as vertically oriented cylinders (Section 5.7.2.1.2), but not all objects conform to

such an abstraction.  The anacondas in Figure 9.5,  for  example,  are  poorly

represented this way because their length dictates the diameter of their cylinder,

even though they occupy only a narrow chord of it.  This limitation is wasteful in

terms of available space for valid positions because bounding cylinders normally

cannot interpenetrate.  Thus, Figure 9.5 represents the tightest parallel depiction

of two snakes.  One easy solution is to define snakes with a true is-container

property  so  they  ignore  the  noninterpenetration  rule,  but  this  hack  would

undermine the validity of the knowledge base because snakes are not actually

containers, of course [27].  The bounding cylinder introduces further problems as

well because it assumes the same diameter from bottom to top.  Clearly the

space under the giraffes can accommodate the anacondas, but this solution is

not available to the reasoning engine.  A finer-grained bounding mechanism

such  as  constructive  solid  geometry  or  a  volumetric  representation  is  more

appropriate [26, 98, 87].

9.3  Future Work

While this project arguably presents a successful approach to addressing

its stated issues and achieving its goals, it is hardly a complete and final solution
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to the larger problem of representing and reasoning over spatial descriptions.

Two practical considerations deserve attention:  scalability and extensibility.

9.3.1  Scalability

Scalability is the measure by which this approach can expand its depth to

handle more of the current domain.  Such expansion would likely require only

additions to the knowledge base but no new functionality to the spatial reasoning

engine.  For example, new relations for  PARALLEL-TO and  PERPENDICULAR-TO

can be defined in terms of the current formalism of fields.  In this respect, this

project exhibits good scalability [14].  In fact, this exact approach was used to

add the last-minute relation TO-SIDE-OF as the union of the LEFT-OF and RIGHT-

OF relations.   Scalability  in  this  context  applies  to increasing  the number  of

available concepts, attributes, and relations of existing types.  It does not apply to

increasing  the  number  of  objects  that  the  constraint  satisfaction  engine  can

handle.  As Section 6.1.1 discussed, humans have inherent limitations in the

maximum number that can be reasonably  processed in a  spatial  description.

Improving this performance is a different issue.

9.3.2  Extensibility

Extensibility  is  the  measure  by  which  this  approach  can  expand  its

breadth to  handle  other domains.   Such  expansion would  definitely  require
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additions to the knowledge base and new functionality to the spatial reasoning

engine.  Extensibility  applies  to increasing the number of  available concepts,

attributes, and relations of new types.  For example, Egenhofer’s 9-intersection

model  [34] and the region connection calculus of Randell, Cui, and Cohn [99]

each define dozens of tricky relations that would not fit easily into the current

formalism of  fields  on a polar  projection [108].  In this  respect, this  project

exhibits limited extensibility [14].  However, such expansion is not believed to be

totally inconsistent with this formalism, so “limited extensibility” in this respect is

more a judgment of immediate versus long-term, potential expansion.
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10  CONCLUSION

It terms of the proposed goals of this project, it is a complete success

beyond expectation as the following accomplishments summarize:

 The  research  side  identified  various  interdisciplinary  issues  in

computational text understanding that play a role in interpreting spatial

descriptions.   It  focused  on  five  that  were  hypothesized  as  most

important:   underspecification,  uncertainty,  vagueness,  context,  and

frame of reference.

 The development side built a multidimensional, knowledge-based, weak

artificial-intelligence system to investigate these issues.

 The  input  component  of  the  system accepts  spatial  descriptions  in  a

restricted form of English and translates this  explicit knowledge into a

semantic-network representation of  object  nodes,  attribute  nodes,  and

relation arcs  that  serves  as  the  primary  data structure throughout  the

system.

 A complex knowledge base defines a wide range of implicit knowledge to

cope with the stated issues in understanding a description.  It builds a

collection  of  declarative  constraints  that  define  the  form  of  a  valid

solution.  
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 The spatial reasoning engine processes the constraints from the semantic

network and the knowledge base to generate solutions with contextually

appropriate dimensions, positions, and orientations for the objects in a

description.  It also generates new knowledge from a solution in the form

of inferences, which contribute to a better computational understanding

of a description.  

 The process of generating inferences also exhibits unexpected potential

to recognize scenes and produce limited, corresponding natural language

descriptions.

 The Monte Carlo  simulation framework collects  multiple,  independent

solutions for several types of analyses that contribute to improving the

performance  of  the  system  and  to  discovering  unknown  interactive

behaviors in spatial descriptions.

 The graphical rendering engine serves as both a display and an evaluation

platform to  depict  one or  more three-dimensional,  virtual  worlds  that

correspond to different interpretations of a description.

The success of this project as a knowledge representation and automated

reasoning  system  is  evaluated  in  terms  of  many  requirements

[14, 40, 27, 130, 87].  In particular, this system satisfies the following:
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 Generality:  it  represents  and  reasons  over  a  broad  range  of  spatial

knowledge within its domain.

 Granularity:  it operates at various levels of abstraction and detail.

 Competence:  it produces correct results.

 Inference: it possesses the capability to answer a wide range of questions.

 Explanation of inference:  it can list the rules that it used to produce an

answer.

 Meta-reasoning:  it is aware of what it knows and does not know.

 Expressiveness:  it allows the knowledge engineer to say what he or she

wants within the domain.

 Naturalness or perspicuity:  it  is  intuitive,  syntactically  friendly,  and

relatively straightforward to configure and use.

 Semantic clarity:  it has a clear, well-defined semantics.

 Transformability:  it can be used other purposes.

 Contexts and knowledge encapsulation:  it maintains a coherent struc-

ture of related knowledge.

 Graphics.  it provides intuitive, visual access to its internals.

 Efficiency:  it is a reasonably small and fast implementation.
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These accomplishments contribute to a better understanding of several

issues.   First,  knowledge  representation  benefited  from  the  following

observations:

 A shallow ontology of  concepts  is adequate  to represent animals  and

plants because there is surprisingly little variation in their spatial behavior.

 The shallowness  of  the  ontology  may  account  for  why  few problems

arose from the support of multiple inheritance.

 Mapping  the  separate  ontology  of  spatial  behaviors  onto the  existing

taxonomy of the animal kingdom reduces the amount of design work and

highlights structural inconsistencies early in the process.

 The  encapsulated,  object-oriented  structure  of  the  knowledge  base

provides a clean, intuitive framework to define implicit knowledge.

 The declarative paradigm of knowledge representation cleanly decouples

the form of knowledge from the implementation of the mechanisms that

process it.

 The knowledge base is scalable to  accommodate additional knowledge

with the current domain.

 The knowledge base is reasonably extensible to other domains.

194



Second,  spatial  reasoning  benefited  from  the  following  observations,  in

descending order of importance:

 Underspecification: without the implicit knowledge of rules and  guide-

lines for  acceptable  interpretation,  spatial  reasoning  would  be  nearly

impossible.

 Uncertainty:  any reasoning mechanism must account for the wide range

of valid interpretations of any spatial description.

 Frame of reference:  different concepts exhibit different behaviors with

respect to other objects and the viewer.  Proper placement and alignment

depends on a correct or plausible interpretation.

 Context:  although it plays an important role in non-default interpreta-

tions, the vast majority of interpretations adhere to the defaults.  Default

interpretations applied to non-default contexts may appear out of place,

but they are still reasonably consistent with a correct interpretation.

 Vagueness:   the dimensions of objects need only be proportional and

reasonably on target, so precise computation of them is unnecessary.  It is

difficult to perceive minor differences in size under normal circumstances.

Finally,  constraint  satisfaction  proved  itself  as  a  viable  approach  to  spatial

reasoning:
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 Declarative constraints are a clean, concise representation for the form of

a valid solution.

 Although constraint  satisfaction is  far  too slow for  real-time,  dynamic

reasoning, it is effective for static reasoning within this restricted domain.

 Interval constraints provide suitable control over the range of dimensions

of objects.

 Geometric  and  topographical  fields  are  simple  but  powerfully  flexible

constraints  for  uncertain positions and  orientation.  They  also  appear

consistent with the way humans perceive and reason about space.

 Only facets and rings are necessary to handle the majority of common

spatial relations.

 Only field intersection is necessary to process most spatial descriptions.

Union, symmetric difference, and complement are mainly of theoretical

value as they have few realistic counterparts in the spatial descriptions.

 Three-and-a-half  degrees of freedom are acceptable to manipulate the

majority of objects in typical ways.  Full three-dimensional reasoning has

definite applications, but the cost-benefit ratio must be considered.

 An adjustable Gaussian distribution realistically handles uncertainty and

variation of dimensions, position, and orientation.
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APPENDICES



A.  KNOWLEDGE BASE GRAMMAR

The following annotated grammar specifies the syntax and semantics of

the subset of the knowledge base in Appendix B.  It modifies Extended Backus-

Naur  Form slightly  to indicate the data  type of  each terminal  as  a  subscript

where it is not obvious:  s for string and n for real or integer number.

<KNOWLEDGE_BASE> := ('(' <ABSTRACT_CONCEPT> | <DERIVED_CONCEPT> ')')*

The knowledge base is an inheritance hierarchy or ontology of abstract
and derived concepts.

See Section 5.5.1.1.

<ABSTRACT_CONCEPT> := 
'ABSTRACT_CONCEPT' concept_names <CONCEPT_BODY>

An abstract concept defines a top-level concept that can be inherited by
any DERIVED_CONCEPT.  It cannot inherit from other concepts or be
instantiated.

See Section 5.5.1.1.2.

<ATTRIBUTE_INTERVAL> := 
'ATTRIBUTE-INTERVAL' 
lower_bound_attributes [lower_bound_adjustmentn] '...'
upper_bound_attributes [upper_bound_adjustmentn] ':' dimensions+

An attribute interval associates a range of English adjectives with one or
more physical dimensions of a concept.

See Section 5.5.1.2.2.

<CONCEPT_BODY> := 
['(' <MODEL> ')'] ['(' <DOF_ADJUSTMENT> ')'] 
('(' (<PROPERTY> | <RELATION> | <ATTRIBUTE_INTERVAL> | 
      <CONTEXT> | <FIELD> | <INFERENCE> | <LATE_DEPENDENCY>) ')')*

A concept body defines the components of a concept or context.

See Section 5.3.2.
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<CONSTRAINT> := 'CONSTRAINT::FIELD-MUST-CONTAIN' (referents | fields)+

A constraint specifies that a field of one object must contain another
object for a relationship to be satisfied.

See Section 5.7.2.

<CONTEXT> := 'CONTEXT' (context_names ['+'])+ <CONCEPT_BODY>

A context is an embedded concept definition that overrides the main
concept definition when an object is used in a relationship with another
specified object.

See Section 5.6.1.

<DEPENDENCY_ARGUMENTS> := 
(identifier | referent | literal | number | boolean)+

Dependency arguments pass constant or variable data into dependencies
for evaluation.  A referent is an identifier with a ? prefix.  A literal is
any string enclosed in single quotes.

See Section 5.6.2.

<DERIVED_CONCEPT> := 
'DERIVED-CONCEPT' concept_names 
'IS-A' concept_names+ <CONCEPT_BODY>

A derived concept defines components to extend the definitions inherited
from any number of abstract and derived concepts.  All derived concepts
inherit from thing and can be instantiated.

See Section 5.5.1.1.1.

<DOF_ADJUSTMENT> := 'DOF_ADJUSTMENT' xn yn zn pitchn rolln yawn

A degree-of-freedom adjustment defines how the position and attitude of
the toy representing an object is offset in three-dimensional space.  The
position and attitude offsets are given in terms of the coordinate system
in Figure 8.3.

See Section 5.6.1.1 and Section 6.1.1.3.
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<DYNAMIC_DEPENDENCY> := 
('DYNAMIC-DEPENDENCY::IS-IN-FIELD'          |
 'DYNAMIC-DEPENDENCY::DIMENSION-IS-LESS'    |
 'DYNAMIC-DEPENDENCY::DIMENSION-IS-MORE'    |
 'DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE'     |
 'DYNAMIC-DEPENDENCY::PROPERTY-IS-FALSE'    |
 'DYNAMIC-DEPENDENCY::PROPERTY-IS-EQUAL'    |
 'DYNAMIC-DEPENDENCY::PROPERTY-IS-UNEQUAL'  |
 'DYNAMIC-DEPENDENCY::PROPERTY-IS-LESS'     |
 'DYNAMIC-DEPENDENCY::PROPERTY-IS-MORE'     |
 'DYNAMIC-DEPENDENCY::PROPERTY-IS-PRESENT'  |
 'DYNAMIC-DEPENDENCY::PROPERTY-IS-ABSENT'   |
 'DYNAMIC-DEPENDENCY::ATTRIBUTE-IS-PRESENT' |
 'DYNAMIC-DEPENDENCY::ATTRIBUTE-IS-ABSENT')
[<DEPENDENCY_ARGUMENTS>] 
(('(' <INFERENCE> ')')+ | ('(' <DYNAMIC_DEPENDENCY> ')'))

A dynamic dependency specifies a set of conditions that can be evaluated
only after a solution has been generated.

See Section 5.6.2.2.

<EARLY_DEPENDENCY> := 
<STATIC_DEPENDENCY_FUNCTION> [<DEPENDENCY_ARGUMENTS>] 
('(' <INFERENCE> | <CONSTRAINT> ')')+

An early dependency is evaluated before all constraints have been
satisfied to generate early inferences and/or constraints.

See Section 5.6.2.1.

<FIELD> := 'FIELD' names definitions

A field defines the geometry and topography of a region.

See Section 5.7.2.

<INFERENCE> := 
('INFER-ATTRIBUTE' attribute_names) |
('INFER-RELATIONSHIP' relation_names referentr*)

An inference adds an attribute node or relation arc to the semantic
network based on knowledge that was inferred from a solution.

See Section 5.5.2.

<LATE_DEPENDENCY> := 
<DYNAMIC_DEPENDENCY> | 
(<STATIC_DEPENDENCY_FUNCTION> [<DEPENDENCY_ARGUMENTS>] 
 '(' <LATE_DEPENDENCY> ')')

A late dependency is evaluated after all constraints have been satisfied to
generate late inferences.

See Section 5.6.2.2.
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<MODEL> := 'MODEL' model_names

A model binds a derived concept to a three-dimensional, graphical model
of polygons in the model library.

See Section 8.2.

<PROPERTY> := 
'PROPERTY' property_name 
(literal | number | boolean |
  ('(' 'RANGE' absolute_lower_boundn suggested_lower_boundn
   defaultn suggested_upper_boundn absolute_upper_boundn ':'
   variationn bandpassn proportionality_percentagen ')'))

A property defines a data element for a concept as either a primitive
value or a range of values.  A literal is any string enclosed in single
quotes.

See Section 5.5.1.2.1.

<RELATION> := 
'RELATION' relation_names 
['(' <MODEL> ')'] ['(' <DOF_ADJUSTMENT> ')']
('(' (<EARLY_DEPENDENCY> | <CONSTRAINT> | <INFERENCE>) ')')*

A relation defines how to interpret a relationship between two objects.

See Section 5.5.1.3.

<STATIC_DEPENDENCY_FUNCTION> := 
'STATIC-DEPENDENCY::PROPERTY-IS-TRUE'     |
'STATIC-DEPENDENCY::PROPERTY-IS-FALSE'    |
'STATIC-DEPENDENCY::PROPERTY-IS-EQUAL'    |
'STATIC-DEPENDENCY::PROPERTY-IS-UNEQUAL'  |
'STATIC-DEPENDENCY::PROPERTY-IS-LESS'     |
'STATIC-DEPENDENCY::PROPERTY-IS-MORE'     |
'STATIC-DEPENDENCY::PROPERTY-IS-PRESENT'  |
'STATIC-DEPENDENCY::PROPERTY-IS-ABSENT'   |
'STATIC-DEPENDENCY::ATTRIBUTE-IS-PRESENT' |
'STATIC-DEPENDENCY::ATTRIBUTE-IS-ABSENT'

A static dependency function specifies a condition that can be evaluated
either before or after a solution has been generated.

See Section 5.6.2.1.
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B.  SUBSET OF KNOWLEDGE BASE

(ABSTRACT-CONCEPT thing

  ;---[ PROPERTIES AND ATTRIBUTES ]------------------------------------

  (PROPERTY supports-dimension-comparison true)

  (PROPERTY is-container false)

  (PROPERTY has-canonical-front true)

  (PROPERTY height (RANGE 1.0 1.0 1.0 1.0 1.0 : 0.25 1.0 1.0))
  (PROPERTY width  (RANGE 1.0 1.0 1.0 1.0 1.0 : 0.25 1.0 1.0))
  (PROPERTY depth  (RANGE 1.0 1.0 1.0 1.0 1.0 : 0.25 1.0 1.0))

  (ATTRIBUTE-INTERVAL small  ... big  : height width depth)
  (ATTRIBUTE-INTERVAL narrow ... wide : width             )
  (ATTRIBUTE-INTERVAL short  ... tall : height            )

  ;--[ FIELDS ]--------------------------------------------------------

  (FIELD field-front        [front : 02.29-50.04 : : ])
  (FIELD field-front-left   [front : 02.27-50.30 : : ])
  (FIELD field-front-right  [front : 02.03-50.06 : : ])
  (FIELD field-back         [front : 02.13-50.20 : : ])
  (FIELD field-back-left    [front : 02.19-50.22 : : ])
  (FIELD field-back-right   [front : 02.11-50.14 : : ])
  (FIELD field-left         [front : 02.21-50.28 : : ])
  (FIELD field-right        [front : 02.05-50.12 : : ])
  (FIELD field-left-right   [front : 04.21-15.28 04.05-15.12 : 0 : ])

  (FIELD field-direct-front [front : 02.32-50.01 : : ])
  (FIELD field-direct-back  [front : 02.16-50.17 : : ])
  (FIELD field-direct-left  [front : 02.24-50.25 : : ])
  (FIELD field-direct-right [front : 02.08-50.09 : : ])

  (FIELD field-interior     [north : 01.01-01.32 : : ])
  (FIELD field-exterior     [north : 02.01-20.32 : : ])
  (FIELD field-adjacent     [north : 02.01-03.32 : : ])
  (FIELD field-near         [north : 04.01-15.32 : : ])
  (FIELD field-midrange     [north : 16.01-30.32 : : ])
  (FIELD field-far          [north : 31.01-47.32 : : ])
  (FIELD field-fringe       [north : 48.01-60.32 : : ])

  (FIELD field-north        [north : 02.30-95.03 : : ])
  (FIELD field-south        [north : 02.14-95.19 : : ])
  (FIELD field-east         [north : 02.06-95.11 : : ])
  (FIELD field-west         [north : 02.22-95.27 : : ])
  (FIELD field-northeast    [north : 02.04-95.05 : : ])
  (FIELD field-northwest    [north : 02.28-95.29 : : ])
  (FIELD field-southeast    [north : 02.12-95.13 : : ])
  (FIELD field-southwest    [north : 02.20-95.21 : : ])
  (FIELD field-east-west    [north : 04.06-15.11 04.22-15.27 : 0 : ])

  (FIELD field-direct-north [north : 02.32-95.01 : : ])
  (FIELD field-direct-south [north : 02.16-95.17 : : ])
  (FIELD field-direct-east  [north : 02.08-95.09 : : ])
  (FIELD field-direct-west  [north : 02.24-95.25 : : ])

  (FIELD field-anywhere     [north : 03.01-10.32 : : ])
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  ;---[ GLOBAL RELATIVE POSITION RELATIONS ]---------------------------

  (RELATION north-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-north     ?self))

  (RELATION south-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-south     ?self))

  (RELATION east-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-east      ?self))

  (RELATION west-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-west      ?self))

  (RELATION northeast-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-northeast ?self))

  (RELATION northwest-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-northwest ?self))

  (RELATION southeast-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-southeast ?self))

  (RELATION southwest-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-southwest ?self))

  (RELATION directly-north-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-north     ?self))

  (RELATION directly-south-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-south     ?self))

  (RELATION directly-east-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-east      ?self))

  (RELATION directly-west-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-west      ?self))

  ;---[ LOCAL RELATIVE POSITION RELATIONS ]----------------------------

  (RELATION in-front-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-front ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-south ?self)))

  (RELATION in-back-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-back ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-north ?self)))

  (RELATION left-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-left ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-west ?self)))

  (RELATION right-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-right ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-east ?self)))
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  (RELATION to-side-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-left-right ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-east-west ?self)))

  (RELATION in-front-left-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-front-left ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-southwest ?self)))

  (RELATION in-front-right-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-front-right ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-southeast ?self)))

  (RELATION in-back-left-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-back-left ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-northwest ?self)))

  (RELATION in-back-right-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-back-right ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-northeast ?self)))

  (RELATION directly-in-front-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-direct-front ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-direct-south ?self)))

  (RELATION directly-in-back-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-direct-back ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-direct-north ?self)))

  (RELATION directly-left-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-direct-left ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-direct-west ?self)))

  (RELATION directly-right-of
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-direct-right ?self))
    (STATIC-DEPENDENCY::PROPERTY-IS-FALSE ?b.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-direct-east ?self)))

  ;---[ RELATIVE DISTANCE RELATIONS ]----------------------------------

  (RELATION in
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-interior ?self))

  (RELATION inside
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-interior ?self))

204



  (RELATION outside
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-exterior ?self))

  (RELATION on
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-interior ?self))

  (RELATION adjacent-to
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-adjacent ?self))

  (RELATION near
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-near     ?self))

  (RELATION midrange-from
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-midrange ?self))

  (RELATION far-from
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-far      ?self))

  (RELATION at-fringe-of
    (CONSTRAINT::FIELD-MUST-CONTAIN ?b.field-fringe   ?self))

  ;---[ RELATIVE ORIENTATION RELATIONS ]-------------------------------

  (RELATION facing
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-front ?b)))

  (RELATION directly-facing
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-direct-front ?b)))

  (RELATION facing-away-from
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-back ?b)))

  (RELATION directly-facing-away-from
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-direct-back ?b)))

  ;---[ ABSOLUTE ORIENTATION RELATIONS ]-------------------------------

  (RELATION facing-north
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-north ?self.pipper)))

  (RELATION facing-south
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-south ?self.pipper)))

  (RELATION facing-east
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-east ?self.pipper)))

  (RELATION facing-west
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-west ?self.pipper)))

  (RELATION facing-direct-north
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-direct-north 
                                      ?self.pipper)))
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  (RELATION facing-direct-south
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-direct-south 
                                      ?self.pipper)))
  (RELATION facing-direct-east
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-direct-east 
                                      ?self.pipper)))
  (RELATION facing-direct-west
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-direct-west 
                                      ?self.pipper)))
  (RELATION facing-northeast
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-northeast 
                                      ?self.pipper)))
  (RELATION facing-northwest
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-northwest 
                                      ?self.pipper)))
  (RELATION facing-southeast
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-southeast 
                                      ?self.pipper)))
  (RELATION facing-southwest
    (STATIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
      (CONSTRAINT::FIELD-MUST-CONTAIN ?self.field-southwest 
                                      ?self.pipper)))

  ;---[ LOCAL RELATIVE POSITION INFERENCES ]---------------------------

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-front
      (INFER-RELATIONSHIP local-in-front-of            ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-back
      (INFER-RELATIONSHIP local-in-back-of             ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-left
      (INFER-RELATIONSHIP local-left-of                ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-right
      (INFER-RELATIONSHIP local-right-of               ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-front-left
      (INFER-RELATIONSHIP local-in-front-left-of       ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-front-right
      (INFER-RELATIONSHIP local-in-front-right-of      ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-back-left
      (INFER-RELATIONSHIP local-in-back-left-of        ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-back-right
      (INFER-RELATIONSHIP local-in-back-right-of       ?self ?any)))
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  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-front
      (INFER-RELATIONSHIP local-directly-in-front-of   ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-back
      (INFER-RELATIONSHIP local-directly-in-back-of    ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-left
      (INFER-RELATIONSHIP local-directly-left-of       ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-right
      (INFER-RELATIONSHIP local-directly-right-of      ?self ?any)))

  ;---[ GLOBAL RELATIVE POSITION INFERENCES ]--------------------------
  
  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-south
      (INFER-RELATIONSHIP global-in-front-of           ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-north
      (INFER-RELATIONSHIP global-in-back-of            ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-west
      (INFER-RELATIONSHIP global-left-of               ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-east
      (INFER-RELATIONSHIP global-right-of              ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-southwest
      (INFER-RELATIONSHIP global-in-front-left-of      ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-southeast
      (INFER-RELATIONSHIP global-in-front-right-of     ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-northwest
      (INFER-RELATIONSHIP global-in-back-left-of       ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-northeast
      (INFER-RELATIONSHIP global-in-back-right-of      ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-south
      (INFER-RELATIONSHIP global-directly-in-front-of  ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-north
      (INFER-RELATIONSHIP global-directly-in-back-of   ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-west
      (INFER-RELATIONSHIP global-directly-left-of      ?self ?any)))
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  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-east
      (INFER-RELATIONSHIP global-directly-right-of     ?self ?any)))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-north
    (INFER-RELATIONSHIP north-of          ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-south
    (INFER-RELATIONSHIP south-of          ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-east
    (INFER-RELATIONSHIP east-of           ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-west
    (INFER-RELATIONSHIP west-of           ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-northeast
    (INFER-RELATIONSHIP northeast-of      ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-northwest
    (INFER-RELATIONSHIP northwest-of      ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-southeast
    (INFER-RELATIONSHIP southeast-of      ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-southwest
    (INFER-RELATIONSHIP southwest-of      ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-north
    (INFER-RELATIONSHIP directly-north-of ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-south
    (INFER-RELATIONSHIP directly-south-of ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-east
    (INFER-RELATIONSHIP directly-east-of  ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-direct-west
    (INFER-RELATIONSHIP directly-west-of  ?self ?any))

  ;---[ RELATIVE DISTANCE INFERENCES ]---------------------------------

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-interior
    (INFER-RELATIONSHIP in             ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-interior
    (INFER-RELATIONSHIP inside         ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-exterior
    (INFER-RELATIONSHIP outside        ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-adjacent
    (INFER-RELATIONSHIP adjacent-to    ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-near
    (INFER-RELATIONSHIP near           ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-midrange
    (INFER-RELATIONSHIP midrange-from  ?self ?any))

  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-far
    (INFER-RELATIONSHIP far-from       ?self ?any))
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  (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self ?any.field-fringe
    (INFER-RELATIONSHIP at-fringe-of   ?self ?any))

  ;---[ RELATIVE ORIENTATION INFERENCES ]------------------------------

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?any ?self.field-front
      (INFER-RELATIONSHIP facing   ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?any ?self.field-back
      (INFER-RELATIONSHIP facing-away-from ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?any ?self.field-direct-front
      (INFER-RELATIONSHIP directly-facing   ?self ?any)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?self.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?any ?self.field-direct-back
      (INFER-RELATIONSHIP directly-facing-away-from ?self ?any)))

  ;---[ ABSOLUTE ORIENTATION INFERENCES ]------------------------------

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self.pipper ?self.field-north
      (INFER-ATTRIBUTE facing-north    )))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self.pipper ?self.field-south
      (INFER-ATTRIBUTE facing-south    )))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self.pipper ?self.field-east
      (INFER-ATTRIBUTE facing-east     )))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self.pipper ?self.field-west
      (INFER-ATTRIBUTE facing-west     )))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self.pipper ?self.field-northeast
      (INFER-ATTRIBUTE facing-northeast)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self.pipper ?self.field-northwest
      (INFER-ATTRIBUTE facing-northwest)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self.pipper ?self.field-southeast
      (INFER-ATTRIBUTE facing-southeast)))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE ?any.has-canonical-front
    (DYNAMIC-DEPENDENCY::IS-IN-FIELD ?self.pipper ?self.field-southwest
      (INFER-ATTRIBUTE facing-southwest)))

  ;---[ RELATIVE DIMENSION INFERENCES ]--------------------------------

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
   ?self.supports-dimension-comparison
    (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
     ?any.supports-dimension-comparison
      (DYNAMIC-DEPENDENCY::DIMENSION-IS-MORE height ?self ?any
        (INFER-RELATIONSHIP has-more-height ?self ?any))))
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  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
   ?self.supports-dimension-comparison
    (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
     ?any.supports-dimension-comparison
      (DYNAMIC-DEPENDENCY::DIMENSION-IS-MORE width  ?self ?any
        (INFER-RELATIONSHIP has-more-width  ?self ?any))))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
   ?self.supports-dimension-comparison
    (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
     ?any.supports-dimension-comparison
      (DYNAMIC-DEPENDENCY::DIMENSION-IS-MORE depth  ?self ?any
        (INFER-RELATIONSHIP has-more-depth  ?self ?any))))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
   ?self.supports-dimension-comparison
    (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
     ?any.supports-dimension-comparison
      (DYNAMIC-DEPENDENCY::DIMENSION-IS-LESS height ?self ?any
        (INFER-RELATIONSHIP has-less-height ?self ?any))))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
   ?self.supports-dimension-comparison
    (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
     ?any.supports-dimension-comparison
      (DYNAMIC-DEPENDENCY::DIMENSION-IS-LESS width  ?self ?any
        (INFER-RELATIONSHIP has-less-width  ?self ?any))))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
   ?self.supports-dimension-comparison
    (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
     ?any.supports-dimension-comparison
      (DYNAMIC-DEPENDENCY::DIMENSION-IS-LESS depth  ?self ?any
        (INFER-RELATIONSHIP has-less-depth  ?self ?any))))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
   ?self.supports-dimension-comparison
    (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
     ?any.supports-dimension-comparison
      (DYNAMIC-DEPENDENCY::DIMENSION-IS-EQUAL height ?self ?any
        (INFER-RELATIONSHIP has-equal-height ?self ?any))))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
   ?self.supports-dimension-comparison
    (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
     ?any.supports-dimension-comparison
      (DYNAMIC-DEPENDENCY::DIMENSION-IS-EQUAL width  ?self ?any
        (INFER-RELATIONSHIP has-equal-width  ?self ?any))))

  (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
   ?self.supports-dimension-comparison
    (DYNAMIC-DEPENDENCY::PROPERTY-IS-TRUE 
     ?any.supports-dimension-comparison
      (DYNAMIC-DEPENDENCY::DIMENSION-IS-EQUAL depth  ?self ?any
        (INFER-RELATIONSHIP has-equal-depth  ?self ?any))))

  ) ; thing
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This appendix omits the definitions of 103 of the 108 derived concepts

in Table 5.1 for space reasons.  It is important to note that they are significantly

smaller than this definition of the abstract concept  THING because they inherit

(and thus do not duplicate) its contents.  For example, the following definitions

specify the lineage that a MAN is a HUMAN is a PRIMATE is a MAMMAL is an ANIMAL is

a THING:

(DERIVED-CONCEPT animal

  (IS-A thing)

  ) ; animal

(DERIVED-CONCEPT mammal

  (IS-A animal)

  ) ; mammal

(DERIVED-CONCEPT primate

  (IS-A mammal)

  ) ; primate

(DERIVED-CONCEPT human

  (IS-A primate)

  ) ; human

(DERIVED-CONCEPT man

  (IS-A human)

  (MODEL man)

  (PROPERTY height (RANGE 1.48 1.64 1.73 1.82 2.00 : 0.25 0.17 0.43))
  (PROPERTY width  (RANGE 0.57 0.63 0.72 0.81 0.89 : 0.25 0.07 0.18))
  (PROPERTY depth  (RANGE 0.25 0.28 0.36 0.44 0.48 : 0.25 0.04 0.09))

  ) ; man
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C.  SAMPLE VIGNETTE

;  
; This file defines a vignette, which consists of a description and a
; configuration that specifies how to interpret it.
;  

; [DESCRIPTION]
;
; the name of this vignette

  vignette_name: viewer-in-east

; a brief description of this vignette

  vignette_description: this is a sample vignette

; the English description to render graphically.  Each line starts
; with a vertical bar |.

  | The scene contains an animal.

; [DEPICTION]
;
; whether to indicate clustering through colors that override the
; model colors

  show_clustering: false

; whether to display the region geometry meshes of each toy

  show_geometry: false

; whether to display the region topology meshes with the geometry;
; applies only for show_geometry=true

  show_topography: false

; whether to generate inferences

  generate_inferences: true

; whether to render everything in wireframe

  wireframe: false

; the pixel width and height of each sandbox window

  sandbox_width:  400
  sandbox_height: 400

; [SIMULATION]
;
; the number of simulations to run

  num_simulations: 1

; whether to disable nondeterministic behavior for dimensions

  force_determinism: false

; the random seed; use negative for automatic generation

  random_seed: 1
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; the maximum number of propagation attempts within a partition
; before backtracking to an earlier partition

  max_partition_iterations: 1000000

; the maximum number of backtracks to earlier partitions

  max_partition_backtracks: 10

; [DISTILLATION]
;
; whether to return the composite interpretation of the aggregate
; sets as ghosts

  return_composite: false

; whether to return all interpretations or just one; overrides all 
; distill_by_? settings

  return_all_otherwise_one: false

; whether position deviation contributes to distillation

  distill_by_position: false

; the minimum sigma difference between object positions to spawn a
; new interpretation; applies only for distill_by_position=true

  max_position_sigma: 1.0

; whether attitude deviation contributes to distillation

  distill_by_attitude: false

; the minimum sigma difference between object attitudes to spawn a 
; new interpretation; applies only for distill_by_attitude=true

  max_attitude_sigma: 1.5

; whether dimensions deviation contribute to distillation

  distill_by_dimensions: false

; the minimum sigma difference between object dimensions to spawn a
; new interpretation; applies only for distill_by_dimensions=true

  max_dimensions_sigma: 1.0

; [KNOWLEDGE BASE]
;
; the fully qualified filename of the knowledge base

  knowledge_base_filename:
  /home/dtappan/java/source/KnowledgeBase/knowledge-base.dkb
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