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Preface 
 

 

Knowledge, in its many and varied forms, plays an indispensable role in the lives of every creature that 
interacts with the world.  Its breadth and depth range from the massive amount of information humans 
rely on to the autonomous reactions of simple organisms.  As we demand that computers play an ever-
larger role in our world, they must somehow be embodied with an understanding of how this world is 
organized and how it functions.  Mapping the world (or typically, an appropriate subset) to a form 
amenable to computer processing is the primary goal of knowledge representation [45:15,157; 2:391]. 

This paper focuses mainly on the knowledge required to process natural language in written form.  
However, the theory and practice extend equally well to many other applications with similar demands; 
e.g., artificial intelligence, speech recognition, robotics, computer vision, planning, etc.  To this end, the 
framework is organized as follows: 

Part I:  Natural Language Knowledge 

What kinds of natural-language knowledge are there? 

Knowledge in natural language is used on multiple levels for a variety of purposes.  Textbooks 
often generalize a hierarchy of linguistic building blocks, each of which contributes to the more 
complex levels above it.  A similar structure is adopted here:  at the lowest level is morphology, 
followed by syntax, grammar, semantics, pragmatics, discourse, and finally, at the highest level, 
world knowledge.  While the field of knowledge representation generally focuses on the higher 
levels, it is argued here that all these levels have their own contributions of knowledge that 
need to be considered.   

Part II:  Knowledge Representation 

What kinds of knowledge representations are there? 

Knowledge can be used for many applications besides natural language processing.  This part 
presents a survey of knowledge representation in theory and practice with the intent of solving 
issues from Part I.  The devilish details of intersecting these parts will comprise a dissertation 
and the remainder of my career! 
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Natural Language Knowledge 
 

 

Part I 

Natural Language Knowledge 
 

 

Language is a complex puzzle of knowledge on various levels, as illustrated in Figure I.1.  The organization 
and most appropriate presentation of these levels is subject to debate, and undoubtedly, no single 
approach can be considered truly correct.  Part I of this paper presents a survey of language and linguistics 
based on the popular layered model [9:82; 35:599; 2:10].  Each section is built upon previous sections 
and addresses a set of relatively independent questions:   

Section 1:  Morphology 
Morphology

Semantics

Syntax
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How are words formed? 

Section 2:  Syntax 

What are the roles that words play? 

Section 3:  Grammar 

How are words connected to form sentences? 

Section 4:  Semantics 

What is the meaning of words and sentences without 
respect to any particular context? 

Section 5:  Pragmatics 

What is the meaning of words and sentences in a 
specific context? 

Figure I.1:  Linguistic Interrelations 

Section 6:  Discourse 

How are sentences organized to convey large-scale meaning? 

Section 7:  World knowledge 

How does an understanding of the world contribute to language? 
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Natural Language Knowledge 

Knowledge of Language 

The field of knowledge representation tends to focus on meaning·semantics, pragmatics, discourse, and 
world knowledge·more than it does on structure·morphology, syntax, and grammar [2:391].  This 
paper takes the view that all these levels play an essential role in language and must therefore be 
considered in the representation schemes to be discussed in Part II.  Indeed, this holistic view of 
representation is shared by other authors [39:73]: 

Producers and consumers of text communicate successfully by manipulating knowledge that includes 
representations of various meanings of language elements, knowledge about the speech situation, 
including the knowledge about the interlocutor(s), knowledge about analysis and generation of the 
various language elements, and knowledge about the world in general. 

Understanding language depends on various types of knowledge that overlap well with the structure of this 
paper; i.e., general knowledge about the fundamental components of language, the structure of coherent 
discourse, and the world, as well as specific knowledge about the current situation, the beliefs of the 
producers, and the beliefs of the consumers [45:716]. 

What is Language? 

Language, the common thread throughout this paper, is perhaps best introduced by the properties that 
describe its various forms. 

All communication systems, in particular the natural languages used by humans and the artificial languages 
used in knowledge representation, share three properties [27:20; 41:334]: 

• Mode of communication 

Communication is transmitted in some way; e.g., vocally, visually, chemically, etc. 

• Semanticity 

Communication uses meaningful signals. 

• Pragmatic function 

Communication serves some useful purpose. 

Some communication systems, including all natural and many artificial languages, exhibit some 
combination of more specific properties as well [27:20; 35:571; 57:131]: 

• Interchangeability 

Messages can be both sent and received.  Chemical systems of communication, as a counter-
example, may leave only a meaningful trace to be interpreted but not reciprocated. 

• Cultural transmission 

Language must be learned, even if genetic coding provides innate abilities. 
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Natural Language Knowledge 
 

• Arbitrariness 

Signals used for communication need not bear any resemblance to whatever they represent. 

• Discreteness or interdependence  

Larger components of language are built from smaller components, at least down to some 
minimal units. 

• Displacement 

Language can abstractly represent things that are not present or may not even exist. 

• Productivity, open-endedness, and creativity  

Language is infinite in is ability to express anything. 

The most powerful and widely used communication system, the natural languages of humans, builds even 
further upon these properties above [35:571; 57:131]: 

• Transmission through vocal-auditory channel 

Sounds produced by the vocal organs are received by the ear. 

• Convertibility to other media 

Language appears in written form, in visual form (e.g., sign language), and in tactile form (e.g., 
Braille).  

• Duality or double articulation 

Language is composed of two layers:  sounds or phonemes, which generally have no inherent 
meaning, contribute to the higher layer of morphemes, which do.  

• Continual change 

Language continually evolves without losing its essential properties. 

• Turn-taking 

Spoken language generally alternates between participants. 

Knowledge Representation for Natural Language Processing 3 
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Section 1 

Morphological Knowledge 
 

morphology:  ⁄the internal structure and forms of words [38] 
 

 

For most people, the smallest unit of written language is the word.  Although most words are actually built 
from lower-level components, the average language user typically is not aware of or does not consider 
anything beyond the visible surface form.  The lower levels, however, must be addressed at some point in 
language processing.  This subconscious understanding about the analysis and generation of word forms 
relies on morphological knowledge. 

What is a Word? 

Humans are undoubtedly deeply familiar with words in spoken form, and generally, in written form as well.  
Consequently, one would expect a straightforward definition of what a word is.  Indeed, a native speaker 
of English may simply claim anything with spaces around it.1  Such a simplistic definition works well for 
humans.  It also illustrates why computers are confounded by natural language:  humans excel at using it 
without really knowing or caring how it works.  

To illustrate how such a definition is inadequate, consider the following five tests for determining word 
boundaries [9:91].  Each deals with separate nuances and idiosyncrasies of words, and none covers all 
cases.  Furthermore, these tests depend on human intuition and judgment calls, something computers 
rarely emulate well.  

• Potential pause 

When a sentence is spoken slowly, pauses tend to indicate word boundaries.  However, 
speakers may also unintentionally emphasize syllable boundaries, as in Chito / is / going / to 
/ the / mar / ket.   

                                             
 1 Chinese speakers, on the other hand, would have to account for the lack of spaces in their language.  Interestingly, 

although roughly 95 percent of Chinese words are composed of just one or two characters [18], agreement 
between native speakers on what constitutes a word is below 70 percent [52; 11:24]. 
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Natural Language Knowledge:  Morphological Knowledge 

• Indivisibility 

When new words are added to a sentence, they usually appear at the word boundaries, as in 
Chito / is / not / going / directly / to / the / market.  However, this test fails to account for 
creative constructions like unstinkingbelievable or craptacular. 

• Minimal free forms 

A word can be viewed as anything that can meaningfully stand on its own; e.g., dog or large, 
but not the or after. 

• Phonetic boundaries 

In some languages, word boundaries are often indicated by stress or tone. 

• Semantic units 

A word can be viewed as a semantic unit that includes collocated elements.  For example, in 
the dog chewed up the bone, up would be considered part of chewed.   

Even if these five tests can identify most words in a language, they provide little or no information as to 
how the words are related or used.  Words are not simply defined by where they begin and end, but also 
by the roles they play.  Even marginally different roles may be viewed quite differently in later stages of 
language processing.  Nine categories of words are more or less common to all languages [35:1120]: 

• Orthographic word 

Words as defined above in terms of spaces. 

• Phonological word 

Words as they make sense in the flow of spoken language.  For example, a notion and 
an ocean sound practically identical, and only context determines the intended meaning. 

• Morphological word 

Words as they are legally constructed according to the spelling rules of a language. 

• Lexical word 

Words grouped with their related forms.  For example, am, is, and are are three different 
surface forms of the same verb to be. 

• Grammatical word 

Words that define linguistic structure as opposed to content.  For example, prepositions convey 
no meaning until they appear with nouns.  

• Onomastic word 

Words typically considered proper nouns, such a NMSU, Burger King, El Paso Diablos, etc.  
Although such words are used frequently, dictionaries rarely include them. 

• Lexicographical word 

Words with their related forms listed separately.  This category is the opposite of lexical words. 
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• Statistical word 

Words considered in analytic terms, such as the number of nouns and verbs within a corpus, as 
well as how many of each particular noun and verb occur. 

• Other word 

Words not falling into any of these categories.  Interestingly, the bulk of these words describe 
other categories of words; e.g., buzzword, abbreviation, acronym, antonym. 

How Languages Build Words 

Most words are built from lower-level components.  Their building blocks, known as morphemes, serve as 
the minimal units of meaning in any language [27:134].  While even lower-level components·phonemes, 
based on sounds·can be found, they do not systematically contribute to word structure [27:88].2   

Some words, typically small, monosyllabic ones like dog and cat, are themselves morphemes because they 
have no subcomponents.  Such words, known as free morphemes, are immediately usable with no 
manipulation required.  The remaining words, known as bound morphemes, are exclusively 
subcomponents and do not become usable until they are appropriately combined with other morphemes; 
e.g., pre–, –ed, –s. 

Combining morphemes 

The morphological rules of a language specify how morphemes can be legally joined.  For example, 
English freely permits the morpheme anti– to be added as a prefix to any noun, but it prohibits it as a 
suffix.  Languages can be categorized as either analytic or synthetic according to their rules [27:64]. 

Analytic languages (also known as isolating or root languages) construct their meanings from free 
morphemes only.  The morphological rules permit no affixes (i.e., prefixes and suffixes) and support very 
little or no manipulation of bound morphemes.  Chinese is one such language:  sentences are built by 
combining symbols, not by augmenting them (e.g., with new strokes) to vary their meaning or role 
[9:202]. 

Synthetic languages construct their meanings from both free and bound morphemes.  The morphological 
rules vary considerably [27:166]: 

• Agglutinating language 

Morphemes are combined to form larger meaning units in a way similar to how words are 
combined in English.  The meaning of a single word is often based on the contents of its 
component slots.  For example, verbs in Swahili are formed by filling the first slot with a bound 
morpheme for the subject pronoun, the second slot with a bound morpheme for the tense, and 

                                             
 2 For example, the typical English vowel can be pronounced on average 20.7 different ways with little predictability 

[14].  For the purposes of this paper at least, it can be concluded that sounds are arbitrary and play no role in 
processing written language. 
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Natural Language Knowledge:  Morphological Knowledge 

the final slot with a free morpheme for the verb stem.  An English gloss of u–li–soma3 appears 
as you–PAST–write. 

The bound morphemes filling slots ordinarily have a single, unambiguous meaning, which 
makes dissecting the structure of a word relatively straightforward.  In fact, the number of verb 
forms can be computed as the number of slots times the number of bound morphemes 
available to fill each.  

• Inflectional or fusional language 

Morphemes are combined roughly in the same way as in agglutinating languages.  The main 
difference lies in the nature of the bound morphemes, which do not have unambiguous 
meanings or clear boundaries.  For example, in Russian, as in Swahili, verbs indicate tense and 
person with bound-morpheme affixes.  However, the slots are not fixed, and the bound 
morphemes generally cannot be separated.  An English gloss of �ita–eš' appears as read–
PRESENTyou. 

• Polysynthetic or incorporating language 

Morphemes are combined in radical ways to formulate entire sentences from single words.  
This process can be considered an extreme case of agglutination.  Inuit (Eskimo) languages fall 
into this category. 

How English Builds Words 

English is an isolating, agglutinating, and inflectional language [9:295].  However, even with such varied 
morphological rules, it is comparatively weak in morphology!  For example, English has at most five verb 
forms:  sing, sings, sang, sung, singing.  Italian and Spanish have around 50, whereas Modern Greek has 
roughly 350.  Turkish has a whopping two million [41:127]! 

Intra-word Constructions 

Although English supports isolating and agglutinating morphological rules, the majority of words is formed 
according to inflectional rules by adding prefixes and suffixes [27:143].  The mechanism behind adding 
affixes depends on the type of construction, which may be either inflectional or derivational. 

Inflectional constructions 

Inflectional morphemes are also called function morphemes because they indicate the grammatical roles a 
word may play [27:136].  They exhibit the following properties in English [27:136]: 

• They do not change the meaning of words or their grammatical role; e.g., fast, fast–er, and 
fast–est are just different degrees of the same property, and all are adjectives. 

• They are required according to the rules of syntax; e.g., past-tense regular verbs take –ed. 

• They produce many new words; e.g., adding –s nearly doubles the number of nouns. 
                                             
 3 Hyphens are used here to indicate the morpheme boundaries.  They are not present in normal writing. 
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• They appear after any derivational morphemes (see below); e.g., immun–iz–ation–s, where the 
plural morpheme –s appears last. 

• They are suffixes only. 

The complete set of English inflectional morphemes shown in Table 1.1 has remained stable since early 
modern English [27:135].   

Morpheme Meaning 
 –s third-person singular 
 –ed past tense 
 –ing progressive 
 –en past participle 
 –s plural 
 –Ês possessive 
 –er comparative 
 –est superlative 

Table 1.1:  English inflectional morphemes 

Derivational or lexical constructions 

Derivational morphemes are also called content morphemes because they indicate the semantic roles a 
word may play [27:136].  They exhibit the following properties in English [27:135]: 

• They change the meaning of words or their grammatical role; e.g., –ly generally transforms an 
adjective into an adverb. 

• They are not required according to the rules of syntax; e.g., un–tie is legal with or without the 
prefix. 

• They do not produce many new words because valid combinations are restrictive; e.g., –hood 
can be a suffix of only a small class of words like brother and neighbor. 

• They appear before inflectional suffixes; e.g., un–dress–ing, where un– is a bound derivational 
morpheme, dress is a free morpheme, and –ing is a bound inflectional morpheme. 

• They may be prefixes or suffixes. 

Knowledge Representation for Natural Language Processing 9 



Natural Language Knowledge:  Morphological Knowledge 

An abridged set of derivational morphemes for the 386+ prefixes and 322+ suffixes in English is shown in 
Table 1.2 [10:198; 45:703; 23:242; [35:670].   

Morpheme Class Examples 
abstract-noun makers –age, –dom, –ery, –ful, –hood, –ing, –ism, –ocracy, –ship 
concrete-noun makers –eer, –er, –ess, –ette, –let, –ling, –ster 
adjective-noun makers –ese, –(i)an, –ist, –ite 
adverb makers –ly, –ward(s), –wise 
verb makers –ate, –en, –ify, –ize 
verb-to-noun makers –age, –al, –ant, –ation, –ee, –er, –ing, –ment, –or 
adjective-to-noun makers  –ity, –ness 
noun-to-adjective makers  –ed, –esque, –ful, –ic, –(i)al, –ish, –less, –ly, –ous, –y 
verb-to-adjective makers –able, –ive 

Table 1.2:  Sample English derivational morphemes 

Ambiguity  

The great flexibility of English morphological rules provides a powerful mechanism for word building, but it 
also introduces problems.  Morphemes can easily be combined to form constructions with uncertain or 
ambiguous structure.  For example, Figures 1.1 and 1.2 show two conflicting interpretations of the 
adjective un–lock–able [27:141].  The first structure represents can be unlocked, whereas the second 
represents cannot be locked.  The former is a left-associative structure because it combines the left-most 
morphemes at the lowest level; the latter combines the right-most morphemes into a right-associative 
structure.  The correct interpretation depends on context, which will be discussed later in the sections on 
semantics and pragmatics. 

un lock able

ADJ

VERB

 

 

un lock able

ADJ

ADJ

 

Figure 1.1:  Left-associative  Figure 1.2:  Right-associative 

Extra-word Constructions 

Just as morphemes can combine within a word to form a larger word, words can combine with other 
words to form larger units of tightly coupled meaning [9:91; 35:1120].  Indeed, the mechanisms and even 
the problems are quite similar.  The remainder of this section considers several of the most common ways 
to combine words in English.  
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Multiword expressions 

Although English is morphologically poor in terms of bound morphemes, it excels at forming new words 
by combining existing ones.  This process, known as compounding, manifests itself in many ways that are 
beyond the scope of this paper.  In general, however, they fall into three categories [35:244]: 

• Solid compounds  

Words written together; e.g., teacup, bookkeeper, steamship.  English generally does not 
build solid compounds with more than two or three words.  Its sibling, German, on the other 
hand, frequently exceeds these limits, as in Lebensversicherungsgesellschaftsangestellter (life-
insurance company employee) [45:704].4 

• Hyphenated compounds 

Words linked with hyphens; e.g., bridge-building, steel-lined, mega-lizard. 

• Open compounds  

Words written separately; e.g., rocket launcher, operating system device driver. 

The rules for such combinations are inconsistent and often lead to more than one acceptable spelling; e.g., 
businessman, business-man, and business man [35:245].  Sometimes word stress can be used to indicate 
a distinction in meaning; e.g., black bóard versus bláckboard [27:144; 41:133]. 

The tree structures of compound nouns and morphemes are very similar.  Not surprisingly, they share 
similar forms of morphological ambiguity, as illustrated by Figures 1.3 and 1.4.5  The first structure 
represents core of a fusion reactor, whereas the second represents reactor core made of steel. 

fusion reactor core  

 

steel reactor core  

Figure 1.3:  Left-associative  Figure 1.4:  Right-associative 

Even worse morphological ambiguity results from a combination of structures, as illustrated in Figure 1.5.5  
The intended reading is contingency plan in case of a core meltdown in the fusion reactor. 

fusion reactor core meltdown contingency plan  

Figure 1.5:  Hybrid-associative 

                                             
 4 Although typically more restrained in noun compounding, German is fully capable of producing a behemoth like 

Donaudampfschiffahrtsgesellschaftskapitänswitwenrentenauszahlungstag (more or less:  payday of retirement 
benefits to widows of captains of a steamship company providing trips on the Danube river) [59]! 

 5 Figures 1.3, 1.4, and 1.5 are based on the examples in [39:22]. 
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Finally, other common forms of multiword expressions may not lend themselves well to structural analysis 
[11:21]: 

• Foreign loan words 

In expressions like ad hoc, de facto, and quid pro quo, perhaps the words could be considered 
individually in the source language, but in English, they should be taken as single units of 
meaning.  The English pronoun no one also falls into this class. 

• Chained prepositions 

Expressions like out from under and in front of should be considered single units of meaning, 
even though they contain multiple prepositions [62].  Some even have single-word equivalents 
that are favored; e.g., despite instead of in spite of. 

• Miscellaneous 

Variations on dates, times, and numerical phrases are common.  Identifying and processing 
them is usually dependent on the domain; e.g., military versus civilian dates and times. 

Free-word combinations 

Many multiword constructions are simply the result of logically combining words to form a new meaning; 
e.g., the end of the road [11:508].  The formula end of ____ can be filled by anything that reasonably 
has an end.  Such combinations can be described by general rules and built according to the syntactic and 
semantic constraints on the headword [8].  It is not appropriate to treat them as single units of meaning 
because the overall meaning can be derived from their parts. 

Idioms 

For whatever reasons, seemingly meaningless constructions like to kick the bucket are sometimes 
accepted into general language use [11:508].  After the historical background is lost, a language is left with 
mysterious expressions that bear little or no semantic resemblance to whatever they were or are intended 
to mean.  These expressions cannot be described by general rules and must simply be treated as single 
units of meaning.  Morphological processing is generally limited, as they can rarely be manipulated beyond 
basic grammatical requirements (e.g., subject-verb agreement or tense). 

Collocations 

Words that habitually and systematically appear within the context of other words are usually considered 
collocates [2:310; 35:232].  They fall somewhere between free-word combinations and idioms, in that 
they are constructed according to general rules but are also restricted to certain word orders [11:508].  For 
example, the expression table of contents can also be a table of figures, table of updated references, 
etc.  On the other hand, the expression salt and pepper appears awkward when written pepper and salt.  
While it is not strictly necessary to treat such expressions as single units of meaning, often some preferred 
ordering should be imposed. 
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Section 2 

Syntactic Knowledge 
 

syntax: the arrangement of and relationships among words, phrases, and 
clauses forming sentences; sentence structure [38] 

 

The previous section discussed different views on what words are and how they can be constructed.  
However, it generally considered them only in terms of their form and content, not their function.  This 
section extends the definition of words into the domain of what they do in language.  Many textbooks treat 
syntax and grammar as a combined topic, but enough distinctions exist that separate sections are 
warranted in this paper.   

What is Syntax? 

Given any random collection of words, the average person should be able to separate them according to 
some commonsense „understanding‰ of their grammatical function; e.g., these words are things, these 
words describe things, these words do stuff to things, these words connect things, etc.  Even such 
loosely defined groups are the foundation of 
syntax:  each group does something different in 
language.  Formal groups, known as grammatical 
categories or parts of speech, contain widely 
varying objects with possibly nothing at all in 
common but function.  Legally combining 
different functions is the basis for building larger 
linguistic constructions, which will be discussed in 
the next section on grammar. 

„I miss the good old
days when all we had

to worry about was
nouns and verbs.‰

The Nuts and Bolts of Language 

Pinker [41:106] writes:  „A part of speech is not a 
kind of meaning; it is a kind of token that obeys 
certain formal rules, like a chess piece or a poker 
chip.‰  Only the most important tokens·nouns, 

 [9:99]
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pronouns, adjectives, verbs, adverbs, prepositions, and phrase words·are considered here.  The 
remaining tokens·determiners, conjunctions, and interjections·fit more appropriately into other 
discussions within this paper. 

Nouns 

The traditional grammar-school definition of a noun is a person, place, or thing.  While it may adequately 
describe the physical world, it ignores much of the conceptual world; e.g., abstract qualities like love, 
actions like a thud, etc.  In fact, English has six distinct classes of nouns [10:208; 53:19]: 

• Proper nouns 

Instances of specific named people, places, objects, times, occasions, events, and so on.  Such 
nouns are normally capitalized, can stand alone as clause elements (e.g., Arizona is hot), have 
no plural (e.g., *Arizonas), and usually appear without determiners (e.g., *the Arizona6). 

• Common nouns 

Basically, any noun that is not proper.  Such nouns are rarely capitalized, cannot stand alone 
as clause elements (e.g., *dog is hungry), typically have a plural (e.g., dogs), and usually appear 
with a determiner (e.g., the dog). 

• Count nouns 

Individual, countable objects.  Such nouns allow a plural (e.g., books) and cannot stand alone in 
the singular (e.g., *book is long) without a determiner (e.g., a/the book). 

• Noncount or mass nouns 

Uncountable objects of mass or notion.  Such nouns normally do not allow a plural (e.g., 
*butters), can stand alone in the singular (e.g., hockey is fun), and may appear with certain 
indefinite determiners (e.g., some advice) or a definite determiner (e.g., the music). 

• Collective nouns 

A countable variation of certain noncount nouns to group them as a collection of individuals or 
mass; e.g., a blade of grass, a flock of sheep, a loaf of bread. 

• Concrete nouns 

Objects that can be observed and measured, such as dog, book, and car. 

• Abstract nouns 

Objects that refer to an unobservable notion, such as idea, thought, and love.  

                                             
 6 Example exceptions:  the Arizona I remember was not so hot and the Arizona, referring to the battleship. 
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Figure 2.1 illustrates how these classes are related.  Many nouns can belong to more than one class, and 
often the distinction is subtle [10:209]. 

Noun

ProperCommon

Count Noncount

Concrete Abstract Concrete Abstract  

Figure 2.1:  English noun classes 

Noun Gender 

Many languages assign an arbitrary grammatical gender to inanimate objects; e.g., a knife may be 
masculine, a fork feminine, and a spoon neuter.  Animate objects have gender as well, but it tends to 
correspond with their natural gender; e.g., a man is masculine, and a woman is feminine.  Gender in 
English is rudimentary and depends on the type of noun [10:209]: 

• Inanimate nouns 

Nouns referring to objects that cannot be alive are usually ÂitÊ; e.g., car, table, and rock. 

• Nonpersonal animate nouns 

Nouns referring to living objects that are not people are usually ÂitÊ; e.g., tree, cockroach, wild 
animals.  A common exception is livestock, as shown in Table 4.2 on page 43. 

• Personal animate nouns 

Nouns referring to living or dead people usually correspond to their real-world gender; e.g., 
brother, sister, host, hostess.  Pet animals are often included in this class; e.g., Spot, Tiger, 
Mr. Lizard. 

Pronouns 

Nouns, as well as other larger elements, may be repeated within the same text.  This redundancy adds to 
its length and decreases readability.  Pronouns stand in for the repeated elements, as the following 
comparison illustrates: 

My aunt Sarah saw the nice, old man wearing a green hat and asked the nice, old man 
wearing a green hat for the time.  The nice, old man wearing a green hat told my aunt 
Sarah noon.  My aunt Sarah thanked the nice, old man wearing a green hat. 
 
My aunt Sarah saw the nice, old man wearing a green hat and asked him for the time.  He 
told her noon.  She thanked him. 
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Types of substitutions 

English supports various forms of pronoun substitution [10:210]: 

• Replacing a noun without its modifiers 

The pronoun refers to the noun only, not to any of its modifiers; e.g., John has a new car, 
and Mary has an old one.  

• Replacing a noun with some of its modifiers 

The pronoun refers to the noun and some of its modifiers; e.g., John has a new, fast car, and 
Mary has an old one, means hers is old, but possibly also fast. 

• Replacing a noun with all of its modifiers 

The pronoun refers to the entire noun phrase; e.g., John has a new, fast car, and Mary has 
one, too, means hers is also new and fast. 

• Referring to a general concept 

The pronoun refers to one or more members of some class; e.g., the dog saw someone on 
the road, means an unspecified type of human, such as a man, woman, or child. 

• Referring to something unspecified 

The pronoun refers to something known only in the context; e.g., The man pointed to the 
sky and screamed, „Look at that!‰  Here the pronoun refers to whatever he pointed to.  
Further context is necessary to clarify the reference; e.g., „Its engine is on fire!‰ would limit 
the object to being something that belongs in the air and has an engine, say an airplane.  This 
form of pronoun usage depends heavily on world knowledge, which will be discussed later. 

Types of pronouns 

Since pronouns play varied roles, many types exist [10:210]:7 

• Personal pronoun 

Refers to one or more specified objects; i.e., I/me, you, he/him, she/her, it, we/us, 
they/them. 

• Reflexive pronoun 

Refers backward to one or more objects; i.e., myself, yourself, himself, herself, itself, 
ourselves, themselves.  

• Possessive pronoun 

Refers to one or more objects in possession; i.e., my/mine, your/yours, his, her/hers, its, 
our/ours, their/theirs. 

• Reciprocal pronoun 

Refers to a bi-directional relationship between objects; e.g., each other, one another. 
                                             
 7 The discussion on anaphora (see page 63) considers pronoun usage in more detail. 
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• Interrogative pronoun 

Refers to objects in question; i.e., who, whom, whose, which, what. 

• Relative pronoun 

Refers to objects being linked between different parts of a sentence; e.g., the dog that barked 
was old combines the dog barked and the dog was old into one sentence.  This process will 
be covered next in the section on grammar. 

• Demonstrative pronoun 

Refers to a contrast between near and far objects; e.g., this one is broken; take that one. 

• Indefinite pronoun 

Refers to a notion of quantity; e.g., somebody, anybody, everybody, nobody.  Also found in 
this class are items like all, both, neither, none, each, much, many, more, most, less, etc. 

Adjectives 

The physical and conceptual objects represented by nouns can have almost any properties (e.g., size, 
color, age, etc.).  These distinctions are reflected in nouns by several types of adjectives that modify them 
[10:211]: 

• Attributive adjective 

Adjectives that appear before the noun they modify; e.g., the red car. 

• Predicative adjective  

Adjectives that appear after the noun they modify and certain to be verbs; e.g., the car is red. 

• Adverbial adjective  

Adjectives that follow qualifying adverbs; e.g., the very old car. 

• Comparative adjective  

Adjectives that compare the noun they modify with other related nouns; e.g., the older car. 

How adjectives change the meanings of nouns will be discussed later in the section on semantics. 

Verbs 

Verbs describe what the physical and conceptual objects in the world can do and what can be done to 
them or with them, etc. [35:1083].  Parts of this discussion have been deferred until the next section on 
grammar, where they can be considered for their role in sentence structures.  
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Verb classes 

Verbs indicate actions, describe states and conditions, and support other verbs [35:1083].  English has 
three types [10:212]: 

• Lexical or full verbs 

This open class contains main verbs for every conceivable action; e.g., run, jump, fly, eat. 

• Modal verbs 

This closed class contains auxiliary verbs that impart a degree of commitment onto the main 
verbs they modify.  Only nine verbs are true modals:  can, could, may, might, will, would, 
shall, should, and must; four others have similar enough function to be treated as modal as 
well:  dare, need, ought to, and used to. 

• Primary verbs 

Three verbs belong to both the lexical and modal classes:  be, have, and do.  Their function 
and interpretation depends on their usage; e.g., John has a car is lexical (in sense of 
possession), whereas John has to buy a car is modal (in the sense of necessity). 

Verb forms 

As illustrated in Table 1.1, English is morphologically very poor.  In fact, verbs have only four distinct 
morphological forms, each of which is used in multiple ways to generate a wide range of English verb 
constructions [10:204; 2:28]: 

• Base or infinitive form 

The dictionary form with no endings. 

• Simple-present form 

The base form, for I/you/we/they subjects, or the base form with an –(e)s ending, for 
he/she/it subjects.  

• Present-participle form 

The base form with an –ing ending, indicating a progressive action.  Interestingly, the so-called 
present participle is not restricted to present-tense constructions; e.g., the wind is/was 
blowing. 

• Past-participle form 

The base form with an –ed ending (occasionally –t, for dialectal reasons, or –en, for irregular 
verbs), indicating one of the following: 

– to express a past aspect; e.g., the man kicked the cat 

– to express a passive construction; e.g.,  the cat was kicked by the man 

– to support certain clauses; e.g., kicked across the room, the cat became angry 

– to function as an adjective; e.g., the injured cat 
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Interestingly, the so-called past participle is not restricted to past-tense constructions; e.g., the 
flag will be raised. 

A second overlapping distinction between verb forms is based on how verbs are grammatically associated 
with their subjects [10:212]: 

• Finite form 

A verb limited by grammatical agreement to a particular person, number, tense, or mood; e.g., 
he jumps, we jumped, they were8 jumping. 

• Nonfinite form 

A verb not limited in the way a finite form is; e.g., we have jumped, they were jumping, he 
might jump, she wants to jump. 

Verb tenses 

English verbs can convey at least 16 distinct variations9 on when an event occurs relative to other events, 
as well as whether the event completes.  The details and nuances of these constructions are beyond the 
scope of this paper.  In place of such a discussion, Figure 2.2 provides a graphical overview [2:28]. 

form

past

present

simple

progressive

simple

progressive

simple

progressive

simple
progressive

simple

progressive

simple

progressive

simple

progressive

simple
progressive

perfect

perfect

perfect

perfect

future

future

The dog barked

The dog was barking

The dog had barked
The dog had been barking

The dog would bark
The dog would be barking

The dog would have barked
The dog would have been barking

The dog barks
The dog is barking

The dog has barked
The dog has been barking

The dog will bark
The dog will be barking

The dog will have barked
The dog will have been barking  

Figure 2.2:  English primary verb tenses 

                                             
 8 Note that the finite form is on the auxiliary verb when one is present, not on the main verb. 
 9 A main verb may be preceded by up to four auxiliary verbs to generate more constructions than are considered 

here, but such usage is exceedingly rare; e.g., the story must have been being written during the storm. 
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Adverbs 

Similar to the way adjectives modify nouns, adverbs modify adjectives and verbs.  A distinction is made 
between adverbs that can modify either part of speech (e.g., a somehow peculiar fellow and to succeed 
somehow) and those that are specific to just one (e.g., very quick but not *to love very; to answer 
promptly but not *a promptly correct answer) [35:15]. 

Adverbs modify language in a wide range of subtle ways, as exemplified in Table 2.1 [2:35; 10:211]. 

Adverb Type Examples 
Degree very, rather, quite, too 
Location here, there, everywhere, nowhere 
Direction upward, downward, clockwise 
Manner slowly, quickly, fast, poorly 
Time yesterday, today, now, tomorrow 
Frequency always, sometimes, rarely, never 
Miscellaneous just, soon, somehow, whereby 

Table 2.1:  Sample adverb types 

Prepositions 

If nouns, pronouns, adjectives, verbs, and adverbs are the building blocks of sentences, then prepositions 
are the glue that holds them together.  The role and meaning of prepositions vary between simple and 
quite complex [35:801; 10:213]: 

• Simple prepositions 

Single words usually specifying one relation; e.g., at, about, before, after, above, below. 

• Compound prepositions 

Two prepositions usually specifying one relation; e.g., because of, ahead of, due to. 

• Complex prepositions 

Multiple prepositions specifying a wide range of sequential relations; e.g., in accordance with, 
on behalf of, as far as, out from underneath, up to but not including. 

• Phrasal prepositions 

Phrases covering aspects from Table 2.1; e.g., before breakfast, every hour on the hour, for 
two hours, roughly six feet, in such a way.  This class overlaps considerably with adverbial 
phrases discussed in the next section on grammar. 

A common usage of verbs, adverbs, and prepositions together gives English one of its most distinctive 
features and causes possibly some of the greatest difficulties for nonnative speakers [10:212; 35:772].  
These structures, known as phrasal verbs, blur the line between literal, figurative, and idiomatic 
interpretations of their components.  For example, verbs with clear movement like to go, to put, and to 
take often use adverbial particles like up, down, and off to indicate or emphasize motion:  to take 
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something off a table, to put something up on a shelf or down on a chair, and to go off to the store.  
In context with other verbs, however, they take on entirely different meanings; e.g., to act up, to slow 
down, and to mouth off.  Even a superficial survey of this topic is well beyond the scope of this paper.   

Phrase Words 

Phrases in their wide range of forms comprise a significant portion of English text.  Since they generally 
function as regular syntactic units do, they can be substituted into almost any valid context where 
conventional parts of speech would fit [35:776]: 

• Attributive phrases 

Predicate phrases used attributively; e.g., the tool was state of the art becomes the state-of-
the-art tool.  So many variations of theses phrases are common in English that they are 
discussed separately below.  

• Nouns followed by prepositions and other nouns 

Phrases modeled after certain French compounds; e.g., tug-of-war, commander-in-chief. 

• Phrases turned into lexical bases by addition of suffixes 

Phrases treated roughly as nouns and modified according to normal morphological rules; e.g., 
never-say-die-ism, state-of-the-artistry. 

• Stunt formations 

Phrases designed to be catchy and related to the topic; e.g., whodunit for a murder mystery. 

• Vague words 

Phrases used in place of more appropriate words; e.g., thingamajig, whatchamacallit. 

• Phrasal verbs with noun derivatives 

Phrases based on phrasal verbs, as discussed in the previous section. 

Attributive phrases 

As mentioned above, nearly any phrasal expression can modify nouns in English [35:776]: 

• Noun-based phrase 

six-four-three double play, ÂFreud and your motherÊ theory, group of friends get-together 

• Verb-based phrase 

Infinitive:  ready-to-wear clothes, time-to-kill rage 

Participial:  ÂContract with AmericaÊ pledge, farmer-turned-astronaut story 

Modal:  must-win game, can-do attitude, will-do-my-best attempt 

• Adjective-based phrase 

Âgood news, bad newsÊ joke, larger-than-life picture, holier-than-thou attitude  
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• Number-based phrase 

thirty-pound weight, 2001 Jeep Cherokee, 24/7 Internet access 

• Preposition-based phrase 

Preposition first:  behind-the-scenes information, over-the-counter medication 

Preposition midway:  signal-to-noise ratio, rags-to-riches story, made-for-TV movie 

• Coordination-based phrase 

give-and-take politics, hit-and-run driver, life-or-death decision 

• Wh-words-based phrase 

you-know-who, what-the-hell-happened-here reaction, how-to book 

• Negation-based phrase 

no-manÊs land, no-win situation, no-can-do attitude  
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Section 3 

Grammatical Knowledge 
 

grammar: a body of rules imposed on a given language for speaking and 
writing it⁄ [38] 

 

The function of key syntactic units was discussed in the previous section, but only in terms of isolated 
words or small constructions.  For these units to form larger structures·clauses, phrases, and sentences·
another, more advanced level of rules is needed.  This section discusses a wide cross-section of aspects 
pertaining to grammar, which embodies such rules. 

What is Grammar? 

In many respects, defining what grammar is proves as difficult as defining the grammar of a language itself.  
The broad scope of what grammar allows, disallows, supports, denotes, emphasizes, and so on defies any 
simple description.  The extent of this complexity is expressed well in the opening paragraph to a section 
on grammar in [9:88]: 

It is difficult to capture the central role played by grammar in the structure of language, other than by 
using a metaphor such as ÂframeworkÊ or ÂskeletonÊ.  But no physical metaphor can express satisfactorily 
the multifarious kinds of formal patterning and abstract relationship that are brought to light in a 
grammatical analysis. 

Pinker [41:334] describes grammar as a „discrete combinatorial system‰ with the following properties: 

• Infinite 

There is no limit to the number of complex words or sentences in a language. 

• Digital 

Infinity is achieved by rearranging discrete elements in particular orders and combinations, not 
by varying some signal along a continuum like the mercury in a thermometer. 

• Compositional 

Each of the infinite combinations has a different meaning predicable from the meanings of its 
parts and the rules and principles arranging them. 
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Approaches to Grammar 

In simplest terms, a grammar is a compilation of rules and guidelines for using language.  The nature and 
presentation of the content vary according to the purpose and intended audience [9:88,97,413; [27:12; 
41:371]: 

• Prescriptive grammar  

Focuses on controversial constructions and specifies rules governing socially correct usage.  
Rules of this type focus on linguistic performance, or how language should be used. 

• Descriptive grammar 

Describes grammatical constructions in a language without making evaluative judgments about 
their standing in society.  Rules of this type focus on linguistic competence, or how language 
is actually used. 

• Pedagogical grammar  

Supports teaching a foreign language or developing an awareness of a native language. 

• Reference grammar  

Serves as a comprehensive reference book of grammatical facts and details.  Quirk, et al. [43], 
with its 1,779 detailed pages, is the definitive source for English, and probably the largest 
resource ever written for any language. 

• Theoretical grammar  

Investigates the commonalities and universal constructs of all human languages. 

• Traditional grammar  

Summarizes attitudes, beliefs, and methods for grammatical study before formal linguistic 
methodology was established. 

Different linguistic schools of thought impose various frameworks on analyzing and describing grammar.  
The following is a cross-section of popular approaches from the 20th century [9:412; 35:433]: 

• Functional sentence perspective 

Analyzes utterances in terms of their information content. 

• Dependency grammar 

Explains formal grammatical relationships by establishing dependencies (or valencies) between 
elements.  See Structural requirements below for more details. 

• Tagmemics 

Relates linguistic forms and functions. 

• Stratificational grammar 

Defines language as a system of related layers, or strata, of structure.  A similar approach is 
taken in this paper to describe natural-language knowledge. 
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• Systemic linguistics 

Treats grammar as a complex network of interrelated systems, especially for semantic and 
pragmatic analysis. 

• Generative grammar 

Specifies precise, formal requirements that any structure must satisfy to be considered 
grammatically correct. 

The generative-grammar approach, developed by Chomsky starting in the late 1950Ês, spawned numerous 
theoretical offspring [9:413; 2:131; 54:118; 45:686; 51:293]: 

• Case grammar 

Examines the semantic roles (or cases) played by elements of sentence structure. 

• Relational grammar 

Views grammatical relations (e.g., subject, object) as more important than the formal categories 
(e.g., noun phrases, verb phrase) of generative theory. 

• X-bar theory 

Considers an alternative account of phrase structure within a generative grammar. 

• Montague grammar 

Focuses on logical languages through a close correspondence between syntax and semantics. 

• Generalized phrase-structure grammar 

Ignores the role of transformations in a generative grammar by providing an alternative 
account of phrase structures for grammatical analysis. 

• Functional grammar 

Seeks alternatives to an abstract, formal approach to grammar, particularly a pragmatic view of 
language as social interaction. 

• Realistic grammar 

Claims grammatical analyses should be grounded in the functionality of the human mind. 

• Network grammar 

Tries to simulate how people understand language for applications in artificial intelligence. 

• Government-and-binding theory 

Investigates the conditions and structural contexts that formally relate elements of a sentence. 
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Grammatical Structures 

Language is compositional, which means its larger structures are built from smaller structures, and these 
structures, in turn, are built from even smaller structures, and so on, down to atomic morphemes [27:34; 
9:95; 10:217; 56:419].  Such is the organization of this paper as well:  each level of knowledge·and 
correspondingly, each section·contributes to subsequent levels.  A graphical representation of this 
hierarchical structure is shown in Figure 3.1. 

Our rap music startled the wild rhinos, and they thundered toward our camp.
Just moments before, they had been grazing peacefully under the morning sun.

Our rap music startled the wild rhinos, and they thundered toward our camp.

Our rap music startled the wild rhinos

the wild rhinos

rhino-s

Sentence Level

Discourse Level

Clause Level

Phrase Level

Word Level

 

Figure 3.1:  Hierarchical representation of grammatical structures 

Structural requirements 

Any hierarchy is structured according to certain organizational rules.  Grammatical structures, in particular, 
adhere to three main principles that dictate how they can be built and joined [23:303; 53:106]: 

• Valency 

A system of constraints adapted from chemistry in which interlocking elements must join or 
cancel each other for an expression to be syntactically and semantically complete.  This system 
is similar in principle to subcategorization frames and selectional restrictions [11:567; 23:317]; 
e.g., the verb give has two primary frames [32:45,138; 45:670]: 

 SUBJECT   + give +  DIRECT OBJECT   + to +  INDIRECT OBJECT   

 SUBJECT   + give +  INDIRECT OBJECT   +  DIRECT OBJECT   

• Agreement 

Grammar may be figuratively treated as a puzzle, where pieces can be joined only if they satisfy 
the constraints; e.g., subject-verb agreement in person and number. 

• Word order 

English is highly dependent on word order to indicate grammatical interrelations because it has 
so few morphological markers; e.g., the dog bit the man is quite different from the man bit 
the dog.  
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Valency and agreement impose constraints on at least the following grammatical properties [9:93; 
10:224; 23:304,307]: 

• Aspect 

Conveys time-related details like duration, completeness, habitualness, continuousness, 
progressiveness, etc.; e.g., John drove to the work versus John is driving to work. 

• Case 

Conveys syntactic cues like subject, direct and indirect object, possession, instrument, etc.; e.g., 
JohnSUBJECT gave MaryINDIRECT-OBJECT [the book]DIRECT-OBJECT.  English is considered by most to 
have only two cases:  subject and object (e.g., he and him, respectively).  Finnish, arguably the 
most extreme example, has 15 [9:92]! 

• Gender 

Conveys either the natural gender for most living things or often an arbitrary gender for 
nonliving things.  See Noun Gender on page 15 for more information. 

• Mood 

Conveys factuality, possibility, uncertainty, likelihood, etc.; e.g., If today were Saturday, we 
would not be working. 

• Number 

Conveys the quantity of a noun or nouns. 

• Person 

Conveys the speaker, addressee, third party, etc.; e.g., I am running for President, as spoken 
by the candidate.10 

• Tense 

Conveys the time when something happened or when it was reported. 

• Voice 

Conveys what acted on what; e.g., John stole the car versus the car was stolen by John 
versus the car was stolen.  

                                             
10 The notable exception is Bob Dole, who consistently referred to himself in the third person during his 1996 

campaign; e.g., Bob Dole wants [read:  I want] your vote.  A computer may conclude that the speaker and Bob 
Dole are not the same person. 
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Phrases 

As Figure 3.1 illustrates, the hierarchical nature of language builds its larger structures from smaller ones.  
Phrases constitute the major building blocks in this process by systematically combining isolated words into 
semi-meaningful fragments.  The rules behind constructing phrases are based on four properties [27:193]: 

• Generativity 

An infinite set of grammatical constructions can be produced from a finite set of rules. 

• Infinite recursion 

Production rules are composed of rules circularly composed of themselves and/or other rules. 

• Hierarchical structure 

An independent, lower level of structure is built for each recursive call, and this structure 
contributes to the structure above it. 

• Ambiguity 

Inherent ambiguity in language can be reflected in the grammar. 

Phrase structures 

Phrases structures are the result of applying phrase rules to individual words to build the major 
components of a sentence [10:222,227]: 

• Noun phrase 

In grossly simplistic terms, a string of words headed by a noun.  The variations on this theme 
are so great that noun phrases are discussed separately below. 

• Pronoun phrase 

A small set of constructions headed by a pronoun; e.g., nearly everyone, she herself. 

• Adjective phrase 

Usually an intensifier followed by one or more adjectives; e.g., very big, quite big and fast. 

• Verb phrase 

Up to four auxiliary verbs followed by a main verb; e.g., will have been barking.  See Verbs 
on page 17 for details. 

• Adverb phrase 

Usually an intensifier followed by one or more adverbs; e.g., quite often, very quickly indeed. 

• Prepositional phrase 

A preposition followed by a noun phrase; e.g., in the old house, under the bed. 
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More on noun phrases 

Regardless of their complexity, all noun phrases can be described in terms of four components [10:222]: 

• Head 

The object, typically a noun, to which the phrase refers; e.g., the large [dog]. 

• Determiner 

An indicator of appropriate semantic interpretation; e.g., the, a, all, every, some, any, no. 

• Premodifier 

Anything between the determiner and the head; e.g., the [extremely large and hungry] dogs. 

• Postmodifier 

Anything after the head; e.g., the dogs [playing in the open field]. 

Clauses 

When phrases are joined properly, they form larger grammatical units called clauses, which, in turn, can 
be combined in various ways to build sentences [10:220; 9:95]. 

Clause types 

How clauses are combined depends on their structure and the constraints imposed by the conjunctions 
that join them [35:220,638,263,998,1005]: 

• Main or principal clause 

Any clause or sentence that can normally stand on its own; e.g., John went to the restaurant.  
See Sentence structures below. 

• Coordinate or independent clause 

Two main clauses joined by a coordinating conjunction; e.g., John ate fish and John drank 
beer can be written as John ate fish and drank beer.  See Clause combinations below. 

• Subordinate or dependent clause 

Any clause that cannot normally stand on its own because of a subordinating conjunction; e.g., 
⁄since it was raining, ⁄while he was watching television.  To form a complete sentence, 
such clauses must be joined with a main clause.  See Clause combinations below. 

• Superordinate clause 

Any clause that contains another clause; e.g., John ate fish because he was hungry. 
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These four types of clauses can be further analyzed by how their verbs are formed [35:220,752,1086].  
See Verb Forms on page 18 for more details. 

• Finite or participial clause 

Any clause having a formed verb; e.g., the dog barked, or until the war ended, or having 
completed his homework, Johnny went to bed (where the subject of having is Johnny).  
Compare with Absolute clause below. 

• Nonfinite or infinitive clause 

Any clause having an unformed verb; e.g., to tell the truth. 

• Verbless clause 

Any clause having no explicit verb or subject; e.g., if [it is] necessary, press HELP. 

Finally, two more types are based on how clauses are embedded in or linked with other clauses 
[35:220,6,14]: 

• Relative or adjective clause 

Clauses that modify nouns through the direct or implied use of who, which, or that; e.g., the 
man who ate the apple said it was tasty, or the apple [that] he ate was tasty. 

• Absolute or adverb clause 

Similar to a finite clause, but with independent subjects; cf. the homework having been 
completed, Johnny went to bed (where the subject of having is the homework).  

Clause elements 

These clause types are composed of subcomponents, or elements, that express a particular kind of 
meaning.  Traditional grammar considers only the subject (basically whatever comes before the verb) and 
the predicate (everything else) [10:220].  A more detailed analysis recognizes five elements [10:220; 
9:95]: 

• Subject 

The theme or topic of the sentence, usually appearing in the first position. 

• Verb 

The action being performed, typically by the subject. 

• Object 

The element being affected by the action. 

• Complement 

Essential information elaborating on the preceding clause. 

• Adverbial 

Generally less important or optional information indicating time, place, manner, etc. 
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English is considered a subject-verb-object (SVO) language, which indicates the customary ordering of its 
clause elements.  The remaining five orderings (i.e., SOV, OVS, VSO, VOS, OSV) are possible in other 
languages.  Table 3.1 lists the basic element variations in English [10:220; 9:95]. 

Element Ordering Example 
Subject + Verb The dog + barks 
Subject + Verb + Object The dog + chased + the cat 
Subject + Verb + Complement The dog + is + hungry 
Subject + Verb + Adverbial The dog + went + under the table 
Subject + Verb + Object + Object The dog + gave + his trainer + the ball 
Subject + Verb + Object + Complement The dog + paid + his trainer + no attention 
Subject + Verb + Object + Adverbial The dog + chased + the cat + yesterday 

Table 3.1:  Common English clause orderings 

Clause combinations 

Clauses can be joined in various ways by conjunctions [10:213; 9:95]: 

• Coordinating conjunction 

Joins clauses of similar grammatical status, typically noun phrases or adjectives; e.g., John was 
hungry and thirsty.  Members of this class include and, or, but, either ⁄ or, neither ⁄ nor, 
etc.  

• Subordinating conjunction 

Joins clauses of different grammatical status, typically main and subordinate clauses; e.g., [John 
went to the store]MAIN [because he needed milk]SUBORDINATE.  Over a dozen subordinate 
meanings can be expressed; e.g., since, until, because, if, whether, where, in order to, 
although, etc. 

Sentences 

In simplistic terms, when phrases and clauses are combined legally, they form sentences.  However, 
providing a solid formal definition of what really comprises a sentence turns out to be far more difficult 
[35:918].  This issue is better addressed within the domain of psycholinguistics and philosophy, as it 
relates closely with the notions of thought and intent.  Only the grammatical aspects of sentences are 
considered here. 

Sentence types 

Different sentence types communicate varied information or the desire for information [35:918; 10:219]: 

• Declarative sentence 

Statements generally conveying information; e.g., the train is here, or yesterday it rained 
almost all day, but finally the sun came out.  The vast majority of non-narrative written 
sentences is declarative. 
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• Interrogative sentence 

Questions expecting a variety of responses: 

– yes-no, asking for an affirmative or negative reply; e.g., are you tired? 

– wh, asking for a reply in terms of who, what, where, when, why, or how 

– alternative, asking for a reply from a set of possibilities; e.g., are you hot or cold? 

– exclamatory, asking indirectly for a response to a claim; e.g., is she fat or what? 

– rhetorical, not really asking for a response at all; e.g., who cares? 

– tag, asking indirectly whether the listener is paying attention; e.g., Canada is cold, eh? 

– echo, asking for missed details in the previous statement; e.g., Put it here.  Put it where? 

• Imperative sentence 

Directives telling someone to do something; e.g., commanding, inviting, warning, pleading, 
suggesting, advising, instructing, permitting, requesting, meditating, expressing good wishes, 
expressing an imprecation (go to hell!). 

• Exclamatory sentence 

Short sentences responding to something emotive; e.g., Oh dear!  What a mess!  You jerk! 

Sentence structures 

Many children start learning to read English with books that illustrate basic sentence structures [9:89]: 

I see Spot.  Spot is a dog.  Spot belongs to my neighbor.  Spot is running.  Spot runs fast.  Spot is 
chasing a ball.  The ball belongs to Johnny. 

As their reading and writing skills improve, children increase the complexity of their constructions.  
Eventually, by adulthood11, they have a large repertoire of powerful ways to combine and express their 
ideas grammatically; e.g., I see Spot, my neighborÊs dog, running fast after JohnnyÊs ball. 

What differentiates simple sentence structures from advanced ones is how their clauses and phrases are 
combined [35:918,936,244,243]: 

• Simple sentence 

One main clause, no coordinating or subordinate clauses; e.g., I see spot. 

• Compound sentence 

Two or more main clauses linked by some coordinating conjunction like and or however, or by 
a semicolon; e.g., Spot is chasing a ball, and the ball belongs to Johnny. 

• Complex sentence 

One main clause with one or more embedded subordinate clauses; e.g., I see Spot, who is my 
neighborÊs dog. 

                                             
11 At least, one would hope.  Unfortunately, Spot-like prose appears all too common among adults! 
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• Compound-complex sentence 

One or more main clauses containing one or more subordinate clauses; e.g., I see Spot, who 
is my neighborÊs dog, chasing a ball that belongs to Johnny. 

• Complex-compound sentence 

One or more main clauses containing two or more subordinate clauses that are coordinated; 
e.g., I see that Spot is running and that he is chasing a ball. 
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Section 4 

Semantic Knowledge 
 

semantics: the nature, the structure, and the development and changes of 
the meanings of speech forms⁄ [38] 

 

By this section, most of the structural foundation for using language, especially English, has already been 
presented.  Linguistic knowledge about how to build words, phrases, clauses, and sentences provides a 
language user with the tools to express any idea.  Merely possessing the tools, however, does not imply 
that a speaker can do everything possible with them.  Indeed, this paper contains four more sections 
(including this one) on distinct types of knowledge that are also required to use language fully.   

Although the concrete details are essential for language use, a grammatically correct sentence has 
surprisingly little to do with a semantically meaningful sentence, as ChomskyÊs classic example illustrates 
[27:10; 7]: 

Colorless green ideas sleep furiously. 

Likewise, a semantically meaningful sentence may have little to do with grammatical correctness, as Yoda 
eloquently demonstrated in the movie Star Wars, The Empire Strikes Back [9:98]:12 

When nine hundred years old you reach, look as good you will not. 

This section transitions from the concrete details of language building to the vague world of abstract 
meaning and its linguistic representation. 

What is Semantics? 

Semantics is the meaning of words and sentences.  Specifically, within the framework of this paper, it 
refers to meaning that does not depend on the context where it appears. 

                                             
12 Yoda-speak is a rare (and of course, fabricated) example of an object-subject-verb (OSV) language, which probably 

gives it its exotic flavor.  See Clause Elements on page 30 for more information. 
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Definitions of Semantics 

Defining semantics is as difficult as working with it!  Ultimately, the definitions lie in the eye of the 
beholder, as each field studying semantics has different goals, methods, applications, etc.  Three views 
reasonably overlap the contents and purpose of this paper [23:371,373]: 

• Linguistics 

Meaning is derived by syntactically analyzing surface structures of natural languages. 

• Philosophy 

Meaning is considered in terms of logical propositions that characterize truth in arbitrary 
models and support certain methods of proof.   

• Computer science 

Meaning is treated as the result of systematically executing commands in a programming 
language on a machine. 

Views of Meaning 

Several historical views of semantics have endured a long time.  Indeed, the works of Aristotle, Plato, and 
Socrates are still referenced today for many purposes.  Unfortunately, longevity does not necessarily imply 
correctness or usefulness in natural language processing.  Three (flawed) conceptions of meaning form the 
backbone of further analysis [9:100; 51:192; 35:915]:  

• Naturalist view:  word  things 

In this popular view, originating with Plato, words supposedly name objects; e.g., Las Cruces, 
and Chito.  For proper nouns, as well as certain closed semantic classes like colors, this 
approach works reasonably well.  However, most words are simply too abstract to define this 
way; e.g., to promise, and easy, and love. Concept

• Conventionalist view:  words  concepts  things 

'Billy '
SymbolObject

In this view, originating with Aristotle, words refer directly 
to objects, but they also have a conceptual reference, as 
shown in Figure 4.1.  A variation on this view claims there 
is no direct reference, only the conceptual link.  In either 
case, identifying „concepts‰ is simply too difficult for most 
words.  Furthermore, even in cases where identification is 
possible, people may not share the same concept in mind; 
e.g., picture the many forms of a chair.13 Figure 4.1:  Meaning Triangle 
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• Behavioralist view:  stimuli  words  responses 

In this comparatively recent view14, meaning is dependent on a chain of events:  a stimulus 
causes someone to speak, and this speech triggers a response from someone else.  While this 
process has some grounding in pragmatics and communication theory (e.g., itÊs cold in here, 
isnÊt it? could really mean please close the window), determining the dependent and 
independent factors in any response is intractable. 

Modern linguistics tends to focus on how meaning is used within language as opposed to how it is linked 
with the external world [9:102].  This dichotomy alleviates some of the problems of the views above 
because semantic theories and semantic reality need not correspond in excruciating detail.  The range of 
terminology and nuances vary significantly on this theme, but most overlap in two areas [9:102; 35:915; 
27:216; 53:90,110,177; 54:16; 6:55; 26:381; 34:12; 58:9; 51:410,95; 23:392; 56:463; 2:256; 
20:37]:  

• Sense or denotation or extension 

The way the world really was, is, will be, or could be.   

Many aspects of the world have one unique definition in nature.  For example, regardless of 
how a family tree is drawn or described, a person has only one biological mother and one 
biological father, and each recursively shares this property and so on, back to an arbitrary dawn 
of the human race. 

Other aspects of the world do not even exist.  A unicorn, for example, is not real, but this 
technicality does nothing to prevent people from envisioning one and talking about it as if it 
were. 

• Reference or connotation or intension  

The way people perceive or manipulate the world through language.   

Language parcels the world into conceptual chunks described by words.  These words may 
overlap the physical world exactly, in which case sense and reference might be considered the 
same.  More realistic15, however, is that language provides a subset of reference words 
according to how it views the world.  See Figure 8.1 on page 83 for a comprehensive 
example.  

Some languages may have specialized words for, say, motherÊs father (*mofa), whereas others 
may have just the generic term grandfather.  Both refer to the same person, but the latter also 
includes fatherÊs father.  Neither reference can be considered more correct or incorrect, but 
they clearly have different connotations.16 

                                             
14 Leonard Bloomfield, 1933. 
15 Especially for reasons of practicality:  having a unique word for every branch of a virtually infinite family tree, say 

motherÊs fatherÊs motherÊs father, would be utterly insane!  More realistic is some arbitrary threshold where the 
branch loses its uniqueness through a generic term like ancestor.  Social factors may play a role in defining this 
threshold, too; e.g., few people may care about details more than three generations back. 

16 Translating between languages that do not align their conceptual chunks in the same way is complex and fraught 
with difficulties [26:212,239; 11:332; 53:37,251,254; 54:74,132; 62:10; 23:46; 39:50; 45:162].   
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To complicate matters even further, many references are considered vague or fuzzy in that 
there is no clear-cut distinction between them [2:231; 23:402; 10:169; 20:10]: 

How big does a watch have to be to become a clock? 

How many grains of sand constitute a heap? 

What distinguishes a hill from a mountain?17 

When does a colt become a horse? 

As a second example, consider all the little flavors, colors, spin, and so on that people put on 
references to make them fit the desired context.  The following paraphrase about the CIA refers 
to the same group of combatants:18 

If we support them, theyÊre freedom fighters. 

If we oppose them, theyÊre terrorists. 

If weÊre indifferent, theyÊre warring factions. 

Further discussion on reference can be found on page 88. 

Deeper analysis is beyond the scope of this section.  Consequently, the remainder of it is descriptive and 
practical in nature:  it addresses key issues, observations, and problems about meaning without much 
regard to any particular theoretical or philosophical framework. 

Sentence Meaning 

The Principle of Compositionality, also known as FregeÊs Principle19, forms the backbone for analyzing 
the semantics of sentences [27:224; 23:77].  In the earlier section on grammar (see page 28), it was 
shown how phrase structures combine to form sentence structures.  The same principle applies to 
semantics:  the semantics of phrases (roughly) combine to form the semantics of sentences [45:672].  

Beyond the compositional meaning of its phrases, a sentence can also be analyzed on other semantic 
levels [9:107]: 

• Prosodic meaning 

Meaning depends on the way a sentence is spoken.  For instance, emphasis on certain words 
helps indicate focus or distinguish new information from old. 

• Grammatical meaning 

The grammar of a sentence corresponds in many respects to certain meaning units.  For 
example, the customary phrase order Subject + Verb + Object + Adverbial is often used in 
the sense somebody + does + something + at some time.  Thematic Structures below 
investigates this connection further. 

                                             
17 Consider responses from people living on the east coast, in the Rocky Mountains, and in Nepal! 
18 Source unknown, vaguely reminiscent of something said in a Tom Clancy book or movie. 
19 Interestingly, FregeÊs works do not contain any explicit reference to this principle [56:420]! 

 Knowledge Representation for Natural Language Processing 38 



Natural Language Knowledge:  Semantic Knowledge 
 

• Pragmatic meaning 

Meaning depends on the context in which it appears.  The next section on pragmatics covers 
this subject in detail. 

• Social meaning 

The same relative meaning can be expressed with different social attitudes and implications; 
e.g., polite, reserved, rude, obnoxious, indifferent, partisan, etc. 

• Propositional meaning 

Meaning can be translated into a logical form and manipulated in formal systems.  This subject 
is investigated in Part II as a major component of knowledge representation. 

Thematic Structures 

Grammatical meaning, as described above, is often analyzed in terms the semantic roles shown in Table 
4.1 [31:479,481; 2:248,251].  Linguists are not in complete agreement over how many roles exist, and 
other semantic labels are certainly possible.  Sowa [51:508], for example, describes 19 roles, but many of 
them are just more finely grained distinctions; e.g., origin, location, and destination instead of simply 
location. 

Role Description 
Agent Volitional initiator of action 
Patient Object or individual undergoing action 
Theme Object or individual moved by action 
Experiencer Individual experiencing some event 
Beneficiary Object or individual that benefits from the event 
Source Object or individual from which something is moved by the 

event, or from which the event originates 
Goal Individual toward which the event is directed 
Location Place at which the event is situated 
Instrument Secondary cause of event; the object or individual that causes 

some event that in turn causes the event to take place 

Table 4.1:  Basic thematic roles 

Ambiguity 

Sentences are composed of phrase structures.  The third property of phrase structures (from page 28), 
and therefore of sentences, is ambiguity:  „Inherent ambiguity in language can be reflected in the 
grammar.‰  Ambiguity, in its countless insidious forms, exists at every level of linguistics.  Since a thorough 
survey of it would comprise an entire comprehensive exam of its own, this paper instead just touches upon 
representative examples.   
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No discussion would be complete without the classic example time flies like an arrow, which has at least 
the following interpretations [41:209]: 

Time proceeds as quickly as an arrow proceeds (the intended reading). 
Measure the speed of flies in the same way that you measure the speed of an arrow. 
Measure the speed of flies in the same way that an arrow measures the speed of flies. 
Measure the speed of flies that resemble an arrow. 
Flies of a particular kind, time-flies, are fond of an arrow. 

Each of these interpretations is based on a different grammatical structure.  The intended reading is the 
one most people would intuitively recognize as correct.20  How people manage this task is an important 
practical question because computers must somehow match performance if they are to process natural 
language even remotely as well as humans do. 

Word Meaning 

As mentioned above, the meaning of a sentence is based on the meaning of its words.  This discussion 
considers several important aspects of semantics at the word level. 

Word Senses 

Most words share more than one meaning or sense.  In fact, for some heavily used words like the verb 
take, the number can exceed 80 [35:33]!  Granted, many of the meanings are similar, but the fact that 
they are listed as separate senses indicates that some subtle distinctions exist [35:795; 2:231; 51:350].  
Consequently, choosing the correct interpretation of each word is paramount to understanding the 
semantics of an entire sentence. 

The formal process of correctly interpreting the contextual meaning of so-called polysemous words is 
known as word-sense disambiguation.  Humans, for the most part, are not adversely affected by 
ambiguous words.  Computers, on the other hand, have no special human abilities to handle them; as a 
result, poor semantic interpretation consistently degrades performance in natural language processing 
[11:332; 9:106].   

Semantic Relatedness 

One of the most studied aspects of semantics is how words are related to each other in meaning [27:220; 
9:104].   

                                             
20 Indeed, few people would realize that so many valid (albeit less plausible) interpretations even exist. 
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Semantic relations 

Most people are familiar with a variety of word relations, as they are commonly found in language 
resources like dictionaries or thesauruses [9:104, 27:220; 35:1015,483,73; 53:86]:21 

• Synonymy 

The set of words that are relatively equivalent in meaning; e.g., couch and sofa, start and 
begin.  Synonyms can usually substitute for each other, but since each has a slightly different 
connotation, one may be a more appropriate choice. 

• Homonymy 

The set of words that are relatively equivalent in form in one of two says; e.g., homophones 
like night/knight or flour/flower, and homographs like crane (a bird) and crane (a lifting 
device).  Such words lead to lexical ambiguity, which complicates the semantics of a sentence 
by providing multiple interpretations. 

• Antonymy 

The set of words that are relatively opposite in meaning in one of three ways:  

– gradable antonyms are an open group of words with a range of scalar opposites; e.g., 
hot and cold versus hot and cool, big and small versus big and tiny.  The degree can be 
qualified; e.g., very hot, marginally cold. 

– nongradable or complementary antonyms are a closed pair of words with polar 
opposites; e.g., alive and dead, single and married.  The degree cannot be qualified in 
the literal sense; e.g., *partially dead, *slightly pregnant. 

– converse or relational antonyms are an open group of associated pairs of opposites; 
e.g., parent/child, buy/sell. 

• Incompatibility 

The set of mutually exclusive opposites; e.g., red and green, in the sense that something 
cannot be both colors at the same time.22 

• Hyponymy or entailment 

The set of words that are related taxonomically in meaning; i.e., X is a kind of Y, as in dog is a 
kind of animal.  In logical terms, the following holds [27:221]: 

If something is in class A, then it must also be in class B (e.g., a man is a human) 
If something is not in class B, then it cannot be in class A (e.g., a nonhuman cannot be a man) 

                                             
21 Many other relations are possible when semantics is considered for knowledge representation.  See [16] for an 

exhaustive discussion of WordNet.   
22 Of course, incompatible relations may have perfectly valid usages; e.g., something described as red and green 

generally has both red parts and green parts, which are not the same parts. 
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Semantic fields 

Words can also be organized by their semantic associations or fields; e.g., an insect consists of a head, 
thorax, and abdomen, which respectively consist of eyes, legs, and possibly a stinger, etc.  RogetÊs 
thesaurus laid the groundwork for such a taxonomy in 1852 by defining six top-level categories of words:  
abstract relations, space, matter, intellect, volition, and affections [9:104].  Figure 4.2 illustrates a small 
subset of the taxonomy, which extends to over 1,000 subcategories [9:104; 10:157; 35:914; 53:195]. 

affections

general terms personal religioussympathetic moral

obligation sentiments institutionsconditions practice

temperance intemperance sensualism asceticism
 

Figure 4.2:  Sample of Roget categories 

Semantic features 

As the section on ontological representations of knowledge will discuss (see page 127), linguistic and 
taxonomic descriptions of the world are relatively arbitrary, and no single taxonomy can be considered 
„correct‰23 [45:232; 34:7; 51:409; 61].  The problem stems in large part from an incomplete 
understanding of the world and mismatches between it and language.24  In other words, the semantics of 
many things is clear and straightforward, but others may fall into a gray area of uncertainty or a lexical gap 
in language [35:914]. 

                                             
23 As the engineering saying goes, „all models are wrong, but some are useful‰ [51:384]. 
24 Refer back to the discussion on referential meaning (page 37) for more information. 
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One way to represent how objects are related is with a feature matrix.  For example, Table 4.2 indicates 
which English animal words correspond to which gender [9:107].  The last three animals are ambiguous in 
this respect. 

 bull ram boar cow ewe sow calf lamb piglet 
male + + + − − − ± ± ± 

female − − − + + + ± ± ± 

Table 4.2:  Sample feature matrix for animals25 

Likewise, Table 4.3 indicates which English verbs correspond to which manner of locomotion [9:107].  
This example illustrates a lexical gap, as none of the verbs can directly represent movement backwards. 

 walk march run limp 
natural + − − − 

hurried − + + − 

forward + + + + 

one foot on ground + + − + 

Table 4.3:  Sample feature matrix for verbs of locomotion 

Analysis of lexical features is especially important for translation.  If features do not align between the 
source and target languages, then a relatively straightforward substitution of words with equivalent 
meaning is often not possible [11:332].  The meaning may have to be expressed in terms of different 
syntax, grammar, etc., and the human judgment calls and intuition involved in this process are daunting. 

Qualifying Objects 

As mentioned in the section on syntax (see page 17), nouns represent physical and conceptual objects in 
the world, and adjectives modify these objects.  The semantic aspects of this linking are complex and defy 
straightforward rules and generalizations [27:224].  Consequently, this discussion considers only basic 
aspects. 

Attribute meaning 

If adjectives are properties and nouns are objects, and the principle of compositionality holds for both, 
then presumably the meaning of adjective–noun constructs should be some combined meaning of the 
parts.  Indeed, this approach to semantics can be used to classify some adjective usage [27:224; 2:372; 
45:708; 6:463; 51:81; 26:57]: 

• Pure intersective adjective 

Many adjectives have a straightforward, absolute or „pure‰ meaning26 that remains relatively 
the same regardless of the noun they modify; e.g., blue, square, hollow.  For instance, a blue 

                                             
25 The markers + and − indicate the presence and absence of intersection, respectively. 
26 Although not necessarily unambiguous; e.g., depressed, nerdy, and lacking personality are alternative senses of 

these examples, respectively. 

Knowledge Representation for Natural Language Processing 43 



Natural Language Knowledge:  Semantic Knowledge 

bird is roughly the same color as a blue sky, a square hole has the same number of sides as a 
square peg, and a hollow sphere and hollow log equally lack internal contents.   

In mathematical terms, an adjective–noun construct is the set of everything with a certain 
property (i.e., adjective) intersected with the set of everything that is a certain object (i.e., 
noun).  Figure 4.3 illustrates this operation applied to green balls [27:225; 34:66; 2:372]. 

Set of everything green Set of all balls

Set of all green balls  

Figure 4.3:  Sample adjective intersection 

• Relative intersective adjective 

Many adjectives have a context-dependent or „relative‰ meaning that differs based on the noun 
they modify.  For instance, a short giraffe rises far above a tall human; a cold day in Phoenix 
is a hot day in Fairbanks; and a rich person in Nigeria is likely a poor person in America. 

The same mechanism of intersection still applies as with pure intersective adjectives, but the 
context must somehow be factored in. 

• Uncertain27, nonintersective adjective 

A special class of adjectives refers to conceptual descriptions that simply cannot be corralled 
into a set.  For instance, an alleged murderer may not refer to a murderer at all.  Likewise, a 
possible solution implies no guarantee that it is actually a solution.  Context eventually leads to 
the proper interpretation, at which time such adjectives of uncertainty should no longer apply.  
For example, in *the alleged murderer was sentenced to death, by legal definition the 
pronouncement of sentence removes any allegation, as the guilt is now considered fact.28 

• Nonreferential27, nonintersective adjective 

A similarly special class of adjectives may not refer to actual descriptions at all.  For instance, a 
fake Picasso is not even a Picasso; however, a fake painting is still a painting.  The 
mathematical treatment of such sets appears untenable:  the set of everything that is not really 
something intersected with objects that may not be themselves?! 

• Other adjectives 

Some properties defy formal description; e.g., an occasional cloud drifted by.  The meaning 
of this combination is clear·a cloud occasionally drifted by·but the usage does not conform 

                                             
27 My term, for lack of a better bulleted distinction. 
28 One would also hope that the murderer is actually guilty, but the veracity of the accusation has no bearing on the 

removal of alleged after sentencing (or the change to convicted murderer, as often happens). 
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to any of the categories above.  In other oddball constructions, the adjective seemingly modifies 
the wrong noun.  For instance, a hot cup of tea should actually read a cup of hot tea.  
Granted, an indirect result of hot tea within a cup is that the cup becomes hot, but one does 
not normally care about the temperature of the cup when drinking tea! 

Attribute placement 

If one adjective can modify a noun, then multiple adjectives obviously can, too.  Moreover, one would not 
expect the meaning of the adjectives to differ based on their ordering.  While this claim is generally true, 
also true is that certain orders are preferred, discouraged, or even prohibited [10:233]: 

 A nice, big, paper bag 
* A nice, paper, big bag 
* A big, nice, paper bag 
* A big, paper, nice bag 
* A paper, nice, big bag 
* A paper, big, nice bag  

No immediate generalization of these practically identical sentences is apparent, and upon further 
consideration, any attempt would probably not apply to other adjectives and nouns [10:233].  Such 
context-specific issues fall better into the next section on pragmatics.  However, as they involve the 
semantic contribution of adjectives, they are discussed here. 

Linguists have indeed been able to generalize some features of adjective ordering.  While not without 
weaknesses and exceptions, the following microtheory suggests some predictability in four so-called 
adjective zones [10:223]: 

DETERMINER + [ ADVERB ] + ZONE1 + ZONE2 + ZONE3 + ZONE4 + NOUN 

• Zone 1 

Adjectives of absolute or intensifying meaning; e.g., same, absolute, ultimate, extreme. 

• Zone 2 

Adjectives not falling into the constraints of other zones, basically everyday properties; e.g., 
big, fat, slow, stupid.  

• Zone 3 

Adjectives of color or participial function; e.g., red, blue, missing, stolen, destroyed. 

• Zone 4 

Adjectives collocated or associated closely with the noun; e.g., wedding [dress], car [alarm], 
medical [facility], social [unrest], terrorist [attack]. 
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Certain noun compounds (see page 11) appear similar in meaning but function differently.  Often, the role 
of the noun remains the same while the role of the property changes [35:245]: 

a steamboat is a boat that is propelled by steam 
a riverboat is a boat that travels a river 
a gunboat is a boat that has guns  
a houseboat is a boat that functions as a house more than a boat 
a rowboat is a boat that can be rowed 

Similarly, the Loch Ness Monster lives in Loch Ness, whereas the Cookie Monster eats cookies.  Such 
expressions are noncompositional and should be treated as single units of meaning. 

Attribute scope 

When multiples nouns are preceded by adjectives, the structure of the modification may become unclear 
[27:174].  This ambiguity is similar to that of noun-noun compounds (see page 11).  For example, in 
miniature badgers and raccoons, are the raccoons miniature, or just the badgers?  Disambiguating such 
lexical issues may require analysis on grammatical, semantic, and pragmatic levels.  The details behind 
such analysis are beyond the scope of this paper.  

Quantifying Objects 

The various meanings of objects change in even more subtle ways when they are quantified by certain 
words.  The influence of articles, in particular, is notoriously difficult to define.29  In fact, the 
Comprehensive Grammar of the English Language devotes over 200 pages to a and the alone [43]!  
Quantifiers are considered here only simplistic terms [10:223]: 

Definite article 

• Refers to the immediate situation 

The object of reference is understood, perhaps because it is the focus of the context or is 
anticipated to become so; e.g., the package has arrived. 

• Refers to general knowledge 

The object of reference is understood, perhaps because it is the obvious (or only) choice or it is 
mentioned often in similar contexts; e.g., has anybody seen the dog? 

• Expresses a specific state of affairs 

The object of reference is unique within a class of objects; e.g., Johnny wants to be the 
richest boy in the world (meaning:  of all the boys in the world, there can be only one richest). 

• Refers backward to an entity (anaphoric reference) 

The object of reference was already mentioned; e.g., John has both [a dog]a and a cat, but he 
plays only with [the dog]a.  

                                             
29Even worse is trying to teach English article usage to speakers of languages that have no articles; e.g., Russian. 
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• Refers forward to an entity (cataphoric reference) 

The object of reference has not yet been mentioned; e.g., John plays only with [the dog]a, 
even though he has both [a dog]a and a cat.  

• Refers to common human institutions 

The object of reference is understood in general terms; e.g., Bob went to the theater focuses 
on his attending a movie, not on his going to a particular theater.  Similarly, Jack watched the 
news refers to the notion of current events, not to specific events (unless so qualified; e.g., 
⁄the news about the volcano). 

Indefinite article 

• Introduces an entity 

The object of reference is unknown or uncertain in the immediate context, as illustrated by this 
narrative:  Jill says, „Look, thereÊs an old lady outside.‰  After peering through the 
window, Jack exclaims, „ThatÊs my MOM, you fool!‰ 

• Expresses a general state of affairs 

The object of reference is not being distinguished within a class of many such objects; e.g., 
Johnny wants to be an astronaut. 

• Often expresses a general quantity 

The object of reference is a generic amount that is not a main focus in the context; cf. the 
airplane used a gallon of fuel versus the airplane used the last gallon of fuel. 

No article 

Many idiomatic constructions, especially those referring to common human institutions, appear without 
any article; e.g., to go to bed, to have lunch, or at night.  However, they may allow the freedom to add 
such a distinction; e.g., to go to the bed upstairs, to have a light lunch, but not *at the night. 

Miscellaneous determiners 

Words such as all, every, most, some, few, no, etc. can generally appear in the same contexts as the 
quantifiers discussed above.  They impose semi-logical constraints on the objects they quantify; e.g., all 
dog lovers and a few cat lovers but no more than three lizard lovers will be invited to the animal 
festival.  See Types of pronouns on page 16 for more information. 
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Special Meaning 

Deixis and indexicals 

A few special words play a role called deixis by referring to objects in ways that change somewhat 
predictably as the context changes [9:106; 12:20; 20:25]:30 

• Personal deixis 

Pronouns refer to specific individuals or objects within the context of a conversation, etc.  Once 
the context changes, the references usually change as well. 

• Spatial deixis 

Certain words play the role of virtual pronouns by functioning on locations instead of 
individuals or objects; e.g., come here, go over there, stand behind that.  As the context 
changes, the locations change, or the locations remain the same and the references change; 
e.g., John tells Bill „Go over there to Jim.‰  Jim yells to Bill, „Come over here to me.‰  
Both there and here refer to the same place. 

• Temporal deixis 

Other virtual pronouns function on time expressions; e.g., yesterday, today, tomorrow, now, 
then.  As time passes, some·but not all·of these words refer to different times; e.g., today 
becomes yesterday, tomorrow becomes today, the present becomes the past, but the past 
remains the past, and the future may remain the future or become the present, etc. 

Figurative language 

Few aspects of language can ever be taken in the strict literal sense.  Even worse is that sometimes 
communication is better served through intentionally nonliteral usage.  Understanding such figurative 
language involves decoding the meaning(s) of its elements, as well as the relations binding them, in 
addition to the contexts of their normal separate usage and new combined usage.  Pragmatic and world 
knowledge are essential for this task. 

Many figurative constructions fall into just a few categories [10:172,177,421; 45:714; 35:653,739, 
656,764]: 

• Metaphor or analogy 

Different meanings of elements may be linked implicitly in terms of subtle association, 
comparison, and resemblance.  For example, the twilight of oneÊs life extends the notion end 
of a day to a lifetime, thereby meaning oneÊs life is nearly over after its full duration.31   

• Simile 

Metaphors may often be rewritten with explicit links, especially the comparisons like and as, 
for use in a more overt context.  For example, the boxer fought like a lion transfers onto the 

                                             
30 Such context-sensitive, noncompositional meaning stands on slippery ground between semantics and pragmatics. 
31 With poetic overtones of impending darkness and the futility of trying to accomplish much at that point, etc. 
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boxer the property of how a lion would fight under similar circumstances.  Indeed, for the sake 
of grammatical correctness at least, the boxer fought as a lion would is even more obvious. 

• Paradox 

Elements that appear to contradict each other may be combined carefully to foster subtle 
insight into life; e.g., Charles DickensÊs A Tale of Two Cities opens:  „It was the best of times, 
it was the worst of times⁄‰ 

• Oxymoron 

Elements that appear to clash opposite or incompatible notions may be combined for 
emphatic, humorous, or cynical usage; e.g., bittersweet, jumbo shrimp, military intelligence, 
Microsoft operating system. 

• Metonymy 

An element may be replaced entirely by the name of something associated with it; e.g., the 
White House announced⁄, where the building substitutes for whoever actually made the 
announcement. 

• Personification 

Properties or abilities of animate elements may be transferred abstractly to inanimate elements; 
e.g., the gracious sun smiled on the hikers, and the rocks told the history of the canyon. 

• Euphemism 

Uncomfortable or inappropriate elements in many contexts may be replaced with milder forms; 
e.g., to relieve oneself in place of to urinate, and adult video instead of porno movie, etc.  
Political correctness and bureaucratic doublespeak have elevated many such expressions to the 
absurd; e.g., aesthetically challenged in place of ugly, and unlawful or arbitrary deprivation 
of life instead of killing. 
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Section 5 

Pragmatic Knowledge 
 

pragmatics: ⁄ meaning in context, or the meanings of sentences in terms of 
the speakerÊs intentions in using them [38] 

 

Morphology, syntax, grammar, and semantics all contribute heavily to meaning, and yet they appear to be 
little help in deciding the proper interpretation of this relatively simple statement [23:234]: 

The osprey is looking for a perch. 

The previous section on semantics briefly discussed word senses, or different meanings of the same word 
(see page 40).  In many cases, context helps the reader determine the correct interpretation.  Indeed, 
context does limit the choices here to only two:32 

1 a. The osprey is looking for a fish [to eat]. 
 b.  The osprey is looking for a branch [to roost on]. 

Both are correct interpretations.  Which is the intended one?  Nobody knows.  Nobody can know because 
there is no context.  If this sentence appeared in the context of, say, a story about Flappy the osprey, who 
has not eaten in days, then sentence (1a) would likely apply.  Likewise, if Flappy has not slept in days, 
then sentence (1b) would.  This analysis is considered further on page 69. 

Incidentally, information alone is not the key to solving such ambiguity; rather, information relevant to the 
context is.  For instance, knowing that Flappy is gray with white, horizontal stripes and lives on an 
island inhabited by a lost race of untalented boy-band cavemen ostensibly provides context for 
something, but not for determining the intended sense of perch.   

Relevant context falls into the deep, dark, slippery realm of pragmatics. 

                                             
32 Only perch is of interest; any ambiguity of the other words is not considered. 
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What is Pragmatics? 

Definitions of pragmatics vary as much as the subject material itself!  The notion of context has arisen 
again and again throughout this paper as a way to generalize anything that does not fit the established 
framework.  Such a definition is presented by many linguistic sources; e.g., „⁄ anything relating to the 
way in which people communicate that cannot be captured by conventional linguistic analysis‰ [35:800].  
Sowa [51:275] distilled a multitude of definitions into just two: 

1. The basic meaning is a section of linguistic text or discourse that surrounds some word or 
phrase of interest. 

2. The derived meaning is a nonlinguistic situation, environment, domain, setting, background, 
or milieu that includes some entity, subject, or topic of interest. 

Context plays some role at every level of language.  Correspondingly, many subdisciplines of linguistics 
overlap with pragmatics [10:120,116,22,38; 41:334]: 

• Pragmatics and Semantics 

The intentions of a speaker and their effects on listeners are highly dependent on the context.  
The individual and common background knowledge, beliefs, presuppositions, etc. of the 
participants in communication carefully focus the usage of language. 

• Pragmatics and Stylistics 

Language is infinite in the variety of constructions and meanings it can generate.  Many 
common social contexts, however, are relatively limited in the forms that are considered 
„normal‰ or acceptable. 

• Pragmatics and Sociolinguistics 

Language is a means of communicating states in an environment.  Human social interaction 
comprises a huge part of this environment, so language and behavior have interdependencies.  
In many respects, sociolinguistics, stylistics, and pragmatics have a triangular relation. 

• Pragmatics and Psycholinguistics 

Understanding how people generate and interpret language is of interest to linguists and 
psychologists alike.  After all, the same brain performs all human functions, and its mechanisms 
probably overlap heavily. 

• Pragmatics and Discourse Analysis 

Discourse, to be covered in the next section, forms the high levels of complex interaction 
between sentences.  Not only do sentences have meaning alone, but they also form a larger 
picture together.  Studies of literature, narrative structure, etc. intersect with pragmatics. 
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Communication 

Giving and receiving information in some systematic manner is the basis of communication.  At a 
minimum, two participants33 are required to communicate.  At least one must play the role of transmitter 
(e.g., speaker, writer, smoke-signaler), and at least one must play the role of receiver (e.g., hearer, reader, 
smoke-watcher).  The minimum requirements establish unidirectional communication only; i.e., the 
transmitter sends messages to the receiver, who has no direct or immediate way to communicate back.  
Mass media·newspapers, television, etc., which are disseminated to a wide audience·generally follow 
this paradigm.  Real-time conversation, on the other hand, is most effective if the participants play both 
roles to establish bi-directional communication, which allows direct and immediate response [23:94]. 

Communication Models 

The way information is transferred is the subject of two popular models [45:658]: 

• Encoded-message model or semantic interpretation 

The speaker has a proposition in mind and encodes it through language.  The hearer receives 
the encoded proposition and decodes it.  When this communication channel is free from error 
(e.g., noise or problems in encoding or decoding), what the speaker thinks and says is the same 
as what the hearer hears and understands. 

The meaning of the communication is the same each time it is transmitted. 

• Situated-language model or pragmatic interpretation 

The meaning of a message depends both on the language used to encode it and the context or 
situation in which it is used.  The human encoding and decoding „functions‰ are augmented 
with a context parameter. 

The meaning of the communication is different each it is transmitted with a different context.  
In fact, as it can be argued every context is unique to some degree, the meaning could be 
different even within the „same‰ context again. 

Environment 

The situated-language model tends to be more representative of the real world because it accounts for 
common contextual misunderstandings; e.g., I thought you meant ____, so I did what seemed 
appropriate under the circumstances [45:659].  Context is closely associated with two notions of 
environment, which is roughly the domain or world where communication occurs [23:75]: 

• Immediate environment 

Objects of reference for the speaker and/or hearer are in the current environment; e.g., this 
week, every American knows at least some details about the destruction of the World Trade 
Center and can converse with anyone based on the shared context. 

                                             
33 Presumably, it could be argued that leaving oneself a note is also a form of communication, but such a case is 

slightly outside the scope of this section.  However, it does indeed share many properties to be discussed; e.g., the 
context of such a note sometimes has a person wondering just what they were thinking when they wrote it! 
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• Mediated environment  

Objects of reference for the speaker and/or hearer are outside the current environment; e.g., a 
conversation about Abraham Lincoln refers to a context that no longer exists in the current 
world, only in the world of history.  Nobody is still alive from that period, so all references are 
to some degree hearsay. 

Likewise, people born after the World Trade Center incident can refer to the immediate 
environment of their parents (e.g., My dad said it was horrific and saddening), but if they 
include only themselves, the reference may sound somehow odd; e.g., [Although he was not 
alive to see it,] Billy said it was horrific and saddening (how would he know?34). 

Context 

What roughly separates pragmatics from semantics is context, which plays some role in nearly everything 
imaginable.  However, even with such an immense range and sphere of influence, most context falls into 
just a few categories [27:228]: 

• Physical context 

Communication occurs in a certain place with associated objects and related actions. 

• Epistemic context 

The participants in communication have certain background knowledge in common. 

• Linguistic context 

Conversation proceeds as communication builds upon previous communication. 

• Social context 

Participants in communication consciously and subconsciously behave according to social and 
cultural rules and norms.  

Communication Actions 

As mentioned above, the goal of communication is to transmit information.  The range of this information 
is as infinite as are the grammatical structures that convey it; however, most information can be 
communicated as one of just a few discrete actions [45:652]: 

• Inform 

Participants communicate unsolicited knowledge of the local environment to other participants. 

• Query 

Participants ask other participants about their knowledge of the local environment. 

                                             
34 Much depends on the way the statement is made, of course.  Anyone at any time can refer to an incident 

generically based on its timeless emotive value; e.g., the destruction of Pompeii in AD 79 was tragic.  However, 
alluding to direct personal emotional response (i.e., psychological affect) comes off as somehow peculiar; e.g., I 
feel sad for the residents of Pompeii. 
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• Answer 

Participants communicate solicited knowledge of the local environment to other participants. 

• Request 

Participants ask other participants to do something. 

• Command 

Participants tell other participants to do something. 

• Promise 

Participants commit to doing something. 

• Offer 

Participants negotiate deals with others to improve their own state or the state of the group. 

• Acknowledge 

Participants respond affirmatively to requests and offers from other participants. 

• Share 

Participants share knowledge and experience with other participants. 

Communication Processing 

The participants in communication usually do not express their ideas in a random, uncoordinated 
manner.35  To do so would be very inefficient and prone to failure.  The steps in communication actually 
conform to a relatively rigid framework that is repeated bi-directionally throughout a conversation 
[45:655].36 

Speaker processing 

The participant who starts the conversion or responds to the hearer assumes the role of speaker for the 
following encoding steps: 

Step 1:  Intention 

The speaker wants the hearer to believe some proposition. 

Step 2:  Generation 

The speaker generates the words that convey the meaning of the proposition. 

Step 3:  Synthesis 

The speaker utters the words to the hearer. 

Step 4:  Role switching 

The speaker becomes the hearer.   
                                             
35 The Jerry Springer Show and FoxÊs The OÊReilly Factor are notable exceptions! 
36 For a continuation of this discussion in terms of conversational discourse, see page 65. 
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Hearer processing 

The participant who is not the speaker assumes the role of the hearer.  He or she processes some of the 
information from the speaker as it arrives, while other information may be buffered for later processing or 
even discarded or lost.  The following steps define the decoding process:  

Step 1:  Perception 

The hearer perceives the words of the hearer, although not necessarily with perfect fidelity; 
i.e., details are frequently lost or mangled. 

Step 2:  Analysis 

The hearer infers various meanings from the words and reconstructs the proposition. 

Step 3:  Disambiguation 

The hearer infers that the speaker intended to convey the proposition (either the correct or 
misinterpreted version). 

Step 4:  Incorporation 

The hearer decides to believe the proposition as he or she perceives it.  Alternatively, the 
hearer rejects the proposition because it conflicts with his or her existing beliefs, assumptions, 
intentions, etc. 

Step 5:  Role switching 

The hearer becomes the speaker.  In conversations with more than two participants, any 
hearer can assume the speaker role.  Extralinguistic factors like personality, assertiveness, 
domain expertise, personal experience, etc. play a role. 

Speech Acts 

People communicate in different ways to express different thoughts.  These so-called speech acts reflect a 
deep understanding of explicit and implicit aspects of language, culture, social structure, etc.  The many 
thousands of forms of expression can be distilled into just a few proposed categories [27:229; 9:121; 
35:968; 11:353; 15; 19:26; 12:440; 20:64]. 

Direct speech acts 

Stating a thought in an active, overt, or explicit manner tends to get directly to the point with little room 
for misinterpretation; e.g., tell me what time it is or go to the store.  The recipient generally has few 
options in responding; i.e., to comply, to refuse, or to ask for more information before deciding. 

Indirect speech acts 

Stating a thought in a passive, subtle, or implicit manner tends to lessen the forcefulness of the statement.  
It also tends to make the focus less clear and more open for misinterpretation; e.g., I wonder what time it 
is or Is milk on sale?  The variety of such constructions is bounded only by human creativity.   
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Other views on speech acts 

Direct and indirect speech acts can be categorized differently according to their role in communication 
[35:624,968; 10:121; 27:229; 2:544]: 

• Locutionary speech act 

The act of a speaker uttering a coherent string of words. 

• Illocutionary speech act 

The act that is implied by a speaker in uttering a coherent string of words; e.g., making a 
promise implies future commitment. 

• Perlocutionary speech act 

The act that actually occurs as a result of a speaker in uttering a coherent string of words; e.g., 
telling a joke should cause hearers to laugh, and yelling Fire! should start people running. 

Finally, another categorization of speech acts focuses on the role of the speaker [35:968; 10:219; 2:557]: 

• Representatives 

Speakers commit in certain ways to the truth of their utterances; e.g., reporting, believing. 

• Directives 

Speakers try to convince hearers to do something; e.g., suggesting, coaxing, urging.  A list is 
provided on page 32 for imperative verb forms. 

• Commissives 

Speakers commit in certain ways to the consequences of their utterances; e.g., promising. 

• Declaratives 

Speakers make announcements or proclamations that alter states in the world; e.g., I hereby 
sentence you to 20 years hard labor. 

• Expressives 

Speakers express feelings or attitudes; e.g., apologizing, congratulating, consoling. 

Felicity conditions 

The effectiveness of speech acts, especially indirect ones, is often dependent on pragmatic requirements 
known as felicity conditions [9:121; 27:229; 6:227; 20:82].  In order for most people to comply with a 
request or command, etc., they must accept it as valid.  For instance, anyone can state I now pronounce 
you man and wife, but only a certain set of people·justices of the peace, priests, ship captains·actually 
have the authority to back up such a statement.   
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Each type of speech act, as well as many verbs, has its own set of felicity conditions.  For example, the 
following is a proposed skeleton for requests [15]: 

• Sincerity condition 

When participant A requests that participant B perform an action X, the following must hold: 

– A must want B to do X. 

– A must assume that B can actually perform X. 

– B must be willing to perform X. 

– A must assume that B would not perform X without being requested to do so. 

• Reasonableness condition 

Participant A must have a basis for making the assumptions of the sincerity condition.  
Unreasonable requests may be challenged on these grounds; e.g., why the hell do you want 
me to do THAT, of all things? 

• Appropriateness condition 

The request must be appropriately framed with relevant information.  A polite and friendly 
delivery with at least a perceived air of indebtedness helps as well. 
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Section 6 

Discourse Knowledge 
 

discourse:  a connected series of utterances; a text [1] 
 

 

At the highest structural level of language, discourse, all the lower levels are assembled as a whole into 
coherent collections with related theme, meaning, or purpose.  The form of these collections·both 
written and spoken·varies widely, from jokes to anecdotes, term papers to dissertations, short stories to 
epic sagas, books to tomes, and so on.  What they all have in common, however, is some set of key 
ingredients, as well as rules and guidelines for combining them [10:286; 9:116]. 

What is Discourse? 

Discourse connects individual thoughts into a big picture and communicates it in an appropriate manner.  
To this end, the speaker (or writer) has just a few major intentions in mind [45:718]: 

• The speaker wants to convey a message 
• The speaker has a motivation or goal in doing something 
• The speaker wants to make it easy for the hearer to understand 
• The speaker must link the new information to what the hearer already knows 

Since discourse stands at the top of the compositional model of language, it demands an understanding of 
the knowledge contributing to all its lower levels [45:716]: 

• General knowledge about the world 
• General knowledge about the structure of coherent discourse 
• General knowledge about syntax and semantics 
• Specific knowledge about the situation being discussed 
• Specific knowledge about the beliefs of the characters 
• Specific knowledge about the beliefs of the speaker 
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Discourse Elements 

Discourse appears in many forms with many goals; e.g., idle conversation, entertainment, teaching, 
preaching, historical analysis, political persuasion, and so on.  Each form has its own unique features, 
which define both the structure in telling it and the expectations in hearing it.  For example, in an action 
story, the main character usually gets into some dire predicament that materializes as the story progresses.  
In a good story, the listeners may not see it coming.  Once it is apparent, however, the listeners expect 
some (exciting) resolution.  The rare story that lets the main character die may be more realistic in real life, 
but it also tends to leave listeners disappointed since such a resolution conflicts with their expectations. 

Storytelling is an age-old example of a relatively rigid discourse structure.  All interesting37 personal stories 
consist of six key ingredients known as narrative macrostructures [27:245; 9:119; 2:533]: 

• An abstract 

A brief introduction to the story; e.g., Man, my weekend was a complete disaster. 

• Orientation or setting 

A frame of reference giving the time, place, people involved, and so on; e.g., Bob and I 
planned to go fishing up at the lake. 

• Complication action 

An unexpected element (or many) that complicates matters; e.g., First we get a flat tire·and 
thereÊs no spare!  Then Bob gets a speeding ticket because his speedometer is broken.  
And·get this·when we finally get to the lake, we find itÊs been drained for seasonal 
maintenance! 

This ingredient is similar to conflict in literature, where most stories fall into the categories of 
man versus man, man versus himself, man versus society, man versus nature, and man 
versus the supernatural. 

• Evaluation 

The point of the story; e.g., You canÊt believe our bad luck!  

• Result or resolution 

The conclusion; e.g., So we went hiking instead.  It probably turned out to be more fun 
than fishing anyway since I never catch anything but a cold on these trips. 

• Coda 

The moral of the story; e.g., Next time, weÊll get all the information·and a spare tire·
before we go on a trip! 

                                             
37 Uninteresting or pointless stories typically lack one or more ingredients, or they are told so poorly that the listener 

cannot determine the narrative structure. 
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Discourse Structure  

Complex text cannot be represented as a linear ordering of independent sentences because together they 
would have little cohesive value [2:503; 11:5].  In other words, a collection of discrete sentences·even if 
they are all related to the same theme·is nothing but a collection of sentences; together they form no 
compositional structure with aggregate meaning. 

Discourse is based on nonlinear or hierarchical ordering.  Obvious examples are a table of contents and an 
outline, which specify overall structure at a high level.  It is present at lower levels as well, which in turn 
may have even lower levels, and so on.  Together they form the discourse structure, which is built from 
three components [45:717; 2:503]: 

• Discourse segment 

A clause, sentence, or group of consecutive sentences forming a cohesive block of text in one 
of two ways [2:504]: 

– intentional cohesion, where sentences contribute to a common discourse theme 

– informational cohesion, where sentences are related by temporal, causal, or rhetorical 
relations 

• Coherence relations 

Each discourse segment plays its own role and should be related somehow to the previous 
ones, future ones, and to the overall structure of the text.  Relations vary widely, but most fall 
into just a few categories: 

– causal relations bind segments into a sequence of events leading up to some point. 

– evaluation relations connect segments but leave gaps in detail that must be inferred.  

– elaboration relations provide details to fill in otherwise inferred gaps between segments. 

– explanation relations provide background details or motivation for the current segment.  

• Enablement  

Often a dependency or natural order of segments is imposed because, for instance, SEGMENT2 
cannot realistically occur until or unless SEGMENT1 has occurred.  In other words, one segment 
enables one or more other segments, possibly in a chain reaction. 

Discourse Organizers 

Discourse, like most aspects of language, is compositional.  Control over the structure and flow of these 
elements is provided by discourse organizers [10:288; 2:518; 29:248; 28:133]: 

• Global macro-organizers 

Discourse at a high level, such as topic and overall conversional structure, is directed by:  

– topic markers open a new topic; e.g., What do think about President Bush? 

– topic shifters move to a related topic; e.g., On that note, whatÊs the future of Alaska?   

– summarizers close a topic; e.g., Oh well, 2004 is just around the corner. 
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• Local macro-organizers 

Discourse at a low level, such as supporting details and sentence structure, is directed by:  

– exemplifiers introduce supporting details; e.g., for instance, for example, such as.  

– relators connect statements; e.g., moreover, furthermore, however, on the contrary. 

– evaluators indicate position; e.g., in my opinion, my view is, as far as I am concerned. 

– qualifiers express uncertainty or non-commitment; e.g., supposedly, from what I hear. 

– asides provide control; e.g., but thatÊs beside the point, IÊm getting ahead of myself.  

Grammatical connectivity 

Syntax and grammar are generally considered to define only the structure of individual sentences.  
However, certain constructions also play a role in linking sentences in discourse [10:232; 9:119]: 

• Space and time adverbials 

Elements linked in time and space; e.g., The train left at sunrise.  By lunchtime, it had 
already reached Chicago.  When darkness fell, it was nearing its destination. 

• Pronouns and other pro-forms 

Elements linked through pronominal coreference (see page 15 and below); e.g., [Jack and 
Jill]a went up the hill; theya were thirsty. 

• Substitution 

Elements linked through special coreference (see page 15); e.g., Jack and Jill went up the hill 
for watera; they found nonea. 

• Determiners 

Elements linked between general and specific objects (see page 46); e.g., [A strange 
character]a wandered the park.  [The man]a was later arrested. 

• Comparison 

Elements linked by comparing properties; e.g., Three horses ran the race.  Speed Demon was 
clearly the fastest [of the three]. 

• Connecting adverbials 

Elements linked by sequencing; e.g., Three issues must still be resolved.  First of all, ⁄  
Secondly, ⁄  And finally, ⁄ 

• Conjunctions 

Elements linked by coordination; e.g., John liked the movie.  However, Mary did not. 

• Ellipsis 

Elements linked by non-repeated elements; e.g., John liked the movie.  However, Mary did 
not.  Ellipsis is discussed below. 
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• Repeated forms 

Elements linked through explicit coreference, often for emphasis; e.g., Bob Dole is running 
for President.  Bob Dole wants your vote. 

Other connectivity 

Other forms of connectivity transcend syntax and grammar [10:232; 9:206]: 

• General knowledge  

Elements linked by relatively commonsense relations; e.g., The weather was great this season.  
Farmers are expecting a bumper crop. 

• Lexical relationships or vocabulary 

Elements linked by related words; e.g., That colliea is beautiful!  She must be a nice doga. 

• Punctuation 

Elements linked by written features such as a comma, semicolon, colon, dash, etc.  

• Layout 

Elements linked by graphical representations such as tables, charts, and diagrams, etc. 

• Prosody  

Elements linked in vocal characteristics such as pitch, loudness, speed, rhythm, and pause. 

Anaphora 

Language and communication are generally efficient in conveying information without repeating 
unnecessary details.  Pronouns are especially important for their ability to replace entire phrases, as the 
example on page 15 illustrated.   

Pronouns can replace referents in two places [10:223]: 

• Anaphoric reference 

The pronoun refers backward to an object that was already mentioned; e.g., [The dog]a is 
hungry.  Hea has not eaten since this morning.  

• Cataphoric reference 

The pronoun refers forward to an object that has not yet been mentioned; e.g., Because hea 
has not eaten since this morning, [the dog]a is hungry.  

Pronouns can operate at or beyond the sentence level [2:366; 11:112]: 

• Intrasentential reference 

The pronoun refers to an object in the same sentence; e.g., Boba is an accountant, and hea 
really likes numbers.   
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• Intersentential reference 

The pronoun refers to an object in a different sentence; e.g., Boba is an accountant.  Hea 
really likes numbers.   

For the most part, only anaphoric references are used between sentences, but cataphoric 
references have their place, especially for introductions; e.g., Hea  was the new villain in the 
old western town of Dirt Gulch.  Hisa  name was [Johnny Sixkiller]a.  And hea  was one 
bad hombre, as the unsuspecting residents would soon learn. 

Pronoun usage is generally straightforward and predictable.  For example, one study [25; 11:112] showed 
that between 90 and 95 percent of third-person singular pronouns·he, she, and it·refer to an 
antecedent in same or previous sentence.  Furthermore, grammatical theories like C-commanding 
constrain pronominal interpretations [6:119; 2:367; 56:337]. 

Nevertheless, pronouns are a major problem for computers because semantics, pragmatics, and world 
knowledge in context have a monumental impact on interpretation [11:335]:  

The monkeya ate the banana  because ita was hungry. 
The monkey  ate the bananaa because ita was ripe. 
The monkey  ate the banana  because it? was tea-time. 

Other pronoun-like constructions are equally troublesome [ibid]: 

The soldiers shot at [the women]a, and [some of them]a fell. 
[The soldiers]a shot at the women, and some of them misseda. 

Certain features are helpful in decoding anaphoric expressions [11:112,119; 56:590]: 

• Syntactic information 

Grammatical agreement, typically in gender and number, may constrain interpretations.  For 
example, compare: 

Johna saw Maryb yesterday when hea/sheb drove by the store. 
Johna saw Billb yesterday when he{a,b}? drove by the store. 

• Commonsense knowledge 

Semantic agreement many constrain interpretations.  For example, compare [60]: 

The organizers denied [the protesters]a a permit because theya advocated violence. 
[The organizers]a denied the protesters a permit because theya feared violence.  

• Salience 

Context tends to continue, and correspondingly, the same referents remain the likely focus.38  

                                             
38 In careful writing, at least.  Sometimes referents are linked indiscriminately; e.g., The project was a disaster.  It? 

was difficult to complete it? because it? was raining outside, and nobody knew what they? were doing. 
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Ellipsis 

Another form of anaphora is ellipsis, which omits otherwise repeated elements of a discourse structure.  
Resolving such omissions is based on two views [11:119]: 

• Syntactic view 

A primarily syntactic element has been omitted; e.g., John likes to fish, and Mary does [like 
to fish], too.  Similarly, John is a lucky person.  Me too. (read:  I [am a lucky person] too).   

Resolution involves inserting the omitted element in the proper syntactic form.  

• Semantic view 

A primarily semantic element has been omitted.  In simple terms, it is true that John likes to 
fish.  If Mary does, too, then it is also true that she likes to fish.  In contrast, if Mary does not, 
then it is false that she likes to fish (which may or may not be the same as saying it is true that 
she does not like to fish). 

Resolution involves inserting the semantic equivalent of the omitted element on a logical level 
that will be discussed in Part II. 

Conversational Discourse 

The discussion on pragmatic communication (see page 55) laid a framework for conversation in terms of 
the processing done by the speaker and hearer.  This framework can be further described by the discourse 
mechanisms that operate on it [9:118]: 

• Opening 

A plausible39 beginning statement to a conversation; e.g., nice car! or did you know? or I 
used to have one of those. 

• Ongoing checks 

A variety of cues, as shown in Table 6.1, that keep a conversation on track [10:289]: 

– by the speaker; e.g., do you get it? or are you with me? or the dreaded yÊknow? 
– by the listener; e.g., uh huh or sure or by that you mean⁄ or whoa, back up! 

                                             
39 Pick-up lines are openings, but their plausibility is suspect!  For example, hey baby, whatÊs your sign? or I lost my 

phone number; can I have yours? 
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Expression Example 
Correcting oneself  Actually, I meant Thursday, not Friday. 
Correcting someone else  DonÊt you mean Thursday or isnÊt it actually Thursday? 
Requesting clarification  Is this off the record? 
Requesting elaboration  WhatÊs up with that? 
Recalling a forgotten question  By the way, I was meaning to ask⁄ 
Reorienting to new knowledge  Sure, thatÊs an option I didnÊt consider. 
Reacting to unanticipated information  Oh, I didnÊt know thatÊs even possible. 
Displaying recognition  Uh huh, IÊve done that. 
Receiving new information  You didnÊt think it would work, but guess what, it did! 
Marking intense reaction  Oh yeah, you wanna bet on that? 

Table 6.1:  Sample conversional expressions 

• Topic changes 

– introducing a related shift in topic; e.g., that reminds me⁄ or incidentally⁄ or speaking 
of that⁄ 

– indicating the end of a topic, but not the end of a conversation; e.g., oh well! or thatÊs 
life! or go figure! 

• Ending 

A preferably non-abrupt closing statement to a conversation; e.g., well, itÊs getting late or IÊd 
really like to talk about this more, but⁄ 

Conversational maxims 

Conversation is effective and efficient for many reasons.  The basic conversational rules and guidelines 
within a culture, known as conversational maxims, are especially important because they establish a 
discourse framework [27:236; 9:117; 56:1187; 2:566; 20:88]: 

• Quality 

– do not say anything that is believed to be false. 

– do not say anything that lacks adequate support . 

• Relation or relevance 

– do say only something reasonably relevant to the topic. 

• Quantity 

– do say something informative. 

– do not say anything too informative or overloaded with details. 

• Manner 

– do avoid obscurity. 

– do avoid ambiguity. 

– do be brief. 

– do be orderly. 
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This list of maxims is not exhaustive, and new ones are easily added; e.g., do be polite, do act 
consistently [9:117].  Furthermore, many contexts and domains40 have their own lists, which may even 
contradict this one [10:378]. 

                                             
40 Politics is one such example, where opacity, obscuration, nonspecificity, etc. are the norm. 
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Section 7 

World Knowledge 
 

world: all that concerns or all who belong to a specified class, time, domain, 
or sphere of activity [1] 

 

The section on pragmatics (see page 51) introduced an osprey looking for a perch.  The two different 
senses of perch result in interpretations of the bird looking for either a fish to eat or a branch to roost on.  
Without further context, it is not possible to determine the intended interpretation.  However, if this 
statement is viewed analytically, it may be possible to choose the more plausible or likely interpretation.  
Consider, for instance: 

How likely is it that a bird would be out looking for a particular species of fish?  After all, if the bird is 
hungry, it will presumably eat any fish.  Granted, it may prefer one species to another, but if hunger is 
the overriding factor, certainly any fish should do.41 

What is more important to immediate survival?  All things being equal, food is certainly important, but 
impending exhaustion takes priority.  The fact that the bird is flying at all means that it cannot be too 
near death from hunger.  On the other hand, it could be close to falling out of the sky if it does not find 
a place to roost.  To support this scenario, a context is envisioned where the bird is over water with no 
options to land. 

Few people would formulate such detailed hypothetical scenarios to arrive at an interpretation.  The point 
of this example is that people have the ability to consider the world in so many different ways.  For all 
practical purposes, this analysis is not based on the definitions of anything in the original statement.  
Rather, it relies on an understanding of birds, flying, eating, resting, life, death, survival, priorities, 
preferences, and so on.  In other words, it relies on knowledge of the world. 

This final section is uncharacteristically weak and ill defined as compared to the previous six.  World 
knowledge defies tidy definitions presented in neatly bulleted lists, etc.  As a result, just an overview is 
provided. 

                                             
41 In this respect, birds may be more intelligent than humans:  they probably would not do the equivalent of running 

out of a gas after driving all over town on an empty tank looking for the cheapest gas station! 
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What is World Knowledge? 

For most English speakers, what comes to mind for the word „knowledge‰ is probably some subset of the 
listing in RogetÊs Thesaurus [36:290]: 

ACQUANTAINCE 

familiarity, awareness, understanding, apprehension, conversance, appreciation, conscious-
ness, cognizance, realization, perception, enlightenment, experience, recognition, memory 

EDUCATION 

schooling, erudition, learning, scholarship, instruction, enlightenment 

INFORMATION 

facts, data, low-down, lore, science, wisdom 

The Oxford Dictionary and Thesaurus augments this listing further [1:830]: 

KNOWLEDGE 

knowing, familiarity, awareness, apprehension, cognition, grasp, understanding, discernment, 
consciousness, conception, insight; ken, perception; facts, information, data, intelligence 

An interesting observation is that none of these terms can be defined clearly and unambiguously.  For 
example, how well must someone know something to claim familiarity, or how does someone become 
wise, or what is a satisfactory demonstration of intelligence?  This problem is common to almost all 
definitions in language.  It is further exacerbated by the fact that dictionaries circularly define words in 
terms of other equally vague and ambiguous words.  The result is a form of „knowledge soup‰ that is 
based heavily on intangible aspects of human understanding [51:349; 45:320]: 

• Gut feelings 

Some decisions just feel better than others.  No empirical analysis can explain or justify them. 

• Generalizations 

Language is effective and efficient because much of the obvious „stuff‰ is left unstated.  
Common sense and an understanding of the world fill in the gaps.  For example, it is fair to 
state that birds fly.  The fact that not all birds fly does not undermine this claim.  Some birds·
ostriches and penguins·do not fly by nature of their evolution; others birds·chicks, injured 
ones, and even dead ones·do not by nature of their current state.  Nevertheless, they do not 
contradict the generalization, or default belief, about birds. 

• Abnormal conditions 

By default, things that do something should be able to do it all the time unless unusual 
circumstances prevent it.  For example, airplanes fly, unless the FAA grounds them, or an 
engine will not start, or bad weather makes it imprudent, and so on.  There are few absolutes 
in the world.42 

                                             
42 Death and taxes are commonly cited exceptions, but only the former is a true absolute. 
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• Conflicting defaults 

The world rarely functions logically or according to definition; e.g., if Quakers are pacifists, and 
Republicans are not, then where did Richard Nixon, who claimed to be both, fit into this 
schema?43 

• Incomplete definitions 

Some open-ended definitions have gaps that may not be worth filling or bridging; e.g., if a tree 
falls in a forest and nobody is there to hear it, did it make a sound?  Often nobody cares about 
such hypothetical situations. 

• Unanticipated applications 

Some open-ended definitions may lead to uncertain situations; e.g., if hair is part of the human 
body, then are hair implants, and wigs of natural hair, and so on?  The dividing line is vague or 
undefined. 

Knowledge types 

A detailed discussion of knowledge will be presented in Part II (see page 83).  However, for relative 
completeness within this section, two major distinctions are considered here [51:179,454; 23:494; 
39:73]: 

• Semantic knowledge 

General knowledge and beliefs about the world that are shared by most people regardless of 
the subject matter, domain, context, etc.   

For example, if John is human, then anybody·whether they know him or not·should 
assume that by default (i.e., unless it is demonstrated otherwise) he has countless human 
properties like two arms, two legs, the ability to speak, and so on.  In other words, John is 
an ordinary, average human. 

• Episodic knowledge 

Specific knowledge and beliefs about the world that are known only by people familiar with the 
particular subject matter, domain, context, etc. 

For example, say JohnÊs friends know that he was attacked by a shark years ago.  One arm 
and both legs were eaten off, and he was left so traumatized that he no longer speaks.  John is 
a specific instance of an ordinary, average human, but he is also different in some ways based 
on what happened to him.  Perhaps only his friends know the whole story behind his 
condition; thus, they have unique episodic knowledge of what happened to him. 

 

 

                                             
43 Figure 12.3 on page 120 illustrates this conflict. 
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World Knowledge in Action 

Most people do not give any thought to different interpretations in language.  The fact that people rarely 
need to consider such details is a testament to its transparency.  However, this ignorance can easily 
introduce problems based on different perspectives of the same situation.  The following exchange 
describes a knowledge engineer trying to learn how a repair technician performs his job in order to 
develop a computer-based repair tool [51:355]: 

KNOWLEDGE ENGINEER:  IÊm not sure what you want the system to do·determine whether a 
malfunction has occurred, determine what caused it, or determine what action to take in 
order to correct it. 

REPAIR TECHNICIAN:  WhatÊs the difference? 

The technician likely deals with all three of these questions in his daily work, but he does not consider 
them separately.  Experience, intuition, and other intangible aspects of knowledge direct his actions over 
the problem as a whole.  As a result, it is difficult to provide a formal explanation for how or why people 
do certain things in certain ways.  Even more difficult is to translate such vague, formless, tacit knowledge 
into the arcane formal structures required by computers. 

A somewhat simpler example illustrates how people read between the lines to fill in implicit information: 

1 a. Sally got married and became pregnant. 
 b.  Sally became pregnant and got married. 

Sentence (1a) conforms to the culturally expected, ideal sequence of events.  Sentence (1b), which is 
identical in outcome, implies something more than (1a) does; e.g., Sally may have felt compelled to get 
married as a result of becoming pregnant. 

Finally, an extreme example that no computer will likely ever grasp is based on the following exchange 
[41:227]: 

WIFE:  IÊm leaving you. 
HUSBAND:  Who is he? 

The range of background information and subtle implications is immense!  Deep knowledge is required 
about the institution of marriage, the reality of marriage, human nature, etc. 
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Part II 

Knowledge Representation 
 

 

Part I of this paper focused on various aspects of linguistic knowledge.  This part extends the discussion 
into how such knowledge can be formally represented and used by machines.  Computers will never be 
human, but for them to process language as well as humans do, they must be embodied with many human 
qualities and abilities.  The resulting system could be evaluated with the famous Turing Test, which 
challenges humans to determine whether they are communicating with another human or a machine.  To 
pass this test, any so-called intelligent agent must be exhibit at minimum four capabilities (see also page 
98) [45:5,157; 44:92; 23:52]: 

• Natural language processing 

Natural language is the primary medium of communication, so mastery of it is essential.   

• Knowledge representation 

Communication depends on general and specific knowledge of the world.   

• Automated reasoning 

Knowledge is infinite, so no representation can store all of it.  A means of inferring new 
knowledge must be available. 

• Machine learning 

The world is dynamic, and new knowledge must be constantly acquired and adapted into the 
framework of existing knowledge. 

Intelligent Systems 

Research into intelligent agents varies according to the application.  Most approaches work toward a goal 
of making systems that think like humans, act like humans, think rationally, and/or act rationally 
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[45:5,29].  These divisions reflect deep-rooted philosophical differences within the artificial-intelligence 
community, which finds itself firmly entrenched in two camps [45:29,818,827,839]: 

• Strong artificial intelligence 

Intelligent agents can be conscious, sentient beings by virtue of their inherent complexity; i.e., 
brains make minds. 

• Weak artificial intelligence 

Intelligent agents merely perform intelligently without any claims of consciousness or sentience.  
Such agents are simply good tools that get the job done. 

Philosophical underpinnings and overtones notwithstanding, cognitive models to emulate or simulate 
intelligent behavior must exhibit many desirable properties by⁄ [34:278; 44:228,477] 

⁄ being based on representations that actually represent 
⁄ adopting multiple approaches to representation 
⁄ using representations at multiple grain sizes 
⁄ being clear about the specification of processes 
⁄ attending to the details of processing as well as to its gross form 
⁄ attending to social context 
⁄ attending to relationship between the individual and the world 

Representation Languages 

Any agent·human or computer·that interacts intelligently with the world does so in a restricted manner 
because „all reasoning mechanisms must operate on representations of facts, rather than on the facts 
themselves‰ [45:158].  Therefore, the overriding issue is which form or language of representation to use 
[23:373; 51:178,419; 26:8,253; 12:14]: 

• Natural languages 

Natural language is the ultimate language for knowledge representation.  Everything that 
concretely, abstractly, or hypothetically exists in the past, present, and future can be richly 
expressed.  To its credit, natural language⁄ [26:8] 

⁄ is algorithmic with tractable computational complexity 
⁄ is general in its purpose and use 
⁄ combines verbal and sensory data 
⁄ makes effective use of logical contradiction and redundancy 
⁄ is inherently underspecified and context dependent 
⁄ facilities learning and knowledge acquisition 
⁄ allows reasoning over the environment and itself 
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On the other hand, natural language is also a poor formal language because⁄ [12:14; 45:161] 

⁄ it cannot be easily manipulated algorithmically 
⁄ it is full of ambiguity 
⁄ its meaning is context dependent 
⁄ its syntax is extremely complex  
⁄ its connectives and prepositions are vague and unsystematic 
⁄ its supports few powerful rules of inference 
⁄ it represents spatial information poorly 
⁄ it evolved to meet the needs of communication, not representation 

Surprisingly, several of these properties find themselves listed as both pros and cons.  Iwań ska 
and Shapiro [26:403] devote 11 pages to such issues. 

• Artificial languages 

Artificial languages do not share the widespread understanding and usage of natural language, 
but they perform extremely well in certain highly formalized niches.  Two types of languages 
belong in this family: 

– programming languages allow algorithmic execution of commands on machines. 

– logical languages prove the truth of propositions. 

Anything in natural language can be stated in programming languages and logical languages.  
The difficulty is in representing more than a small subset without running into overwhelming 
complexities. 

Natural and artificial languages should not be considered competing formalisms; rather, they actually 
complement each other and play interdependent roles in many aspects of natural language processing.  
Two aspects are involved in mapping between formalisms [2:228]: 

• Semantic interpretation 

A natural-language sentence is mapped to a logical representation, which straddles the 
boundary between natural and artificial languages. 

• Contextual interpretation 

A logical representation is mapped to a knowledge-representation language, which is normally 
an artificial language. 

The remainder of this paper focuses on artificial languages.  To be of use in a system for logical reasoning, 
these languages must have four essential components [51:39; 44:947; 45:165]: 

• Vocabulary 

A set symbols is needed to read and write expressions in a language: 

– logical symbols are domain-independent quantifiers, connectives, etc.; e.g., ∀ ∃ ∧ ∨ ⇒ ⇔. 
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– constants are domain-dependent objects or individuals; e.g., Bob, red, tall. 

– variables are symbols governed by the quantifiers; e.g., x, y. 

– punctuation is symbols that clarify constructions; e.g., commas, parentheses. 

• Syntax 

Well-formed expressions in a language must be built according to its syntax and grammar. 

• Semantics 

The meaning of an expression depends on its components and their syntactic structure. 

• Rules of inference 

A knowledge base is manipulated by applying rules to its facts.  New rules are built from 
existing rules. 

Consistent with OckhamÊs razor·the most likely hypothesis is the simplest one that is 
consistent with all observations·logic systems of equivalent power can be compared according 
to the number of axioms they need to represent the same knowledge [45:534; 51:27]: 

– weaker systems use more axioms, so each must be less expressive. 

– stronger systems use fewer axioms, so each must be more expressive. 

Logic systems appear in two types depending on how they deal with new information [12:101; 2:395; 
55:668; 56:780; 51:373,381; 5:71; 45:326; 44:1022]: 

• Monotonic logic 

Inferences are sound and stable, so everything a knowledge base entails can be proved without 
contradictions.  Adding inference rules expands the knowledge base. 

• Non-monotonic logic 

Inferences are made provisionally and may be retracted if overriding or contradicting facts are 
found.  Adding inference rules either expands the knowledge base or causes existing rules to be 
removed.  Updating the knowledge base is the responsibility of the truth maintenance system. 
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Section 8 

Representation 
 

 

Long before the Wright brothers ever flew a controllable powered aircraft, countless people envisioned 
flying machines modeled after birds.  The rationale was simple:  birds clearly fly, so flying is undoubtedly 
possible.  Furthermore, birds fly by flapping their wings, so this approach should work equally well for 
machines.  The results, of course, were laughable by todayÊs standards.  Nevertheless, this view of flight 
was a representation.  It was inadequate in important respects (e.g., flapping is not the key) but correct in 
others (e.g., wings generate lift).  Given enough time, effort, money, tools, etc. to theorize and 
experiment, early pioneers in aviation eventually refined their representation into a working form.  As it 
was, the Wright brothers did not have a completely correct model of flight, either, so a representation 
need not be perfect to be useful·a representation simply needs to represent. 

What is a Representation? 

The world is full of objects that can be manipulated directly.  For instance, a ball can be seen, touched, 
smelled, tasted, and heard.  Granted, smelling and tasting a ball serve little purpose, and hearing a ball 
actually depends on its interaction with other objects, but all five human senses can indeed operate directly 
on a ball.  Furthermore, experimentation is possible on a ball; e.g., throwing it at different angles has an 
observable effect on distance traveled. 

A ball can also manipulated indirectly through a representation.  A mathematical model44 can view it in 
terms of radius, circumference, volume, and so on.  In conjunction with the properties of mass, initial 
velocity, angle of departure, coefficient of friction, standard temperature pressure, and so on, distance 
traveled can be precisely calculated without ever throwing the ball. 

                                             
44 In engineering, geometric forms are wonderful models for approximation because oddly shaped real-world objects 

can be mathematically simplified.  For example, the volume of a horse is much easier to compute if the horse is 
assumed to be a sphere!  A more careful analysis would use multiple spheres.  At some point, the spheres become 
small enough for an essentially exact solution.  Volumetric knowledge representations are similar [12:271]. 
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This example illustrates direct and indirect manipulation.  For many objects, humans work only with the 
indirect representations or abstract models.  For example, people cannot see electrons, yet electricity is 
well understood.  Likewise, most people do not understand how an automobile works, yet they can 
operate it nonetheless. 

Although their definitions, philosophies, implementations, and so on differ widely, all representations 
appear to share four components [34:5; 24:22]: 

• Represented world 

A specific domain to represent must be chosen.  Humans cover the gamut of domains, from 
the entire universe to the atomic level.  Each has its own specific objects, properties, events, 
etc., along with tools for working with them and vernacular for talking about them. 

• Representing world 

An artificial domain to parallel the represented world, or more often, a subset, must be chosen.  
For example, linguistics is a descriptive representation of language, but it does not account for 
everything in the domain of language.  

• Representing rules 

A specific set of methods and rules to represent a domain must be chosen.  Humans can use 
natural language for anything, but other methods may be more appropriate for some domains; 
e.g., mathematics and schematic diagrams. 

• Process that uses representation 

A task or goal that uses the representation must be chosen.  Representing something without 
using the representation is of limited value. 

What is Knowledge Representation? 

The short answer to this question is:  anything that bridges the gap between the real world and its parallel 
models.  Knowledge representations need not be complex.  Bees, for instance, represent the location of 
food through a nifty little dance.  This knowledge is all they can represent by it, but in the life of a bee, 
perhaps only food is important.  Humans, with the most complex lives, have a mind-boggling array of 
representations to satisfy more advanced needs, as well as desires, beliefs, and other non-bee issues.   

As knowledge representations are used in a wide range of tasks, they must exhibit a variety of useful 
properties [13:2; 136:134,121,15,1; 135:244,288; 135:165; 136:110; 133:48; 135:472,23; 134:90]: 

• Knowledge representation is surrogate 

As described above, any manipulation of objects beyond physical reach must be done abstractly 
on something that stands in for them without actually being them.  

• Knowledge representation is set of commitments 

Any domain of reasonable size or usefulness contains infinite detail.  No representation can 
parallel them exhaustively.  Therefore, decisions must be made about what goes into a 
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knowledge representation and how much detail is appropriate.  These decisions contribute to 
two intertwined commitments: 

– ontological commitment considers the nature of reality and what exists in a domain.  If 
only a subset can be represented, then presumably it should be a „good‰ subset.  This 
value judgment depends on many factors within the domain and task, so no general-
purpose answer exists. 

– epistemological commitment considers the nature of knowledge and its justifications.  
The value judgments in ontological commitment directly impact what intelligent agents will 
be able to do with a representation.  Committing to a subset may restrict its usefulness; 
e.g., if the comparisons bigger and smaller are not supported, then reasoning about size 
becomes difficult.  However, if size is not important, then perhaps such comparisons can 
be safely omitted to reduce the size and complexity of a representation. 

• Knowledge representation is a fragmentary theory of intelligent reasoning 

Intelligent agents have many needs within a domain (see page 73).  A representation must 
provide a means to satisfy them: 

– intelligent reasoning constrains solutions to those that a human may reach. 

– sanctioned inferences are solutions that pertain in some valid way to specific needs. 

– recommended inferences are solutions that best pertain to specific needs. 

• Knowledge representation is a medium for efficient computation 

A representation that works „perfectly‰ in all respects but takes thousands of years to reach a 
solution is of theoretical interest, but it has no practical application. 

• Knowledge representation is a medium of human expression 

A representation should be relatively complete, understandable, and intuitive to everyone who 
uses it for whatever their purposes are.  Knowledge engineers, domain experts, end users, and 
others should be able to communicate about it without undue difficulty.  Certainly, the level of 
understanding and ability would differ among them, but nobody should be left out of the loop 
because they are not versed in the arcane „techno-speak‰ of the subject. 

Levels of Representation 

The remainder of this segment considers high-level issues in formulating and building a knowledge 
representation.  It relies on the purposefully vague, non-technical term stuff to describe anything to be 
represented for any purpose. 
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Nature of stuff  

The breadth and depth of stuff varies widely between domains and thus affects its representation [45:615]: 

• Explicit representation 

Some knowledge lends itself well to exhaustive listing; e.g., a telephone book contains at least 
one phone number for each person.  The names and most numbers have only an arbitrary 
correspondence, so there is no way to reason about them.45 

• Implicit representation 

Most knowledge is so vast or loosely defined that it simply cannot be listed exhaustively.  
Instead, rules describe how it is accessed and manipulated: 

– formulas define explicit relationships over continuous or discrete intervals; e.g., y=f(x). 

– reasoning provides a rational way to infer new knowledge from existing knowledge; e.g., 
dogs bark, and Fido is a dog; therefore, Fido barks. 

Domain of stuff 

The environment or problem space in which an intelligent agent operates depends on the task.  Each 
type presents its own advantages and disadvantages in representation [45:46]:46 

• Accessible or inaccessible environment 

An agent with complete information about an environment can generally make more informed 
decisions than an agent with partial information can.  Too much information can be bad thing, 
however, because it may overload or overwhelm an agent. 

• Deterministic or nondeterministic environment 

A deterministic decision is limited to a closed set of choices based on the current state and 
available information.  Uncertainty is eliminated because all eventualities are known in advance. 

• Episodic or nonepisodic environment 

Blocks of time in an episodic environment do not depend on previous blocks or affect 
subsequent blocks.  Such independence is simpler to process than interdependent blocks. 

• Static or dynamic environment 

An environment that remains the same while an agent deliberates over a decision is usually 
easier to deal with.  In a dynamic environment, by the time a decision is made, it may no 
longer be appropriate or prudent. 

• Discrete or continuous environment 

The steps toward a goal depend on the task.  Discrete environments like chess execute in lock-
step progression, whereas continuous environments like paintball run unfettered. 

                                             
45 Mnemonic correspondences like 1-800-CALL-ATT are a useful exception. 
46 Not surprisingly, the real world the most difficult environment; it is inaccessible, nondeterministic, nonepisodic, 

dynamic, and continuous [45:773]. 
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Truth of stuff 

Truth in representation is in the eye of the developer.  For example, a perfectly implemented 
representation of a faulty theoretical model may work exactly as specified while having no valid connection 
with its counterpart in the real world.  In other words, representations do what they are told, regardless of 
whether it is correct or not.  In an ideally correct model, truth falls into two broad categories based on how 
the world really works [23:5; 45:821]: 

• External truth 

The world exists regardless of whether any theories describe it.  Long before humans came 
onto the scene, the same mechanisms were in play.  These truths are constant; in a perfect 
world, science would devise exactly corresponding laws. 

• Internal truth 

Human understanding of the world is incomplete; thus, so are the conceptual models that 
represent it.  Occasionally, very convincing theories become laws; the remainder are 
continually re-evaluated, strengthened, weakened, or even discarded, etc.   

Two views subdivide internal truth: 

– wide content claims that a representation intrinsically refers to aspects of the real world by 
virtue of the fact that they can be represented at all. 

– narrow content claims no intrinsic connection; rather, the beliefs of the person who builds 
the representation play a role in specifying what it refers to. 

Extent of stuff  

The depth at which stuff is processed depends on how it is being used [26:283]: 

• Shallow representation 

Some representations can operate well at a superficial level.  For example, searching for names 
and dates in text can be done without analyzing syntax and semantics. 

• Deep representation 

Many complex representations are so because they reflect inherent complexity in the world.  
Low-level processing must be employed to account for many details.  For example, word-sense 
disambiguation must often consider both syntax and semantics. 

• Mixed representation 

Both shallow and deep representations have their places, and they are not mutually exclusive.  
In most cases, processing should be done only at the level needed for a particular task, etc. 
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Form of stuff  

All representations operate on some form of symbols instead of on actual stuff.  These symbols can appear 
in two fundamentally different forms [34:9,12; 51:285; 44:90; 11:677,807;786; 53:88; 51:69] 

• Symbolic representation 

Computers and most programming languages function on the symbolic level.  Variables assume 
a fixed set of values and are manipulated through functions with predefined, known behavior.  
For example, digital circuits operate on discrete signals through well-defined logic functions.  In 
binary logic, the expression (a ∧ b) maps four inputs to two outputs; no other states are 
possible.  Developing, testing, and tweaking such circuits involves a finite (although often large) 
number of cases.  The compositional nature of discrete logic allows modularized architectures 
to be tested as relatively independent units. 

Symbols are often recursively composed of lower-level symbols down to atomic primitives.  
The symbol-grounding problem addresses difficulties in defining which primitives exist and 
what they mean.  A dictionary exhibits an analogous problem:  entries are defined in terms of 
other entries, so somebody who understands none of them cannot use it. 

• Subsymbolic representation 

So-called soft computing is valuable in many representations where imprecision and 
uncertainty are common and making discrete approximations carries a significant penalty.  
Artificial neural networks and fuzzy logic (see pages 129 and 110, respectively) are common 
implementations. 

Disadvantages of subsymbolic representations are manifested in development and maintenance 
because the internal mechanisms are hidden and not well understood.  For example, analog 
circuits operate on continuous signals through loosely defined logic functions.  In fuzzy logic, 
the expression (a ∧ b) maps an infinite set of inputs to outputs.  Even in discretized increments 
of 0.1, 100 inputs map to 10 outputs.  Developing, testing, and tweaking such circuits involves 
an intractable number of cases. 

Implementation of stuff  

The amount of detail in stuff may ranges from superficial to gory specifics.  Ultimately, however, the 
implementation level needs to have its requirements satisfied, so low-level details must be produced at 
some point.  This abstraction can be considered on multiple levels [45:153,257; 34:21; 13:7]: 

• Knowledge or epistemological level 

What does an agent know?  For example, if it understands decimal numbers, can it add? 

• Logical level 

How does an agent encode what it knows?  For example, to add, does it use prefix, infix, or 
postfix notation in an imperative or functional statement? 
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• Implementation level 

How does an agent actually do what it knows how to do?  Three lower-level abstractions apply: 

– computational-level descriptions can be treated as black-box functionality, so internal 
details are abstracted away; e.g., an adder unit takes two inputs and outputs a sum. 

– algorithmic-level descriptions considers intermediate details with mid-level abstraction; 
e.g., an adder converts the decimal inputs into binary numbers, performs an addition 
instruction, then converts the result to the decimal output. 

– implementation-level descriptions considers all details; e.g., the addition instruction is 
performed by a 32-bit carry-lookahead adder built from discrete logic. 

Represented Knowledge 

Knowledge appears in so many forms that even a survey is well beyond the scope of this paper.  Instead, 
this segment extends the discussion on world knowledge (see page 71) by considering just two high-level 
categories. 

Semantic Knowledge 

General knowledge and beliefs about the world are known and shared by most people regardless of the 
subject matter, domain, context, etc.  Such knowledge is not innate to humans, as it must be learned at 
some point in life.  Nor is it the same for every human, as people learn different things in different ways, 
and not everything is even correct [44:947].  Nevertheless, semantic memory·the storehouse of this 
semantic knowledge·reflects the world in a way that can be considered reasonably common and static 
[51:179,454; 23:494; 39:73; 12:436,453; 136:110].  For example, people familiar at all with liquids 
recognize that they appear in various forms with different properties, as illustrated in Figure 8.1 [51:353; 
12:342].  While most people cannot exhaustively list all these forms, and in fact, not all languages even 
make such distinctions (see page 36), a tacit understanding of liquids is arguably shared. 
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Figure 8.1:  Forms of liquids 
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Semantic memory is based on at least five components [136:454]: 

• Ontology 

The world consists of interrelated generic concepts with properties.  The discussion on 
ontology (see page 127) provides more details. 

• Definitions 

Formal rules and conditions dictate how concepts are organized within an ontology and how 
new ones are described in terms of existing ones.  

• Constraints 

General principles or axioms specify what must be true of everything in an ontology. 

• Defaults 

An ontology supports the so-called „rules‰ in the real world, as well as the exceptions to them. 

• Behavior 

Among the properties of a concept are what it can and cannot do, what can and cannot be 
done to it, and so on. 

Episodic Knowledge 

Specific knowledge and beliefs about the world are known only to people familiar with the subject matter, 
domain, context, and so on.  The range of people can vary from an individual to the entire human race; 
the defining factor is knowledge of particular objects, places, events, etc.  Whereas semantic memory 
maintains relatively constant shared knowledge such as dogs are related to wolves, episodic memory 
maintains transient knowledge about, say, my dog Rambo and the wolf White Fang from a Jack London 
novel. 

Episodic knowledge revolves around episodes, or instances and events in the world [51:454].  As each 
instance is unique, a knowledge representation must account for this variation.  Furthermore, changes 
over time must be considered, as very little in the world is constant.  These issues are tackled by the theory 
of fluents, which leads to formal representations like temporal logic and situation calculus (see page 
111) [45:241; 12:191,58; 56:917]. 

An event or instance that occurs once is unique; if it occurs more than once, each is similar yet different in 
some respect.  Two elements of representation can account for these differences [12:191]: 

• State types 

Many statements of fact are timeless in the sense that they answer the generic question:  was 
something ever true at any time, including the present?  For example, Godzilla has clearly 
been in Tokyo:  in(Godzilla, Tokyo).47 

                                             
47 A good knowledge representation should distinguish between reality and fantasy.  As no such creature actually 

exists, and the guy-in-a-lizard-suit instance that is referenced was actually in a mock-up of Tokyo, this „fact‰ is valid 
only within the context of certain movies.  To compound the problem, references to fantasy are commonly used in 
the real world; e.g., If the Japanese donÊt lower their trade barriers, weÊre going to send Godzilla after them! 
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• State tokens 

In many cases, a timeless representation is inadequate because multiple instances of the same 
event must be distinguished.  For example, Godzilla actually frequents Tokyo, and to refer to a 
particular attack requires each to have a unique name of some sort.  For example, the tokens 
token(attack1, in(Godzilla, Tokyo)) and token(attack2, in(Godzilla, Tokyo)), as well as the 
relation before(attack1, attack2), can be used to define specific instances like during(attack1, 
crushed(Godzilla, tanks)) and after(attack2, went(Godzilla, volcano-lair)). 

The order of events depends on when they occur relative to each other.  Since not all contexts require the 
same level of detail in representing this order, different dependencies are useful [51:215]: 

• Implicit dependency 

In some contexts, it may be appropriate to define events in the vague terms of always or 
sometimes.  If something is always true, then it applies to every fact; however, if something is 
true only sometimes, then it cannot be expected to be true before, during, or after any 
particular event.  In order words, always means it is necessary, whereas sometimes equally 
means it is possible.  See the discussion on higher-order logic (page 109) for more details. 

• Explicit dependency 

In other contexts, exact points or intervals in time may be needed.  Typed variables can be 
defined on a timeline and compared relatively or absolutely; e.g., ∀t1:time ∃t2:time 
during(t1,t2) ∧ occurred(e,t2) means some event e occurred at some point t2 within the 
(unspecified) interval t1.  Temporal relations are shown in Figure 9.5 on page 101. 

Events may form many widely differing kinds of chains [51:216,115,125]: 

• Discrete or continuous events 

Computers operate in discrete lockstep with a fixed-interval clock that unambiguously defines 
exactly when things can occur; e.g., the minimum quantum of time may be a clock cycle on 
the order of one nanosecond.  The real world imposes no such limit on granularity; i.e., for 
any moment in time, a smaller unit of time can be found.  By convention, humans view the 
world in terms of seconds, minutes, hours, and so on, but these units are arbitrary and infinitely 
divisible along a continuous interval. 

• Linear or branching events 

A chain in the past is linear because only one branch was chosen at each alternative point.  For 
future chains, however, all branches are possible, and the number of potential outcomes 
explodes combinatorially. 

• Independent or ramified events 

Independent events have no effect on other events, whereas ramified events do in two ways: 

– locally ramified events effect only those things with which they are directly involved. 

– structurally ramified events cascade effects across things regardless of their involvement. 
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• Immediate or delayed events 

Some events cause an immediate effect, whereas others serve as a trigger for consequences 
later down the chain. 

• Sequential or concurrent events 

Some events must occur in linear order by time, whereas others may occur simultaneously.  

• Predicable or surprising events 

If all the effects of an event can be listed exhaustively, then its role in a chain is predictable.  
Effects that are not known in advance or not considered introduce uncertainty. 

• Normal or equinormal events 

Many chains play out in an expected or more probable order, whereas others may be entirely 
unpredictable. 

• Flat or hierarchical events 

Events in a flat chain are dependent on a limited number of preceding events.  In a hierarchical 
chain, events are composed of (possibly recursive) subevents that must propagate their effects 
forward in time. 

• Timeless or time-bound events 

Timeless objects in a chain exist within its entire context (and possibly beyond), whereas time-
bound objects may wink in and out of existence as conditions change. 

• Memory-bound or forgetful events 

The next event in a chain may depend on the preceding events, or it may be independent of 
everything except the current event. 

Definitions of Knowledge 

Commitments must be made about many issues in a knowledge representation before anything can be 
represented.  While this paper focuses on formalized approaches of arcane representations, knowledge 
need not appear at this level.  In fact, many high-level resources like a dictionary, thesaurus, and 
encyclopedia are used by ordinary people.  They are indeed representations of knowledge, and, as such, 
they should also conform to certain commitments and guidelines [58:16]: 

• A definition must be neither too broad nor too narrow 

An overly broad definition includes objects that are not part of the term being defined; e.g., a 
dog is a hairy quadrupedal animal applies equally well to wolves.  Likewise, an overly narrow 
one excludes objects that conform to it; e.g., mammals are animals that give birth to live 
young does not account for the duck-billed platypus.  A definition can be both too broad and 
too narrow. 
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• A definition should not be negative when an affirmative definition is possible 

A description of what something is not fails to capture the properties of what it is; e.g., an 
equilateral triangle is not scalene or isosceles. 

• A definition should be literal 

Figurative language (see page 48) is too vague; e.g., diamonds are a girlÊs best friend. 

• A definition should be evaluatively appropriate 

Emotive or biased language like sarcasm is inappropriate; e.g., Microsoft is a company that 
produces bug-free software; yeah right! 

• A definition must be mutually non-circular 

Recursive chains contribute little or no information; e.g., a prize is something awarded after a 
contest, and a contest is something that awards prizes. 

• A definition must be consistent with previous definitions 

No contradictory or anomalous cases should arise from substituting equivalent definitions; e.g., 
if a pencil is made of wood and an automatic pencil is made of plastic, then a plastic 
automatic pencil must also be made of wood! 

• A definition must be unambiguous, not excessively vague, and not obscure 

Ambiguous terms should be avoided, or they should appear with adequate context; e.g., Wells 
Fargo is a bank (a financial institution).  Vague and obscure language clouds the meaning; 
e.g., kittens are good animals.  

Knowledge can be defined in many arbitrary ways.  One common way is by the intended purpose or use 
of a definition [58:10]: 

• Stipulative definition 

Some definitions simply connect or repackage other definitions; e.g., a ≡ b means a is 
equivalent to b; or, a spork is a combined spoon and fork. 

• Lexical definition 

Language-related resources like a general-purpose dictionary define words in terms of their 
conventional or customary meanings; e.g., a spoon is a small, shallow, oval-shaped bowl on 
a handle used for stirring and eating food. 

• Precising definition 

For specific purposes, especially legal contexts, vague definitions must be explicit; e.g., 
intoxicated means drunk, but legally, it means a blood-alcohol level of at least 0.8.  Note 
that someone with 0.79 may be drunk in the general sense while not in the legal sense. 

• Theoretical definition 

For a particular audience, a definition may be limited to the context or framework of a theory; 
e.g., for a physics student, cold is reduced kinetic activity at the molecular level. 
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• Persuasive definition 

Words with connotative or emotive baggage (see page 37) can bias a definition; e.g., the 
members of the northern group are freedom fighters. 

Another way to define knowledge is by its representation [58:12; 51:92,99,583] (see also page 37): 

• Extensional or denotative definitions 

The meaning of an extensional definition is based on the objects to which it applies: 

– enumerative definitions list every member of the defined set; e.g., the U.S. states are 
Alabama, Alaska, Arizona, and so on.  Many sets contain too many members to list or 
the members are unknown, etc. 

– ostensive definitions refer to actual objects; e.g., Chito is that person (indicated by 
pointing).  This approach is limited to physical contexts where all elements are present. 

– recursive or inductive definitions rely on a proven starting point and rules for proceeding 
based on it; for example: 

someoneÊs parent is someoneÊs ancestor: 
∀x ∃y parent-of(y,x) ⇒ ancestor-of(y,x) 

the parent of someoneÊs parent is someoneÊs ancestor: 

∀x ∃y ∃z (parent-of(x,y) ∧ ancestor-of(y,z)) ⇒ ancestor-of(x,z) 

nothing else is someoneÊs ancestor: 
∅ 

• Intensional or connotative definitions 

The meaning of an intensional definition is based on the properties that its corresponding 
objects must have: 

– synonymous definitions indicate that multiple definitions are generally equivalent; e.g., a 
physician is a doctor, and vice versa. 

– contextual definitions are synonymous definitions that appear more appropriate in 
certain contexts; e.g., (a ∧ b) is the same as ¬(a ∨ b). 

– operational definitions list steps toward proving that an object exhibits the required 
properties; e.g., a liquid is an acid if (and only if) a clean litmus strip placed in contact 
with it turns red. 

– hierarchical definitions use the notion of genus and species in relation to other 
definitions.  A genus specifies objects with like properties, and a species specifies how 
these objects are different; e.g., the genus Canis contains wolves, dogs, foxes, and jackals.  
Each is a separate species because it differs in notable characters. 
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References to Knowledge 

References connect elements of the world to the various types of symbols that represent them [51:396]: 

• Elements applied to signs: 

– qualisign (material quality) 
beeping is a function of sound waves, regardless of their source or meaning. 

– sinsign (material indexicality) 
beeping from the direction of an alarm clock indicates the probable source. 

– legisign (material mediation) 
the purpose of an alarm clock is to wake sleeping people, so its beeping sets a context. 

• Signs applied to objects: 

– icon (relational quality) 
the image of an alarm clock evokes understanding and meaning of its real-world counterpart. 

– index (relational indexicality) 
an arrow pointing toward the image of an alarm clock brings it into focus within a context. 

– symbol (relational mediation) 
the sound of alarm clock in a different context may be used in related contexts. 

• Objects applied in language: 

– rheme (formal quality) 
the arbitrary English word alarm clock refers to such an object, whether it is present or not. 

– dicent sign (formal indexicality) 
reference to a specific alarm clock establishes an actual context. 

– argument (formal mediation) 
a sequence of dicent signs establishes a process involving an object. 

Reference in natural language is in many ways analogous to pointers in programming languages.  Not 
surprisingly, many of the same problems manifest themselves.  For instance, two people can refer to the 
same object by a different name and not realize it.  Likewise, they can refer to different objects by the 
same name.  Two main issues arise in representing reference [2:380; 23:391; 45:244; 12:55; 56:463]: 

• Transparent reference  

Equivalent terms can be substituted freely within the appropriate scope.  For example, given 
Kazi is the whitest kitty, and Kazi bit Dan, it is safe to assume that the whitest kitty bit Dan.  
Both descriptions refer to the same kitty.  LeibnitzÊs principle formalizes this as „⁄ two 
expressions refer to the same object if in all contexts they can be interchanged without 
changing the truth value‰ [56:463]. 
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• Opaque reference 

Equivalent terms cannot be substituted freely within the appropriate scope.  For example, given 
Kazi is the whitest kitty, and Iris believes that Kazi bit Dan, it is not safe to assume that Iris 
believes the whitest kitty bit Dan because Iris may not know that Kazi is the whitest kitty.  Iris 
has an explicitly stated belief only about the biting.  In fact, she may know of a kitty that is even 
whiter than Kazi, in which case the substitution would have that particular kitty biting Dan. 
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Section 9 

Reasoning 
 

 

Reasoning is the process of drawing conclusions through the plausible manipulation of knowledge and 
information.  Knowledge representation and reasoning are integral parts of each other, but they can be 
addressed separately in terms of what they are and how they is used [135:92].  This section discusses the 
latter in various kinds of reasoning [134:25,95; 135:140; 51:247,143]: 

• Representing degrees of belief 

People know how well they know many things; e.g., experts are likely positive about their 
answers, whereas novices may hedge theirs with a degree of uncertainty. 

• Evaluating the strength of arguments 

People usually believe things they know or infer until something indicates that they are 
incorrect or makes them less certain. 

• Applying rules of general but not universal validity 

Statements about the world are generally true, but exceptions are nearly always possible.  The 
presence of an exception does not undermine the validity of generalizations or belief in them. 

• Avoiding the enumeration of all conditions on a rule 

An infinite number of remotely plausible factors are relevant to any situation, but sane people 
almost never consider them.  For example, a person who wants to buy a soft drink from a 
vending machine operates under the basic assumptions that everything will go according to the 
way it normally does.  While it is indeed possible that a power failure could occur or the money 
could be counterfeit or a runaway truck loaded with mutant clams could crash through the wall, 
planning for such eventualities is pointless.  On the other hand, certain eventualities are so 
common that contingency planning is almost obligatory; e.g., vending machines consistently 
rip people off, so taking extra coins may be prudent. 
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• Inferring from the absence of information 

The default interpretation of many unknown situations is usually the broadest, most general 
possible; e.g., hearing an unknown dog bark would lead someone to believe that a dog is 
nearby, but not that the dog is white, belongs to a rich person, and has rabies. 

In other situations, the default interpretation is assumed false because, as Carl Sagan stated in 
debunking the supernatural, „extraordinary claims demand extraordinary proof.‰  If a person 
does not know the correct answer and maybe even has no clue whatsoever, he or she may still 
reject a claim on the grounds that it conflicts with common sense, conventional wisdom, or 
personal beliefs. 

Finally, information often provides its own plausible constraints somehow; e.g., if concert 
tickets are announced to cost at least $50, people would not normally infer that they cost 
$1,000, even though this conclusion is mathematically true. 

• Limiting the extent of inference 

Plausible rules on a small scale may lead to implausible results on a large scale.  For example, it 
seems intuitive to claim that removing a grain of sand from a heap leaves behind a heap.  
However, after repeated applications of this rule, the single grain of sand remaining is 
decidedly not a heap. 

• Inferring with vague concepts 

The heap example above illustrates the ill-defined semantics of vague concepts and the 
resulting difficulty in reasoning over them.  The discussion on reference (see page 37) provides 
more examples. 

• Finding expected utility 

Life involves continuously re-evaluating the cost of doing something with respect to its potential 
benefits and the possible consequences of not doing it.  For example, carrying an umbrella in 
case of rain incurs the cost of finding it, holding it, not losing it, etc.  The benefit is enjoyed 
only in the event of rain, whereas the consequence of not carrying it is getting wet. 

• Reasoning about reasoning 

Reasoning about the pros and cons of a decision, as in the umbrella example above, 
demonstrates a form of abstract, second-stage thinking.  This meta-reasoning reveals to 
rational agents some of the ways they make their decisions and control their fate. 

• Inferring explanation 

Everything happens for a reason, but the reason is not always apparent.  People fill in the gaps 
based on available information and commonsense reasoning.  For example, finding oneÊs car 
wet when the sky is overcast generally leads to the conclusion that it rained.  Seeing kids with a 
hose next to the car on a sunny day generates another conclusion.  The combination of both 
an overcast sky and hose-wielding kids requires more information and thought. 
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• Inferring schemas 

Many aspects of life and the world exhibit regularity and predictability.  Inference on at least 
four related components helps fill in missing or anticipated information: 

– schema identification involves determining the context of a situation; e.g., seeing a 
fuselage, wings, and tail leads to the conclusion that an object is an airplane. 

– slot prediction involves inferring the expected components of an identified schema; e.g., 
seeing an airplane leads to the conclusion that it has a cockpit and seats inside. 

– filler identification involves putting actual instances into slots; e.g., Captain Crunch sits in 
the cockpit and named passengers occupy the cabin. 

– relation prediction involves predicting what the parts of the schema likely do; e.g., the 
engines somehow make the plane go because engines do so in general. 

• Inferring by analogy 

Knowledge of something in one context or schema often applies to others.  For example, 
engines make cars go, so, by analogy, they should also make jet airplanes go.  The fact that 
two entirely different mechanisms provide the power for two different ways of going does not 
undermine the usefulness of this analysis. 

• Inferring a general rule from examples 

People naturally jump to unsound conclusions based on minimal information or experience; 
e.g., Bob thinks all the food at Lo WangÊs Chinese restaurant is bad because he did not like the 
one tiny bite of kung fu shrimp he tried. 

Inference 

Reasoning involves selectively applying inference rules that lead to other rules and eventually to a desired 
conclusion, if one can be drawn [55:672].  Reasoning in the real world must take into account countless 
vague interdependencies between extremely complex and ill-defined elements, etc.  While such reasoning 
is undoubtedly possible·human do it easily·it demands far more varied and powerful mechanisms than 
are normally available in todayÊs knowledge representations.  As a result, examples of reasoning usually 
apply relatively simple inference rules. 

Most inference rules are based on three approaches [12:4; 2:393,470; 12:4; 51:390; 5:129,141]: 

• Deductive Inference48 

Beginning with something true and following true intermediate steps to a conclusion is 
proceeding deductively.  Only conclusions that follow a valid line of reasoning can be proved; 
e.g., rocks can break glass, so throwing a rock at a window could break it because it is glass.  
Saying rocks cannot break glass causes the remainder of the chain to make no sense, as does 
throwing a rock at a tree, etc. 

                                             
48 See Figures 9.2 and 9.3 on page 100 for more information. 
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• Abductive Inference 

Finding plausible reasons for why something is true works backwards toward the source.  
Multiple interpretations may be equally valid; e.g., finding oneÊs wallet gone could mean it was 
stolen or lost or misplaced, etc.  Each line of reasoning develops differently. 

• Inductive Inference48 

Encountering multiple examples of something naturally leads to generalizations; e.g., if a 
person in a new town sees several purple fire hydrants, it does not take long to generalize that 
all fire hydrants in town are purple.  This reasoning does little to develop a hypothesis about 
why they might be purple, but it does help predict the color of future fire hydrants to be 
encountered.  Furthermore, after a generalization has been made, a person is less likely to 
consider the issue much further; e.g., the first purple fire hydrant was probably a total surprise, 
and to a lesser degree, so were the following couple; after a certain small number, however, 
the surprise is gone. 

Theorem Proving 

Applying inference rules in a strategic way to reach a goal forms the basis of theorem proving.  Many 
variations in the details are possible, but most are based in some way on the basic methods discussed here. 

Forward and Backward Chaining 

Chaining relies on the fact that the inference rules are tied to other inference rules through logical 
implication.  Rules in the chain p⇒q, q⇒r, r⇒s, s⇒t and t⇒u, for instance, can be proved by two chaining 
methods based on the available information and intended goal [44:687; 34:93; 45:274; 51:156]: 

• Forward chaining 

Following a chain from start to end relies on the rule Modus ponens and positive logic:  if x is 
known to be true, then by applying x⇒y, infer that y is true.  Therefore, in this example, 
knowing premise p is true means that conclusion u is true as well.49   

This inference is not directed toward any particular goal; rather, it proves everything that can 
be inferred from the premise, even irrelevant facts. 

Most people intuitively use forward chaining in commonsense reasoning. 

• Backward chaining 

Following a chain from end to start relies on the rule Modus tollens and negative logic:  if y is 
known to be false, then by applying x⇒y, infer that x is false.  Therefore, in this example, 
knowing conclusion u is false means that premise p is false as well.49   

This inference is directed toward a particular goal by proving everything from it on a directly 
related chain back to the premise.  It returns all relevant answers to a question. 

Few people use backward chaining in commonsense reasoning. 

                                             
49 As well as q, r, s, and t, of course, but as intermediate steps, they may not be of interest. 
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Chaining is used to explain existing conditions and to predict future ones [45:447]: 

• Diagnostic inferences 

Working backward from effects to presumable causes is the basis of diagnosis; e.g., what would 
cause a patient to have green skin and swollen earlobes? 

• Causal inferences 

Working forward from causes to possible effects plays a role in prediction; e.g., what might be 
the consequences of doing x? 

• Intercausal inferences 

Multiple causes can play a role in an effect, but with limitations; e.g., two independent causes 
are less likely to occur simultaneously than one is, so their combined role should play a much 
smaller role in determining potential consequences. 

• Mixed inferences 

Any combination of diagnostic, causal, and intercausal inferences is possible; e.g., an ill person 
involved in a car accident might have multiple unrelated medical conditions with common, 
disjoint, or conflicting symptoms, etc. 

Entailment and Implication 

Natural language often involves reasoning over properties and limits in at least two ways [57:56; 
2:254,393; 26:272]: 

• Entailment 

A more restrictive statement can be inferred as true from a less restrictive true statement.  For 
example, all dogs bark loudly entails all dogs bark because to bark loudly requires them to 
bark in the first place.  Likewise, few birds speak entails few birds speak English because if 
few speak at all, then presumably even fewer speak a specific language.  This statement is true 
even if all the few birds do indeed speak English. 

• Implication 

A statement can be constrained for practical interpretation without enforcing the constraint.  
For example, Larry has two dogs leads to the natural conclusion that he does not have three 
dogs, but he could. 
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Other Methods 

The following methods warrant mention as they are commonly employed in inference and reasoning.  
However, detailed discussion would delve into proofs and other aspects beyond the scope of this paper. 

• Resolution 

Probably the most used inference rule in artificial intelligence, resolution builds new rules·
usually too many·by mixing and matching other rules in a pattern-matching manner; for 
example [55:658]: 

ball(marble) a marble is a ball. 

¬ball(x) ∨ round(x) a marble ball cannot not be a ball, so discard the offending term, 
which results in a round marble ball. 

¬round(x) ∨ rolls(x) a round marble ball cannot not be round, so discard the offending 
term, which results in a round marble ball that rolls. 

∴ rolls(marble) therefore, the marble rolls 

• Unification 

The pattern-matching of resolution can be extended to evaluate functions and compare lists of 
arguments to compute the most general solution based on a given line of reasoning  [4:270; 
2:411,599,604,607]. 

• Circumscription 

Properties that apply to the majority of objects can be made the default by abductively 
minimizing the set of nonconforming objects; e.g., describing most birds fly as the set of non-
flying birds is as small as possible [56:789; 12:109; 2:395; 5:141]. 

• Subsumption 

Redundant rules can usually be collapsed into more general ones to reduce their number in a 
knowledge base; e.g., person(x) subsumes person(Bob) because, say, if everyone is a person, 
then there is no point in stating that Bob is a person [45:286]. 

Reasoning 

To function in the real world, higher organisms must reason in some way over many aspects of life.  
Humans are the most rational and intelligent of all organisms and correspondingly have the most complex 
lives.  This segment considers several of the main ways humans reason. 

Commonsense Reasoning 

Much of what makes humans human is the ability to use so-called common sense.  The gap between 
human and computer abilities in reasoning is vast, and it is unlikely to be spanned until a better 
understanding is formed about what common sense is and how it works [12:18].   
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Some properties of commonsense reasoning contribute to its flexibility and tolerance to varying situations 
[44:687; 56:590]: 

• Reasoning with incomplete info 

Common sense typically applies whenever it is needed, even if not all relevant information is 
available.  Humans excel at filling in the gaps, entertaining multiple hypotheses, etc. based on 
what is available, expected to be available, and even certain never to be available; e.g., aircraft 
accident reports often must draw conclusions from missing, damaged, or destroyed flight data. 

• Reasoning with changing info 

Humans excel at reformulating reasoning on the fly as further information becomes available.  
New or supporting information builds a line of reasoning, whereas contradicting information 
may change it; e.g., a free Sunday afternoon offers multiple possibilities for outdoor leisure 
depending on the weather.  If the weather changes after a plan has been adopted, it may be 
modified or even discarded in favor of, say, something indoors. 

• Reasoning with uncertainty 

Real-world information can rarely be taken at face value.  Reasoning must account for differing 
validity, strength, salience, and so on to develop or maintain plausible lines while discarding 
others.  For example, planning on Monday for a Sunday trip leaves open many possible 
weather-related factors.  Contingency plans can be devised in advance and reformulated as the 
weather on Sunday becomes more predictable. 

Logical reasoning systems tend to fail on real-world situations because the real world does not lend itself 
well to formal description.  The fact that humans do not fully understand the world contributes to poor 
representations of it [45:417]: 

• Laziness 

Too much manual work is required to consider all possible cases within a real-world scenario.  
As a result, many details are consciously omitted in building a reasoning model. 

• Theoretical ignorance 

Many real-world scenarios are simply not understood well enough to consider all the possible 
cases.  Moreover, even if they are recognized, formally representing them may be beyond the 
current state of the art. 

• Practical ignorance 

An exhaustively defined reasoning model may work beautifully on complete, valid, constant 
data known in advance, but, of course, the real world rarely conforms to these requirements. 

Reasoning about Beliefs 

Lying, cheating, selling used cars, and other self-serving human endeavors rely on intentionally 
misrepresenting the world to an agent who is unaware of the deception [44:950].  Belief, or the epistemic 
state, of agents represents their understanding of the world at a particular time based on available 
information and reasoning [5:48].  Some beliefs are shared within a scenario; e.g., both a used-car 
salesperson and a potential customer understand that a car is to be purchased.  Other beliefs are unilateral; 
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e.g., the salesperson believes the customer will pay more than necessary for a car, while the customer 
(occasionally) thinks the salesperson will be honest [2:548].  The customer may entertain multiple beliefs 
simultaneously; e.g., used-car salespeople try to rip customers off, but not all of them do, so perhaps give 
this one in the checkered sports coat and striped slacks the benefit of the doubt.  Some beliefs may be 
perceived (maybe incorrectly) as more likely than others; e.g., most used-car salespeople are crooks, so 
make this belief the default expectation [34:72; 12:96,370]. 

Belief revision is the strengthening, weakening, or discarding of beliefs as more knowledge is acquired; 
e.g., a rational agent can eliminate any doubt once the salesperson pitches „Have I got a deal just for you, 
Roger!  DonÊt tell my manager, but IÊm gonna sell you this beauty for less than cost!‰ [44:1241,1244]  
Linguistic mechanisms behind beliefs are discussed in the segment on speech acts (see page 56). 

People have an unending supply of false beliefs that may or may not be revised throughout life.  Their 
form varies widely and their logical soundness is often questionable.  True beliefs in a sound reasoning 
system are more limited [2:546; 12:357; 20:133]: 

• Explicit beliefs 

Belief propositions are explicitly stated as true in the knowledge base; e.g., Chito is human. 

• Implicit beliefs 

Belief propositions can be inferred from explicit beliefs in the knowledge base through 
inference rules; e.g., Chito is a man, and a man is human; therefore, Chito is human. 

Beliefs play a major role in human life.  In fact, BDI (belief, desire, intentional) models are considered 
essential to building any truly intelligent agent [2:542]: 

• Perception 

An agent must receive and process information about the world around it. 

• Beliefs 

Information on the present state of the world must be represented. 

• Desires and wants 

Certain states should be preferred to others so that the desirability of beliefs can be compared. 

• Planning and reasoning 

Changing states depends on understanding past, present, and potential future states, as well as 
their cascading effects on other agents and the world. 

• Commitment 

The decision to change states should be made rationally. 

• Intentions 

Decisions in a chain toward a goal should remain relevant. 

• Acting 

An agent should be in active control of these actions. 
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Case-Based Reasoning 

Reasoning in law provides the foundation for case-based or analogical reasoning, which compares known 
cases and their conclusions to new cases to draw similar conclusions.  Figure 9.1 depicts the basic 
architecture of a case-based reasoning system [34:225].  The case base contains known cases in indexed 
form for quick and flexible lookup by the retriever.  The tweaker massages the new case to fit into the 
framework of the known ones.  The learning/storage unit processes the cases to determine whether their 
conclusions can be reconciled.  It outputs the result and records it as a new case in the case base. 

Case Base
Retriever Tweaker

Learning/Storage

 

Figure 9.1:  Case-based reasoning architecture 

Case-based reasoning derives conclusions through four components [51:358; 44:196]: 

• Given case 

A known case with a conclusion is used as a precedent; e.g., smoking crack cocaine is illegal. 

• New case 

A new case is found to be similar to the given case; e.g., is smoking the new smackhead rot 
cocaine illegal?50 

• Cause 

An attempt is made to reason over the new case in light of the given one by ironing out their 
differences; e.g., smoking crack makes people high and dangerous to society; smoking 
smackhead rot cocaine leads to the same result. 

• Judgment 

If the differences between cases can be reconciled satisfactorily, some part of the original 
conclusion can be drawn for the new case; i.e., smoking smackhead rot cocaine is illegal. 

Case-based reasoning can record both successful and unsuccessful results [45:829; 34:201]: 

• Success-driven learning 

Conclusions that work for a given cases are stored for future use on the same or related cases.  
Generating them again will not be necessary. 

• Failure-driven learning 

Conclusions that do not work for a given case are stored for future use as negative evidence.  
By knowing which cases did not lead to a solution, fruitless reasoning can be avoided. 

                                             
50 The ideal of precedent extends only so far toward the legal realm.  Drugs, for example, are described in law by 

their chemical formula, which need only be changed slightly to make it a „legal‰ variant of an illegal drug. 
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Figures 9.2, 9.3, and 9.4 compare how some of the reasoning schemes discussed in this section learn 
from cases [51:359]. 

case1

theoryinduction

case4

case3

case2

 

new case

theory deduction
conclusion

 

case1

conclusionanalogy

case4

case3

case2

new case  
Figure 9.2:  Induction Figure 9.3:  Deduction Figure 9.4:  Analogy 

Temporal Reasoning 

Time moves inexorably forward, and with it moves everything in the world.  Reasoning about the world 
thus requires a clear understanding of time and the ways that language represents it.  Furthermore, any 
temporal reasoning must operate on complex, interrelated times and durations in the actual and 
hypothetical past, present, and future [12:187]. 

Although time is constant51 throughout the universe, its representations vary [48:31; 2:410; 51:115; 
12:149]: 

• Metrical time 

Time is represented explicitly as numerical instants along a timeline.  Standard mathematical 
relations and operations hold over the intervals; e.g., t2 is earlier than t5 by three time units. 

• Topological time 

Time is represented implicitly in terms of relative relations like those shown in Table 9.5 [3]. 

                                             
51 EinsteinÊs Special Theory of Relativity notwithstanding. 

 Knowledge Representation for Natural Language Processing 100



Knowledge Representation:  Reasoning 

after

before

contains

during

equals

finishes

finished-by

meets

met-by

overlaps

overlapped-by

starts

started-by

Relation a cb

 

Figure 9.5:  Temporal relations 

Temporal relations combine in various ways to define ongoing processes, completed events, and static 
states [51:214]: 

• Continuous process 

Changes occur incrementally without periods of inactivity. 

• Discrete process 

Changes occur in indivisible steps. 

• Continuous-process initiation 

Every process has a starting point. 

• Continuous-process continuation 

Every process has some intermediate points between its starting and ending points.  

• Continuous-process cessation 

Every process has an ending point. 

• Discrete-process event 

The indivisible steps from initiation through cessation comprise an event. 

• Discrete-process state 

Periods of inactivity during events are static intervals where nothing changes. 
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Figure 9.6 illustrates the relationships between these elements [51:214].  Periods of activity and inactivity 
appear as squiggly and straight lines, respectively.  

Process

DiscreteContinuous

Event StateInitiation CessationContinuation

 

Figure 9.6:  Processes 

Processes can also be considered in terms of their fundamental nature [48:13]: 

• Random process 

In total chaos, nothing is predictable, and the random states in any „process‰ have no 
relationship to each other. 

• Law-governed process 

Much of the world is predictable at some abstract level.  For example, the law of gravitation 
helps to reason that a handful of marbles will fall when they are dropped, but it does not 
predict where each will hit the ground.  

• Deterministic process 

Certain scenarios are completely predictable according to tightly constrained laws.  For 
example, opposite poles of a magnet always attract and like poles always repel. 

Points and intervals along a timeline represent different temporal propositions [2:407; 56:903]: 

• Stative proposition 

States that do not change over an interval or any subinterval are static. 

• Activity proposition 

On-going actions may change at any time. 

• Telic proposition 

Completed actions do not change any further.  They can reach a final state in two ways: 

– achievements focus on the transition between states. 

– accomplishments focus on the activities leading up to the final state. 
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Spatial Reasoning 

Natural language makes heavy use of common prepositions like on, in, by, near and so on to build spatial 
representations of the real and imaginary world.52  These relations, along with spatially deictic words like 
here and there (see page 48), are especially troublesome to reason over because they depend on unseen 
context [135:950; 135:2; 134:40,251,273].  Representations of moving objects may involve temporal 
reasoning as well. 

Although vision is not considered part of natural language processing, the two share several properties 
[134:241]: 

• High-level vision 

Interpreting images involves understanding what is being seen in the given context.   

• Physical reasoning 

Reasoning is performed over the shapes, positions, and movement of objects based on what 
they are and what they can do, etc. 

• Route planning 

Determining how a moving object might change location involves understanding where it is 
going, why, how, etc. 

                                             
52 Many of the same prepositions play a role in temporal relations, too.  
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Section 10 

Mechanisms of Reasoning 
Declarative Approaches 

 

This section, as well as the next two, provides a survey of popular formal mechanisms to represent 
knowledge.  Each is arranged by implementation: 

• Declarative approaches 

Representation focuses on the objects and their properties and interrelations within a model.  
Inferences are made after defining what the objects are and what they can do. 

This symbolic approach is based on the declarative and functional programming paradigms of 
languages like Prolog and LISP.  

• Procedural approaches 

Representation focuses on ways to assemble and manipulate objects algorithmically. 

This symbolic approach is based on the imperative programming paradigm of languages like 
Java and C. 

• Graph-based approaches 

Representation focuses on graphical models with hybrid utilization of both declarative and 
procedural approaches. 

Computer science defines no corresponding programming paradigm; instead, these symbolic 
and subsymbolic approaches borrow from engineering, mathematics, graph theory, 
psychology, philosophy, cognitive science, and other disciplines. 
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Propositional Logic 

Many declarative sentences in natural language can be treated as logical expressions since they state facts, 
(which need not even be true); e.g., Chito is a Ph.D. student.  In systematic combination with other 
„facts,‰ conclusions can be drawn; e.g., Ph.D. students are graduate students; therefore, Chito must 
also be a graduate student. 

Propositional logic, also known as sentential logic, formally defines how such sentences are created, 
connected, and used for inference [58:47; 12:31; 45:166].  This earliest forms of this system are 
attributed to Aristotle [51:2].  His syllogisms contain only three sentences:  a major premise, a minor 
premise, and a conclusion [58:34].   

Table 10.1 lists the four forms each of these sentences can assume, and Table 10.2 illustrates several 
possible combinations [51:3; 58:92]. 

Rule Form  Example 
UA Universal affirmative Every A is B  UA All dogs are animals 
PA Particular affirmative Some A is B  UA All collies are dogs 
UN Universal negative No A is B  UA Therefore, all collies are animals 
PN Particular negative Some A is not B    
    UA All dogs have four legs 

Table 10.1:  Syllogism rules  PA Some Fido is a dog 
    PA Therefore, some Fido has four legs 
      
    UN Nothing that swims is a giraffe 
    UA All fish swim 
    UN Therefore, no giraffe is a fish 
      
    UN No dog is a human 
    PA Some Fido is a dog 
    PN Therefore, some Fido is not a human 
      
    Table 10.2:  Syllogism examples 

Syllogisms have been well studied over the ages, and formal rules have been developed to prescribe their 
correct usage [58:36]: 

• The middle term must be distributed in at lease one premise. 
• A term distributed in the conclusion must be distributed in a premise. 
• At most one negative premise is allowed. 
• An affirmative conclusion must derive from at least one affirmative premise. 
• A particular conclusion must derive from a particular premise. 
• Only one particular premise may appear. 
• A negative conclusion must derive from a negative premise. 
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Propositional logic is more flexible than syllogisms since it imposes no constraints on the number of 
sentences, and it supports their logical connection with and, or, not, if (⇒), and if-and-only-if (⇔) 
[45:166].  Table 10.3 lists the main inference rules [45:172; 23:493]. 

Rule Application Formula 

Implication elimination Infer a conclusion from an implication and a premise 
β

αβα ,⇒  

AND elimination Infer any of the conjuncts from a conjunction 
i

n

α
ααα ∧∧∧ L21  

AND introduction Infer a conjunction from a list of sentences 
n

n

ααα
ααα
∧∧∧ L

K

21

21 ,,,  

OR introduction Infer a disjunction with anything else 
n

i

ααα
α

∨∨∨ L21

 

Double-negation elimination Infer a positive sentence from a doubly negated one 
α
α¬¬  

Unit resolution Infer one conjunct true if other is false in disjunction 
α

ββα ¬∨ ,  

Resolution Infer a disjunction from one false conjunct 
γα

γββα
∨

∨¬∨ ,  

Table 10.3:  Common inference rules for propositional logic 

Despite its advantages over syllogisms, propositional logic is rarely used in artificial intelligence for at least 
the following reasons [51:357,215; 12:33; 45:185]: 

• Inferences can be made only on complete sentences, not on their discrete components. 

• The world model is committed only to timeless facts, so changing situations cannot be 
represented easily; e.g., John was in the kitchen.  John is now in the living room. 

Predicate Logic 

Predicate logic, and its most common form, first-order logic, mitigate many weaknesses of propositional 
logic.  The resulting logic system has become the most popular over a wide range of disciplines [4:3].  It 
also serves as the foundation for more advanced logics [51:41,27]. 

First-order logic quantifies over a closed world of objects with properties and relations [44:947; 11:95; 
12:35; 51:469; 58:89].  It is a declarative approach in the sense that all operations revolve around what 
the objects in a model are and what they can do.   

First-order logic is not without its shortcomings.  One immediate observation is its non-intuitive, 
convoluted „mathy‰ representation:  often the needs of well-formed logical expressions obscure the 
meanings and relationships of whatever is being represented.  Another limitation arises in extensibility:  
adding new knowledge further tangles the implicit spaghetti network of interconnected expressions.  
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Scalability quickly becomes an issue, as well, since increasing the meaning or scope of many expressions 
increases their size at a much greater rate.  Table 10.4 illustrates this case for simple numerical quantifiers 
[58:104]. 

Sentence Logical Form 

There are no dogs ¬∃x dog(x) 

There is at least one dog ∃x dog(x) 

There is at most one dog ∀x ∀y (dog(x) ∧ dog(y)) ⇒ (x = y) 

There is exactly one dog ∃x dog(x) ∧ ∀y dog(y) ⇒ (y = x) 

There is at least one large dog ∃x dog(x) ∧ large(x) 

There is at most one large dog ∀x ∀y (dog(x) ∧ large(x) ∧ dog(y) ∧ large(y)) ⇒ (x = y) 

There is exactly one large dog ∃x (dog(x) ∧ large(x)) ∧ ∀y (dog(y) ∧ large(y)) ⇒ (y = x) 

There are at least two dogs ∃x ∃y dog(x) ∧ dog(y) ∧ (x ≠ y) 

There are at most two dogs ∀x ∀y ∀z (dog(x) ∧ dog(y) ∧ dog(z)) ⇒ ((x = y) ∨ (x = z) ∨ (y = z)) 

There are exactly two dogs ∃x ∃y (dog(x) ∧ dog(y) ∧ (x ≠ y)) ∧ ∀z dog(z) ⇒ ((z = x) ∨ (z = y)) 

There are at least two large dogs ∃x ∃y dog(x) ∧ dog(y) ∧ (x ≠ y) ∧ large(x) ∧ large(y) 

There are at most two large dogs ∀x ∀y ∀z (dog(x) ∧ large(x) ∧ dog(y) ∧ large(y) ∧ dog(z) ∧ large(z)) ∧ 
((x = y) ∨ (x = z) ∨ (y = z)) 

There are exactly two large dogs ∃x ∃y dog(x) ∧ large(x) ∧ dog(y) ∧ large(y) ∧ (x ≠ y) ∧ ∀z (dog(z) ∧ 
(large(z)) ⇒ ((z = x) ∨ (z = y))) 

There are exactly four large dogs ∃w ∃x ∃y ∃z dog(w) ∧ large(w) ∧ dog(x) ∧ large(x) ∧ dog(y) ∧ 
large(y) ∧ dog(z) ∧ large(z) ∧ (w ≠ x) ∧ (x ≠ y) ∧ (y ≠ z) ∧ 
∀v (dog(v) ∧ (large(v)) ⇒ ((v = w) ∨ (v = x) ∨ (v = y) ∨ v = z))) 

Table 10.4:  Example quantified English sentences in first-order logic  

Furthermore, since first-order logic is so precise in its representation, it does not reflect certain ambiguity 
in natural language well.  For example, a skit on Saturday Night Live once depicted a news broadcast 
with the following statement [4:167]: 

1 a. Every minute, a man is mugged in New York City. 
 b. We are going to interview him tonight. 

Two interpretations are possible for sentence (1a), and sentence (1b) establishes the humorous context.  
First-order logic would have to commit to a particular unambiguous context for sentence (1a) independent 
of whatever sentence (1b) contributes: 

2 a. ∀x minute(x) ⇒ ∃y (man(y) ∧ mugged-during(y,x)) 
 b. ∃y (man(y) ∧ ∀x minute(x)) ⇒ mugged-during(y,x) 

Expression (2a) states that every minute there is a different man who is mugged during that time.  The 
humorous interpretation in expression (2b) states that there is one man, and every minute, he alone is 
mugged!  Expression (2a) does not specifically require a unique man for each minute, but in a world 
containing more than one man and unlimited minutes, presumably the same one would not be selected 
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each time.  Figure 10.1 illustrates two algorithms·which differ only in the position of one statement·that 
specify the same interpretations in procedural terms: 

MUG_2a: 

repeat 
  y ← GetMan() 
  Mug(y) 
  WaitOneMinute() 

MUG_2b: 

y ← GetMan() 
repeat 
  Mug(y) 
  WaitOneMinute() 

Figure 10.1:  Mugging algorithms 

Granted, such translations are difficult for any logical system, not just for first-order logic, but certain other 
systems provide a less rigid framework [51:414]. 

Higher-Order Logic 

An extension to first-order logic is higher-order logic, which provides additional power and flexibility:   

• It supports inference over propositional attitudes like believe and know; e.g., Bill believes that 
John loves Mary can be represented as believes(Bill,loves(John,Mary)).  The main distinction in 
the order of logics comes from philosophy [34:142; 56:389; 12:74; 6:306]: 

– de dicto sentences make an assertion, which can be handled in first or higher-order logic. 

– de re sentences make an assertion about an assertion, which can handled only in higher-
order logic by quantifying over predicates. 

• It supports modalities of uncertainty, which are very common in natural language; e.g., may, 
can, could, might [51:26; 45:260].  Modal logic distills these senses into two powerful 
operators, which may appear in various places and in conjunction with each other: 

– The  operator means it is possible. 

– The  operator means it is necessary. 

Within temporal logic, these operators correspond to sometimes and always, respectively.   

Higher-order logic exhibits other advantageous properties [51:42,27]: 

• Fewer axioms 

Modal logic provides syntactic sugar and other niceties to first-order logic, thereby reducing the 
need for numerous convoluted expressions.  Thus, it is considered a stronger system of 
inference (see page 76). 

• More natural translations 

In using fewer axioms with more expressive power, modal logic generally makes itself more 
readable since each bears more resemblance to whatever it is supposed to represent.  For 
example, the statement it may rain translates into modal logic with the simple  operator, 
whereas first-order logic requires the equivalent preamble „[o]f all the states of affairs in the set 
of causal successors of the present, there exists at least one in which it rains‰ [51:42]. 
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• More efficient computation 

In not having to compute over the preamble above, the implementation of a higher-order logic 
system may process inferences more efficiently. 

Default Logic 

The world exhibits considerable regularity, but it also has plenty of exceptions to the rules; e.g., birds fly, 
except penguins.  Moreover, people have expectations based on this regularity; e.g., seeing the front of a 
building leads to the normally true conclusion that the building has an interior and back, etc.  An exception 
such as a movie-studio facade is not normally considered unless evidence or suspicion brings it into play 
[45:459]. 

Knowledge representation can capitalize on this regularity with general-purpose default or defeasible 
rules that allow exceptions.  This mechanism ties in closely with the rules of general but not universal 
validity discussed in the introduction to Kinds of Reasoning (see page 91) [12:97].  Default logic is non-
monotonic and stable because it allows previous knowledge to be retracted or superceded without causing 
unmanageable contradictions [2:394; 51:373; 45:459]. 

Figure 10.2 illustrates the generic form of default rules [12:115; 51:376; 56:781,787; 5:119; 45:459].  
If the prerequisite is true and the justification is consistent with it, then assume the consequent.  Figure 
10.3 populates this formula with the ever-popular bird example.  Figure 10.4 extends it further to account 
for penguins. 

prerequisite : justification
consequent

 

bird(x) : flies(x)
flies(x)

 

penguin(x) : ¬flies(x)
¬flies(x)

 

Figure 10.2:  Default formula Figure 10.3:  Normal bird Figure 10.4:  Abnormal bird 

Defaults and generics53 are common in linguistics, and default rules are especially useful in lexical 
disambiguation [56:781,789,1127; 57:174].  Abduction to achieve proof by failure or negation as 
failure is a common implementation [5:143; 44:1022; 2:414; 51:164].54 

Fuzzy Logic 

The section on semantics in natural language (see page 38) discussed how poorly language describes much 
of the world.  For example, the adjective huge implies far greater size than tiny does, but a huge mouse is 
still much smaller than a tiny giraffe.  Sowa [51:348] aptly labels this messy combination of vagueness, 
uncertainty, randomness, ignorance, etc. as „knowledge soup.‰  Such issues present a huge problem in 
knowledge representation, and so far, only fuzzy logic, also known as many-valued or multi-valued logic, 
comes close to dealing with it adequately [12:25; 51:364; 55:666; 45:463; 44:740; 5:11]. 

                                             
53 Objects referenced as a group, not as individuals; e.g., bear is/are uncommon in the desert [56:1127]. 
54 Proof by failure does not necessarily prove anything related to goal unless the propositions are written well; e.g., 

adding an irrelevant extra clause to an expression means it may be proved [26:191; 2:414]. 
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Unlike most logics, which have only the discrete states false and true, fuzzy logic supports operations on a 
continuous interval.  The range, often inclusively between 0 and 1, corresponds to graded values of truth 
or certainty, etc.; e.g., 0 is 100% false, 1 is 100% true, any anything else lies somewhere in between 
[51:69].  Likewise, intervals can be applied to other vague properties, as illustrated for human age in 
Figure 10.5 [51:366]. 

certainty

age

1.0

0.0

0.5

3626166 46 56 66

oldyoung

 

Figure 10.5:  Fuzzy function for human age 

Fuzzy logic is by no means a complete solution to the problem of vagueness.  For example, the units on 
the x-axis in this figure are not universally applicable to everything with an age, even if the curves plausibly 
are; i.e., different units are needed for fruit flies, humans, sea turtles, fossils, galaxies, and so on.  As usual, 
context plays a pivotal and confounding role. 

Situation Calculus 

A static world is a dead world.  In the real world, most things change states, move around, and otherwise 
modify themselves and their surroundings.  Thus, a representation of the world must be able to account for 
such varying situations.  Situation calculus·and its more flexible variant, event calculus·provides a 
limited means for describing many of these aspects [48:30,33; 45:235]. 

The foundation of situation calculus is LeibnitzÊs Principle of sufficient reason, which claims that nothing 
happens without a reason [51:247,143].  States in world do not change spontaneously without grounds; 
rather, they conform to the expectations and limitations of the world and the valid operations that can 
alter them.  This model is the basis of planning, which consists of three main components [45:341]: 

• Initial state 

Every plan has a starting point; e.g., a person crosses a room first by entering the room. 

• Goal state 

Every plan should have an ending point;55 e.g., the room has been crossed when the person 
reaches the other side. 

• Operators 

Every state between the initial state and goal state can be transitioned according to axioms and 
constraints in the model; e.g., crossing a room is most likely done on foot and may occur in a 

                                             
55 The goal need not be fully known in advance or ever reached.  Research and wars on terrorism are protracted 

examples that are considered over at some arbitrary point, regardless of whether any „goal‰ was achieved. 
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beeline fashion or randomly, etc.  Flying across a room is not within the capabilities of a 
person in this context.  

One terribly vexing problem in this representation is how to update the states in a model after each 
transition [44:949; 51:245; 26:166].  This so-called frame problem is thought to be the hardest cognitive 
challenge in artificial intelligence [34:81,267].  Picture the following scenario: 

In a military arsenal are hundreds of weapons, thousands of rounds of ammunition, tons of high 
explosives, several drums of rocket fuel, as well as a ball of yarn and a lit candle on a ledge over a pan of 
gunpowder.  There is also a little white kitty.  

If the kitty knocks the ball of yarn into the pan, what happens to the states of everything in the arsenal?  
Realistically, only the yarn will be affected; i.e., its position will be different, and it may have unraveled 
somewhat.  However, if the kitty knocks the candle into the pan, the states will require some massive 
updating, to say the least!  The moral of this story is that slight differences in a single action may have 
entirely different explicit and implicit consequences56, and any representation of such a model must 
account for them. 

The frame problem manifests itself in several sinister forms [45:207; 12:200]: 

• Inferential frame problem 

The transition between states changes some things and leaves others the same; e.g., taking a 
step forward toward the middle of a room means a person is still in the room, whereas what he 
or she can see from the new vantage point may differ. 

• Representational frame problem 

Axioms must account for every valid transition between states; e.g., moving forward in a room 
normal entails taking a step forward, but a kung fu leap may have the same result.  

• Qualification problem 

Axioms must account for correct actions that fail for an infinite number of reasons; e.g., 
crossing a room may not be prudent if it is on fire or a psychopath with a chainsaw is present. 

• Ramification problem 

Every action has implicit consequences that must be inferred between states; e.g., a person 
keeps the same lint is his or her pocket while crossing a room, but the oxygen molecules in it 
will change. 

                                             
56 Mathematical theories of chaos hypothesize a connection between the flapping of butterfly wings in South 

America on global weather patterns! 
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Section 11 

Mechanisms of Reasoning 
Procedural Approaches 

 

The merits of declarative and procedural knowledge representations received intense debate by the 
artificial-intelligence community in decades past.  The unsurprising result is now a consensus that each 
representation has its place, and in fact, combinations of both, known as hybrid approaches, are actually 
necessary [44:1017; 37].  The previous section discussed declarative approaches as the form of a solution 
rather than as the mechanisms to attain it.  Procedural approaches consider the opposite·what the steps 
to the goal are [40:435]. 

For comparison, consider a naive sort implemented in declarative and procedural (imperative) 
programming paradigms:  

DECLARATIVE_SORT: 
list_sorted is any permutation P of list_unsorted where each element Ei 
in P is greater than Ei+1 
 
PROCEDURAL_SORT: 
repeat until list_unsorted is empty 
   find the largest element E in list_unsorted 
   remove E from list_unsorted 
   append E to list_sorted 

Both algorithms return a sorted list.  The declarative approach describes the properties of a sorted list and 
effectively says to the computer:  do whatever is necessary until one is found.  The procedural approach 
instead specifies the exact steps toward the same goal.  In programming, the advantages of each paradigm 
are clear:  declarative programs tend to be smaller, more readable, more extensible, and more verifiable, 
while procedural programs tend to be more efficient [12:3; 46:541].  Indeed, the declarative sort runs in 
O(n!) time versus O(n2) for the procedural·an indescribably gargantuan difference!57 

                                             
57 For example, to sort 50 elements takes at most roughly 364 iterations versus 2,500 iterations, respectively! 
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Luckily, the differences in efficiency between the two approaches for knowledge representation are much 
less extreme.  Consequently, the choice of one over another often depends more on the needs of the 
application.   

Procedural approaches operate under a common framework known as a production system [34:104].  
Within this framework, production rules define knowledge in terms of steps toward some goal.  The 
generic form is 

production-rule = condition + action 

where condition specifies what must hold true for action to be executed [34:104,135]. 

Scripts 

The world is a chaotic and unpredictable place, but within this apparent disorder can often be found 
considerable regularity.  For instance, going out to eat at a restaurant entails countless details that can vary 
widely or may not be present at all.  The basic steps and their typical order, however, are relatively fixed: 

1.  Go to the restaurant. 
2.  Order the food. 
3.  Receive the food. 
4.  Eat the food. 
5.  Pay for the food. 
6.  Leave the restaurant. 

Granted, many exceptions or elaborations to this framework are possible; e.g., at a fast-food restaurant, 
Step 5 usually occurs immediately after Step 2 or Step 3.  Nevertheless, eating out can arguably be 
distilled into just six high-level steps.  Furthermore, each step can be decomposed into substeps; e.g., Step 
5 involves a transaction where money is given (and in most cases, a tip) and possibly change is received. 

Such a stepwise description of events to achieve a goal is known as a script.  Although a generic script 
rarely overlays an actual sequence of events exactly, many of its steps are usually present.  This structural 
similarity is especially useful for computers to establish context and to understand the motivation and 
actions of the agents within it [34:195].  Narratives are notoriously sparse with explicit details, and, as it 
has been shown throughout this paper, computers are notoriously bad at inferring implicit details 
[34:193].   Scripts fill in the gaps somewhat.   

Although scripts are clearly useful, two difficulties arise in manipulating them programmatically [2:477; 
34:197]: 

• How does the system know which scripts are relevant? 

Any real-world NLP system needs scripts for the many conceivable scenarios it may encounter.  
Realistic scripts have far more steps in greater detail than is shown above, and the exceptions, 
elaborations, and so on must be accounted for. 
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For a script to be useful, it must also be selected as appropriate for the given scenario.  The 
mechanism behind this selection is complex and often unreliable.  Furthermore, selecting the 
incorrect script could be more damaging than having no script at all. 

• How does the system keep track of where it is in the script and its embedded subscripts? 

Scripts are compositional and thus form a tangled stack-like structure as they play out.  
Maintaining the current step in light of the many tangential branches is difficult.  Furthermore, 
selecting the next step incorrectly could lead a system astray with little chance for recovery. 

These deficiencies, among others, have led to the development of additional narrative representations that 
build upon each other hierarchically [51:293; 34:198]: 

• Scenes 

If a high-level script like EAT-AT-RESTAURANT above cannot be matched with the current 
scenario, then related lower-level processing is obviously not applicable.  Scenes encode 
abstract commonalities of basic models and do not deal with exceptions or elaborations.  They 
can be used as triggers to determine which scripts are relevant. 

• Memory organization packets (MOPs) 

A collection of scenes can be interconnected with respect to their triggers.  If an enabling scene 
cannot be found, then scenes dependent on it can be safely ignored.  The notion of GOING-
OUT-TO-EAT would be considered a MOP.  Within it might be found the EAT-AT-RESTAURANT 
scene, as well as a GOING-TO-A-DRIVE-THROUGH scene, a GOING-FOR-TAKE-OUT scene, and so 
on.  The overall scenario revolves around obtaining prepared food; the individual scenarios 
focus on how this goal is achieved. 

• Thematic organization packets (TOPs) 

A collection of MOPs describes high-level, very abstract notions.  For instance, the goal of 
OBTAINING-FOOD can be satisfied by GOING-OUT-TO-EAT, by HAVING-FOOD-DELIVERED, by 
COOKING-AT-HOME, and so on.   

The formal languages that define scripts are based on approaches discussed throughout this paper, so they 
are not addressed here.  One notable exception is Petri nets, which are especially useful for event-driven 
simulations [51:235].  This graph-based implementation relies on various mechanisms used in computer 
operating systems and networks to manage the lock-and-key structure of interdependent triggers; e.g., 
synchronous and asynchronous data transfer, message passing, semaphores, etc. [44:1402; 51:141]. 

Expert Systems 

Experts in almost any subject are valued because they know their material far better than the average 
person does.  Artificial-intelligence applications that attempt to emulate the abilities of experts are known 
as expert systems.  Such systems automate and improve the familiar troubleshooting guides available for 
many limited problem domains like auto repair and software support.  They also extend into highly 
specialized domains like medical diagnosis. 
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Table 11.1 shows a subset of an automotive troubleshooting guide related to instrumentation problems 
[17:504].  Such a simple representation provides only an overview of a small range of conceivable 
problems.  As such, it is intended mainly for people of average ability and resources; professional 
mechanics have a far more detailed version, which they use in conjunction with their expertise and 
advanced tools.  Nevertheless, this representation could be considered a bare-bones expert system since it 
embodies the knowledge and experience of whoever wrote it. 

Symptom Cause Remedy 
All gauges do not operate Blown fuse Replace gauge main fuse 
 Defective instrument regulator Replace regulator 

All gauges read low or erratically Dirty instrument voltage regulator Clean regulator 
 Defective instrument voltage regulator Replace regulator 

All gauges are pegged Loss of ground between instrument 
voltage regulator and frame 

Fix break in connection 

 Defective instrument regulator Replace regulator 

Table 11.1:  Subset of automotive troubleshooting guide 

True expert systems, which are interactive and provide more detailed information, are based on three 
main components [44:686,1438; 51:156]: 

• Language 

Straightforward if-then rules are typically employed, often taking into account probability or 
uncertainty.  User interactivity allows conditional expressions to narrow the scope of problem 
solving.  Decision trees, which will be discussed in the next section, can also play a role. 

• Knowledge base 

This repository serves as the embodiment of relevant contributions from experts.  It usually 
contains two kinds of knowledge: 

– factual knowledge describes common details, assumptions, prerequisites, etc., which are 
agreed on by most experts. 

– heuristic knowledge incorporates less tangible aspects of problem solving such as rules of 
thumb, ad hoc approaches, judgment calls, and other experience that may differ or even 
conflict among experts. 

• Inference or reasoning engine 

Interactive execution of the language on the knowledge base is supposed to generate relevant 
and helpful output.  The mechanisms behind this process differ by implementation, but they 
are based on the approaches discussed throughout this paper.  In addition to evaluating 
conditional rules, forward and backward chaining (see page 94) are commonly used. 
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Expert systems, like everything in the field of knowledge representation, vary widely according to different 
applications, domains, implementations, etc.  In spite of such variation, all systems are based on the 
general architecture shown in Figure 11.1 [45:687]. 

Knowledge interface

Inference engineKnowledge base

Results

User interface

User

Knowledge engineer

Expert

 

Figure 11.1:  Basic expert-system architecture
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Section 12 

Mechanisms of Reasoning 
Graph-Based Approaches 

 

Graphical approaches to knowledge representation lie somewhere between declarative and procedural 
approaches and borrow many features from both.  In fact, in many cases, they are simply the semantically 
equivalent visual counterpart to text forms and, as such, can be freely transformed back and forth 
[45:317].    

Graphical models have at least two practical advantages over linear ones [49; 30; 45:317]: 

• Readability 

A picture is worth a thousand words.  The same holds true for graphical representations, which 
have been shown for visual programming languages to exhibit several useful properties: 

– evidence suggests that abstract reasoning is pictorial in nature. 

– multidimensional representations may support visual reasoning better than linear forms. 

– visual representations lend themselves well to the psychological notion of chunking. 

– images and thought may be transformations of each other. 

– experiments indicate that the mind stores sensory information in very detailed form. 

– graphical models usually relate in form to the task they represent, whereas linear models 
may bear no resemblance. 

• Implementation 

Graph theory is well established in mathematics and computer science.  Some algorithms are 
inherently more efficient on graphs. 

Inheritance 

Throughout time, philosophers, biologists, astronomers, and many others, have observed an orderly 
structure to almost everything.  The universe, for example, contains galaxies, which in turn contain solar 
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systems that have a sun and perhaps planets, and so on.  From largest to smallest, most general to most 
specific, etc., the world lends itself well to taxonomic description. 

Knowledge representation can benefit from this structure through hierarchical graphs.  Each node is some 
element in the model being represented.  It contains both properties that describe it and various kinds of 
links to other related nodes.  Inheritance is performed by following the links and recording the properties 
and relations encountered along the way [34:92].  For example, Figure 12.1 describes a dog as a canine, 
which is a mammal, and hence a living-thing.  If a living-thing has the property of being mortal, then by 
inheritance, so do mammal, canine, and dog.  Likewise, if mammal has the property of breathing air, 
then so do canine and dog, etc. 

living-thing

mammal

canine

dog  

Figure 12.1:  dog 

mortal

human

man

immortal

Superman  

Figure 12.2:  Superman 

pacifist

Quaker Republican

Nixon  

Figure 12.3:  Nixon 

An inheritance hierarchy is constructed in one of two ways [45:320; 51:151,381]: 

• Single inheritance 

A node can have only one parent per relation; e.g., dog is-a canine. 

• Multiple inheritance 

A node can have multiple parents per relation; e.g., dog is-a canine and is-a house-pet.  
Since the properties of each parent are inherited, a potential for conflict exists, as shown in 
Figures 12.2 and 12.3. 

Furthermore, inheritance can abide by different rules [56:793,812; 5:248]: 

• Strict taxonomic inheritance 

Only monotonic inheritance is supported, and all nodes must be taxonomically related; e.g., 
dog is-a mammal is-a animal and so on.  Property relations like has-color are not allowed.58   

• Mixed or defeasible taxonomic inheritance 

Non-monotonic inheritance is supported, but all nodes must still be related taxonomically. 

                                             
58 Property relations through convoluted means may be possible; e.g., Superman is-a immortal-thing.  However, 

such trickery likely undermines the validity and usefulness of the taxonomy.  Known as ontological promiscuity, it 
opens the door for unrestricted reification of properties into objects [57:57; 45:258]. 
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• Skeptical inheritance 

Inheritance may not draw unique conclusions due to conflicts, as shown in Figures 12.2 and 
12.3.  In such case, other reasoning may be applied to make the appropriate choice; e.g., if 
Quakers have stronger beliefs than Republicans do, then their branch should exhibit greater 
influence. 

Two mechanisms that help cope with conflicts are based on AND/OR trees discussed below 
[5:249]: 

– credulous reasoning requires at least one branch to lead to a non-conflicting conclusion. 

– ideally skeptical reasoning requires all branches to lead to a non-conflicting conclusion. 

Taxonomic inheritance can be extended to support relations beyond is-a at the expense of additional 
complexity and potential for conflict [56:796,800]. 

Search 

Almost all artificial-intelligence applications search a data structure for a predefined solution [2:600].  This 
structure, often some kind of tree, contains intermediate states and desired goals.  How a search proceeds 
from state to state toward a goal is based on decisions made at each state.  The mechanisms behind these 
decisions range from straightforward conditions like cost(state1) < cost(state2) to loosely defined 
heuristic rules like odd states tend to work better [51:245; 44:90; 45:94]. 

Trees 

Trees are mathematical models and computer data structures that have been studied extensively in many 
fields.  No background information is provided here, as it can be found in any computer-science textbook 
on data structures. 

Decision Trees 

Propositional knowledge (see page 105) lends itself well to machine learning [45:31; 11:642].  This 
subject is outside the scope of this paper, but one common approach, decision trees, warrants brief 
discussion because it overlaps well with search.    

A common representation of datasets for human consumption is a table.  Most people are familiar with 
looking up values in columns and reading across the appropriate row to find desired information.  Table 
12.1 presents a simplistic example for deciding whether to go hiking based on the weather.  This table can 
be translated directly into a Boolean function as a disjunction of row functions; e.g., 

hike = (sky( clear ) ∧ rain( none )) ∨  
       (sky(broken) ∧ rain( none )) ∨  
       (sky(broken) ∧ rain(light)) ∨ 
       …  
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Moreover, the table can also be translated into a tree, as illustrated in Figure 12.4. 

    Sky Rain Hike? Recommendations 
Clear None Yes None 
Broken None Yes None 
Broken Light Yes Bring umbrella or raincoat 
Broken Heavy Yes Bring umbrella and raincoat 
Overcast None Yes Leave camera at home 
Overcast Light No None 
Overcast Heavy No None 

Sky

Yes

none

Yes Yes Yes

none heavylight

Yes No No

none heavylight

Rain Rain Rain

clear overcastbroken

Table 12.1:  Decision table Figure 12.4:  Decision tree 

A decision tree is traversed downward from the root.  The question at each node is evaluated based on the 
available information, and the appropriate branch is followed recursively.  When a leaf is reached, its value 
is returned as the goal.   

Expert systems (see page 115) benefit from decision trees for several reasons [45:538; 55:526]: 

• Interactivity with the user 

Each node presents a question that is directly relevant to its branch, and traversing the branch 
narrows subsequent questions. 

• Justification at each step 

As each question is answered, information can be generated to explain the solution when it is 
finally reached, as indicated in the recommendations column of Table 12.1.  An extended 
example is:  do not go hiking because an overcast sky usually gets worse, and heavy rain 
often results in flooding.  Plus photographs do not come out nice. 

• Flexibility with missing information 

If an exact question or answer is not available, nearby branches, which are presumably 
somehow related, could be investigated.  An exact goal may not be reached, but helpful 
information could be produced.  In the event that no related branch can be found, the 
justifications leading up to the point of failure may still provide some clues in problem solving. 

AND/OR Trees 

Traversing a decision tree involves following only one branch per visited node.  There is no mechanism to 
handle multiple selections except for, say, running an expert system again, or bookmarking a particular 
question for revisiting.  A more advanced tree representation allows multiple questions to be connected 
with logical functions [55:146,678,694]: 

• AND node  

All matching branches under a node are traversed, and all must return a goal. 

• OR node 

All matching branches under a node are traversed, and at least one must return a goal. 
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Combining the goals into a useful solution is tricky.  Typically AND/OR trees are used for tasks with well-
defined nodes, branches, and goals; e.g., games and puzzles [55:678].  Furthermore, specialized search 
techniques beyond the scope of this paper are needed [ibid]. 

Searching Trees 

A decision tree combines both a representation and a search strategy.  Normally these two aspects are 
addressed separately to consider the merits of different approaches; i.e., which type of tree is most 
appropriate for the application, and which search strategy works best on it?  The details of other tree 
representations are beyond the scope of this paper, so only search strategies will be discussed.  The main 
properties of any strategy relate to its computability [45:73]: 

• Completeness 

The search is guaranteed to return a solution if one exists. 

• Optimality 

The search is guaranteed to return the best solution if more than one exists. 

• Time complexity 

The search will take a known maximum amount of time based on the size of the tree. 

• Space complexity 

The search will take a known maximum amount of memory based on the size of the tree. 

Other properties involve how the search proceeds through the tree toward a goal [45:73; 55:676]: 

• Uninformed or blind search 

No information is known a priori about the number of steps or the cost of searching for a goal.  
The search only knows whether it has found a goal or whether it must continue searching.   

• Informed or heuristic search 

Information is known a priori about the nature of the search space, and it can be used at each 
step to direct the search in presumably the best direction toward a goal. 

The following strategies form the backbone of search [45:85; 55:694,697; 2:603]: 

• Breadth-first search 

Each node on a level of the tree is visited horizontally before proceeding to the next lower 
level.  This strategy is complete, as well as optimal if all paths have the same cost.  However, 
the large time and space complexities limit its practical use.  

• Depth-first search 

Each branch is visited vertically until a goal or leaf is reached.  A leaf results in traversal 
returning to the original branch and visiting the next branch.  This strategy is neither complete 
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nor optimal.  Furthermore, the time complexity in large or infinitely deep trees limits its 
practical use.   

An alternative form, depth-limited search, imposes a fixed cutoff point in the tree below which 
no further searching can be done.  It is both complete and optimal only if the goal lies within 
the available search space. 

Iterative deepening uses a dynamically adjustable cutoff point in the same way.  It is both 
complete and optimal. 

• Best-first search 

The branches to traverse at each node are determined by a heuristic rule that presumably leads 
the search in the best direction.  This strategy may use either breadth-first or depth-first 
searching. 

• Other searches 

Similar strategies have been developed to exploit the advantages and reduce the weaknesses of 
these basic strategies above; e.g., uniform-cost, bi-directional, A*, branch and bound. 

Semantic Networks 

Research suggests that human knowledge is organized hierarchically in a mental network of related 
knowledge [51:4; 11:97].  Semantic networks abstract this notion into a graph-based implementation that 
has long been used in philosophy, psychology, and linguistics, as well as more recently in artificial 
intelligence and natural language processing [50]. 

A semantic network generally consists of concept nodes with relational connections.  Following the 
connections as they fan out from a concept reveals its compositional structure and semantic properties.  
Figure 12.5 illustrates a rudimentary semantic network describing a robin as a bird that eats worms and 
has red feathers. 

worms eats

feathers

robin

redcolor-of

ha
s-

pa
rt

birdis-a

 

Figure 12.5:  Semantic network for ÂrobinÊ 

Six kinds of semantics networks are most common [50]: 

• Subsumption or definitional networks 

Subtypes and is-a relations are emphasized between concepts and subconcepts that are 
assumed true within the represented domain.  The hierarchical structure supports powerful and 
efficient inheritance.  This structure, commonly used in ontologies (see page 127), closely 
parallels semantic memory (see pages 71 and 83). 
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• Assertional networks 

Propositions are interconnected.  They are assumed contingently true unless evidence to the 
contrary can be found or inferred.  This structure closely parallels episodic memory (see pages 
71 and 84). 

• Implicational networks 

Nodes are interconnected by logical implication to form chains of causality, belief, or inference. 

• Executable networks 

Operations are performed as nodes are visited.  Petri nets (see page 115) are an example. 

• Learning networks  

Network interconnections are built or extended through training on examples.  Artificial neural 
networks (see page 129) are an example. 

• Hybrid networks 

Any of these networks can be combined. 

One ironic criticism of semantic networks addresses their often-unclear semantics:  relations can be defined 
arbitrarily, and care must be taken to avoid proliferating unnecessarily similar, redundant, and useless ones, 
etc. [5:191; 34:105].  Another criticism takes aim at how semantic networks tend to focus more on 
relations within the network than between it and the domain being represented [34:105].  Despite these 
shortcomings, carefully developed networks have proved successful for many applications.  Highly popular 
WordNet, for instance, maintains a huge structure of rich interrelations between English words [16; 
11:631]. 

Frames 

An alternative form of semantic networks is a frame-based representation.  Instead of the relatively 
incoherent tangle of connected nodes in semantic networks, frames organize details related to each 
concept into clusters [2:400].  Each relation is represented as a slot, and its value is a filler, which can 
take an atomic value, a function, or a reference to another frame [34:133; 54:193].  Figure 12.6 extends 
the example from Figure 12.5 into a network of frames. 

robin
is-a:
color-of:
eats:

bird
red
worms

bird
is-a:
has-part:
moves:

animal
feathers
flying

worm
is-a:
has-part:
eats:

invertebrate
segments
dirt  

Figure 12.6:  Frames for ÂrobinÊ 
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Conceptual Graphs 

Aspects of semantic networks and frames can be combined into a conceptual graph.  This representation 
is as logically precise and expressive as first-order logic, but it lends itself far better to human readability 
and computational tractability [51:23,476; 49; 47].  In addition, it provides mechanisms for many difficult 
linguistic constructions like quantification and indexical relations (see pages 46 and 48, respectively) 
[51:476]. 

Conceptual graphs are built from two components interconnected by directed arcs [51:23,476]: 

• Concepts 

Objects and properties appear in concept boxes with two slots: 

– a type, which corresponds to the notion of type or object class in programming languages 

– a referent, which generally plays the role of variables in programming languages.  It may 
be a combination of a named instance, a variable, a quantifier, or metalanguage features 

The type is always required, whereas the referent is optional.  If it is not present, the default is 
existential quantification; e.g., [dog] specifies some unnamed dog, whereas [dog: Rambo] 
specifies a particular dog. 

• Conceptual relations 

Concepts are interconnected by relation circles, which function analogously to prepositions in 
natural language.  Each relation maps a number of inputs to an output; e.g., between take two 
inputs, whereas in takes one or more; both return a spatial-relation output. 
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Table 12.2 illustrates several translations of natural language into two conceptual-graph representations 
[49].  Graphs involving advanced features like propositions, situations, coreference links, and beliefs would 
appear in similar form; the only additions are dashed lines and boxes around subgraphs. 

Graph Form Linear Form 

A dog is in a yard 

dog yardin
 

[dog: *x] [yard: *y] (in ?x ?y) 

Every dog is in a yard 

dog: ∀ yardin
 

[dog: @every*x] [yard: *y] (in ?x ?y) 

A dog is between a big tree and a house 

1

2

house

tree
dog

attr big

between  

[dog: *w] [house: *x] [tree: *y] 

[big: *z] (between ?x ?y ?w) 
(attr ?y ?z) 

The dog Fido is going by car to a vet 

dog: Fido goagent dest

instr

car

vet

 

[go: *w] [dog: ‘Fido’ *x] [vet: *y] 
[car: *z] (agent ?w ?x) (dest ?w ?y) 
(instr ?w ?z) 

Table 12.2:  Simple conceptual graphs 

Ontology 

The union of semantic networks, frames, and conceptual graphs, along with other approaches, produces 
an ontology.  This rich knowledge representation with vast potential carves up the world·or more 
realistically, a subset of a domain·as a complex subsumption hierarchy of frame-like components 
[54:184; 55:719].  Moreover, it is not just a representation of knowledge; it can also be viewed as⁄ [21] 

⁄  a philosophical discipline 
⁄  an informal conceptual system 
⁄  a formal semantic account 
⁄  a specification of conceptualization 
⁄  a vocabulary used by logical theory 
⁄  a meta-level specification of logical theory 
⁄  a representation of conceptual systems through logical theory 
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Natural language processing benefits from these properties in so many ways that „[i]n the field of NLP, 
there is now a consensus that all NLP systems that seek to represent and manipulate meanings of texts 
need an ontology‰ [33:6].  In particular, an ontology⁄ [33:5] 

⁄ provides a way to represent the meaning of text in a language-neutral way 

⁄ allows lexicons for different languages to share common knowledge 

⁄ enables source-language analyzers and target-language generators to share knowledge 

⁄ stores selectional restrictions and other pieces of world knowledge 

⁄ fills gaps in meaning by inferences based on its representation of conceptual knowledge 

⁄ helps resolve semantic and pragmatic ambiguity 

⁄ serves as a classification of people, places, social roles, organizations, etc. 

⁄ maintains a repository of selectional preferences on the composition of meaning 

⁄ supports inferences on the topology of the network to determine semantic relatedness  

Since as far back as AristotleÊs time, people have been trying to define a formal structure of the world in 
terms of what its objects are, how they are related, what they do, and so on [2:231].  Representations 
differ widely, and no single one could ever be considered indisputably correct in all respects.59  What they 
generally have in common, however, is a semantic structure based on variations of is-a and part-of 
relations [26:125; 2:307; 44:949; 53:14].  Concepts in an ontology are often linked taxonomically from 
more general to more specific, as well as lattice-wise with other interrelations.  Taxonomical subbranches 
of a node represent differentiae, which are the properties or features that distinguish them from their 
parent node and each other; e.g., man and woman are both more specific subtypes of human, but each is 
so in slightly different ways [51:494]. 

The form and contents of an ontology are a matter of great debate.  However, since the goal is usually to 
represent the real world, it is not surprising that the range of paradigms is limited [42; 22; 39:70; 45:228; 
34:191; 56:898]: 

• Ontology oriented toward objects 

Nodes describe tangible or definable entities in world, such as physical objects, events, regions, 
quantities of matter, and so on. 

• Ontology oriented toward concepts 

Nodes describe meta-level categories used to model the world, such as abstract concepts, 
properties, qualities, states, roles, parts, intentions, plans, beliefs, and so on. 

Further distinctions can be made by the domain an ontology represents [42; 22].  A domain-independent 
model is neutral with respect to any particular application, task, language, culture, etc.  A domain-
dependent or situated model, on the other hand, is designed with a specific goal in mind. 

                                             
59 See the section of semantic features on page 42 for a related discussion. 
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Figure 12.7 depicts in abridged form the top-level structure of the Mikrokosmos ontology [33:12]. 

RELATION

ATTRIBUTE

SOCIAL-EVENT

MENTAL-EVENT

PHYSICAL-EVENT

SOCIAL-OBJECT

MENTAL-OBJECT

PHYSICAL-OBJECT

ALL

MATERIAL

SEPARABLE-ENTITY

PLACE

REPRESENTATIONAL-OBJECT

ABSTRACT-OBJECT

ORGANIZATION

GEOPOLITICAL-ENTITY

SOCIAL-ROLE

PERCEPTUAL-EVENT

COGNITIVE-EVENT

EMOTIONAL-EVENT

COMMUNICATIVE-EVENT

SCALAR-ATTRIBUTE

LITERAL-ATTRIBUTE

EVENT-RELATION

OBJECT-RELATION

EVENT-OBJECT-RELATION

OBJECT

EVENT

PROPERTY

 

Figure 12.7:  Mikrokosmos top-level ontology 

Artificial Neural Networks 

Neural networks60, also known as connectionist models, are plausible representations of the way the 
brain works as a collection of neurons and synaptic connections [24:6].  Many successful applications in 
engineering and artificial intelligence employ them; e.g., pattern recognition, robotic vision, data mining, 
etc.  Natural language processing may benefit as well. 

                                             
60 „Artificial‰ is typically omitted when no confusion would ensue. 
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Neural architectures vary widely, but they all interconnect functional units in some way.  Figure 12.8 
illustrates a rudimentary switching unit that is duplicated as circles throughout the generic network in 
Figure 12.9 [63:115].  It takes any number of weighted inputs and passes their sum through a discrete or 
continuous function to produce an output.   

+
adjustment desired

output

+

weights

actual
outputin

pu
ts

in
pu

ts

output

 

Figure 12.8:  Switching unit Figure 12.9:  Feedforward network 

Before a network can be used on real data, it must be trained on test data.  Training is either supervised 
or unsupervised depending on whether or not the network has the correct answers available, respectively 
[24:65,57; 44:1057; 45:528].  For training, if the actual output does not match the desired output, 
iterative adjustments are made to the input weights automatically and training continues.  Training 
succeeds once the network stabilizes with no further iterations.  For execution, the adjustment connections 
are disabled and the actual output is used as the result. 

Neutral networks have their place in NLP systems, but alone they cannot serve all the various linguistic 
functions.  As a result, they are normally coupled in one of three ways with conventional symbolic 
approaches [11:825]: 

• Loosely coupled architecture 

Connectionist and symbolic models are separate components and the latter provides input into 
the former.  

• Tightly coupled architecture 

Connectionist and symbolic models are separate components and each provides input into the 
other.  

• Fully integrated architecture 

Connectionist and symbolic models are a single component. 

Neural networks offer many advantages in wide range of tasks [45:566,583,625; 11:672; 24:4]: 

• Expressiveness 

Although connectionist models do not have the expressive power of general logical 
representations, they nevertheless perform very well on many kinds of input. 

• Generalization 

Flexibility and expressiveness allow connectionist models to adapt to a wide variety of tasks. 
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• Computational efficiency 

Networks are inherently parallel, so fully trained connectionist models operate very efficiently. 

• Plausible biological model 

The tangled interconnections between neural components are believed to be more analogous 
to the way the human mind functions than symbolic models are. 

• Noise tolerance 

Strong generalization allows connectionist models to smooth over anomalous or spurious data. 

• Graceful degradation 

As the quality of the inputs deteriorates, the quality of the outputs tends to decline gradually.  

On the negative side, neural networks suffer from several limitations [11:674; 45:566,584]: 

• Scalability 

Connectionist models that work on small datasets may not extend to larger datasets. 

• Transparency or inscrutability 

As a black-box implementation, the inner workings of connectionist models are unreachable.  
Debugging a network or tweaking its performance is extremely difficult. 

• Prior knowledge 

Selecting an appropriate connectionist model and configuring it to a particular task is a poorly 
defined task that relies heavily on experience, perseverance, and luck. 

• Structure representation 

Natural language consists of many compositional symbolic structures that do not lend 
themselves well to subsymbolic representations or processing. 
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